
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Vandergheynst, président du jury
Prof. V. Cevher, directeur de thèse

Prof. F. Bach, rapporteur
Prof. R. Baraniuk, rapporteur

Prof. M. Jaggi, rapporteur

Learning with Structured Sparsity:
From Discrete to Convex and Back

THÈSE NO 8516 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 22 JUIN 2018

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE SYSTÈMES D'INFORMATION ET D'INFÉRENCE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Marwa EL HALABI

To my sister, Mira

Acknowledgements
This thesis would not have been possible without the support of many people. First, I would like
to express my gratitude to my advisor Volkan Cevher, for his guidance and support throughout
my PhD. Thank you Volkan for introducing me to the interesting areas of machine learning and
optimization, for your enthusiasm for research and your optimism, and for being always available
for discussions about research, career advice, or just TV series and funny YouTube videos.
I was honored to have Francis Bach, Richard Baraniuk, Martin Jaggi as jury members of my
thesis, and Pierre Vandergheynst as president of the jury. I am grateful for their time, their
kindness, and for the insightful discussions during and outside the private defense.
I would also like to thank Francis for hosting me during the Fall of 2017 at INRIA, and for
providing a welcoming and stimulating working environment. I truly enjoyed and learned a lot
from our collaboration, which resulted in the third chapter of this thesis. Thanks for the bright and
kind members of SIERRA and WILLOW teams for making my stay in Paris fun and memorable.
Many thanks to Andreas Krause for hosting me for a month at ETH, and to Josip Djolonga for
instructive research discussions, both during my stay at ETH and throughout our PhDs.
I was fortunate to be surrounded by very kind and smart colleagues during my PhD. I am
grateful for all the current and past members of LIONS who made working in the lab much more
enjoyable, and long nights before deadlines more bearable. Thanks Gosia for your invaluable
help in all sorts of administrative and every-day details, and for the nice coffee chats; Ya-Ping for
letting me badger you with research questions, for your help and advice, and for sharing your
music playlists, your fancy coffee and whiskey (sorry for not appreciating it enough); Yu-Chun
for being one of the most honest people I ever met; Alp and Ahmet1 for all the fun outings and
trips, and for checking how my thesis is going; Ilija for fun climbing sessions and movies/series
recommendations; Luca for our collaboration in the beginning of my PhD, your support at the
end of it, and for introducing me to Le Cube; and Tasos for your generous and helpful advice
from the moment I applied to LIONS, until now when I am pondering my next step.
I am indebted to several teachers for paving my path to EPFL. I deeply thank AUB’s professors,
in particular Louay Bazzi for the best courses I took at AUB which cultivated my interest in
theoretical computer science, for introducing us to EPFL, and encouraging us to pursue graduate
studies, Fadi Zaraket for his support and encouragement, and my mathematics teacher in high-
school, Mostafa Chall, who by being a dedicated, passionate, and caring teacher, reinforced my
love for math.

1Sorry for trolling you before that deadline!

v

Acknowledgements

Many thanks for all my friends for the great times we shared and for keeping me sane (more or
less) during this journey. I was very lucky to have several close friends from Lebanon move to
Lausanne at the same time as me. A special thanks to my best friend Rafah, for all the fun, for
letting me nag and always knowing how to cheer me up. Spending time with you is never dull!
Thanks Ibrahim (otherwise known as Isha or Philippo), for moving at the right time to Lausanne
to replace Rafah ,, for interesting discussions, for making me appreciate Lebanese artists more,
and of course for letting me nag. Having two close friends, Farah and Abbas, as my flatmates
turned our apartment into a home. Thank you Farah for the bubbling energy you bring to my life,
and Abbas for the sarcastic one. Thanks Ghid and Dan (my favorite couple) for fun brunches and
dinners, fascinating philosophical discussions, for lending me books, and for letting me play with
your adorable Dalia.
I am fortunate to have met several awesome people at Lausanne. Thanks Renata (whose cheer-
fulness is contagious), Ajay (who tried, and failed, to teach me to be chill), and Artem, for all
the fun trips, hikes, ski weekends, and parties. Thanks Ersi (who is always generous with her
compliments), Elena, Manos, Marco, Beril, Mireille, Eda, Andreas, Betül, and Timo for all the
nice moments we shared. Thanks to the Lebanese gang at Lausanne for keeping me connected to
home: Elie, Hiba, Raed, Ahmad, Serj, Sahar, Rajai, Dia, Elio, Amer, and Hani. Thanks also to
the friends with whom I managed stay connected despite the distance: Maya, Sireen, Zahi, Dana,
and my childhood friend Jihane.
I discovered climbing in Lausanne and became obsessed with it. Thanks to all my climbing
partners and friends, and in particular Justin, Paola, and Aaron for the weekly climbing sessions at
Le Cube and the following fun discussions around beer and Hummus; and to the Club Montagne
at EPFL for organizing exciting outdoors outings.
Last but not least, I want to thank my family for their unconditional love and support. Thank
you Mom and Jeddo for all your sacrifices for my education, my brother Mohamad for your
encouragements; and my sister Mira, with whom I can be completely myself, for always being
there for me (literally ,).

Lausanne, 6 June 2018 M. E.

vi

Abstract
In modern-data analysis applications, the abundance of data makes extracting meaningful infor-
mation from it challenging, in terms of computation, storage, and interpretability. In this setting,
exploiting sparsity in data has been essential to the development of scalable methods to problems
in machine learning, statistics and signal processing. However, in various applications, the input
variables exhibit structure beyond simple sparsity. This motivated the introduction of structured
sparsity models, which capture such sophisticated structures, leading to significant performance
gains and better interpretability. Structured sparsity approaches have been successfully applied in
a variety of domains including computer vision, text and audio processing, medical imaging, and
bioinformatics.
The goal of this thesis is to improve on these methods and expand their success to a wider range of
applications. We thus develop novel methods to incorporate general structure a priori in learning
problems, which balance computational and statistical efficiency trade-offs. To achieve this, our
results bring together tools from discrete and convex optimization.
Applying structured sparsity approaches in general is challenging because structures encountered
in practice are naturally combinatorial. An effective approach to circumvent this computational
challenge is to employ continuous convex relaxations. We thus start by introducing a new class of
structured sparsity models, able to capture a large range of structures, which admit tight convex
relaxations amenable to efficient optimization. We then present an in-depth study of the geometric
and statistical properties of convex relaxations of general combinatorial structures. In particular,
we characterize which structure is lost by imposing convexity and which is preserved.
We then focus on the optimization of the convex composite problems that result from the convex
relaxations of structured sparsity models. We develop efficient algorithmic tools to solve these
problems in a non-Euclidean setting, leading to faster convergence in some cases.
Finally, to handle structures that do not admit meaningful convex relaxations, we propose to use,
as a heuristic, a non-convex proximal gradient method, efficient for several classes of structured
sparsity models. We further extend this method to address a probabilistic structured sparsity
model, which we introduce to model approximately sparse signals.

Key Words: Structured sparsity, high-dimensional learning, convex relaxations, convex compos-
ite minimization, integer and linear programming, submodularity.

vii

Résumé
Dans l’exercice qu’est analyse des données modernes, l’abondance et le volume de ces dernières
rend l’extraction d’informations significatives difficile, tant sur le plan de calcul, du stockage ou
encore de l’interprétabilité. Dans ce contexte, utiliser la parcimonie (sparsity) du problème a été
essentielle au développement de méthodes supportant de grandes quantités de données, que ce soit
pour des problèmes d’apprentissage automatique, de statistiques ou encore de traitement du signal.
Cependant, dans diverses applications, les variables d’entrée présentent une structure au-delà de la
simple parcimonie. Ceci a motivé l’introduction de modèles de parcimonie structurée, qui rendent
compte de ces structures sophistiquées, conduisant à des gains de performance significatifs ainsi
qu’une meilleure interprétation. Les approches de parcimonie structurée ont été appliquées avec
succès dans divers domaines, dont la vision par ordinateur, le traitement de texte et audio ou
encore l’imagerie médicale et la bio-informatique.

Le but de cette thèse est d’améliorer ces méthodes et d’étendre leur succès à un plus large éventail
d’applications. Nous développons ainsi des méthodes d’apprentissage qui permettent d’exploiter
ces structures en généralité, tout en équilibrant les différents compromis entre efficacité statistique
et algorithmique. Pour ce faire, nos résultats rassemblent des outils issus de l’optimisation discrète
et convexe.

En raison de la nature combinatoire des problèmes, l’application des approches de parcimonie
structurée en général est difficile. Une approche efficace pour contourner cette difficulté consiste
à utiliser des relaxations convexes continues. Nous commençons donc par introduire une nouvelle
classe de modèles de parcimonie structurée, capables d’exprimer une large gamme de structures,
et qui admettent des relaxations convexes n’induisant que peu de pertes et pouvant être optimisées
efficacement. Nous présentons ensuite une étude approfondie des propriétés géométriques et
statistiques des relaxations convexes de structures combinatoires générales. En particulier, nous
donnons une caractérisation des structures qui sont perdues en imposant la convexité, et de celles
qui sont préservées.

Nous nous concentrons ensuite sur l’optimisation des problèmes convexes qui résultent des
relaxations convexes des modèles de parcimonie structurée. Nous développons des outils algo-
rithmiques efficaces pour résoudre ces problèmes dans un contexte non-Euclidien, ce qui conduit
dans certains cas à une convergence plus rapide de nos algorithmes.

Enfin, pour gérer des structures qui n’admettent pas de bonnes relaxations convexes, nous pro-
posons d’utiliser, comme heuristique, une méthode de gradient proximal non-convexe, efficace
pour plusieurs classes de modèles de parcimonie structurée. Nous étendons davantage cette
méthode pour traiter un modèle probabiliste de parcimonie structurée, que nous introduisons pour

ix

Résumé

modéliser des signaux approximativement parcimonieux.

Key Words : Parcimonie structurée, apprentissage en haute dimension, relaxations convexes,
minimisation convexe composée, programmation en nombres entiers et linéaire, sous-modularité.

x

Contents
Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Notation, terminology and prerequisites . 3
1.2 Learning with structured sparsity . 4

1.2.1 Problem set-up . 4
1.2.2 Performance criteria . 6
1.2.3 Penalized and constrained formulations 7

1.3 Convex approaches . 8
1.3.1 Popular structured sparsity-inducing norms 8
1.3.2 Atomic norms . 13
1.3.3 Convex relaxations of submodular penalties 14
1.3.4 Homogeneous convex relaxations of `p-regularized penalties 16

1.4 Convex optimization for structured sparsity 17
1.4.1 Proximal gradient methods . 18
1.4.2 Conditional gradient methods . 22

1.5 Non-convex approaches . 25
1.5.1 Greedy algorithms . 26
1.5.2 Discrete projected gradient descent method 27

1.6 Overview of contributions . 28

2 Convex Relaxations via Linear Programming 31
2.1 Introduction . 31

2.1.1 Related work . 31
2.1.2 Contributions . 31

2.2 Tractable convex envelopes . 32
2.3 Review of integral linear programming . 34
2.4 Integral linear programming penalties . 35
2.5 Examples of totally unimodular penalties . 36

2.5.1 Group sparsity . 36
2.5.2 Hierarchical sparsity . 40

xi

Contents

2.5.3 Dispersive sparsity . 42
2.6 Experiments . 44

2.6.1 Sparse g-group cover model . 44
2.6.2 Sparse dispersive model . 46

2.7 Discussion . 47
2.8 Appendix: Review of total unimodularity . 49

3 Homogeneous and Non-Homogeneous Convex Relaxations 51
3.1 Introduction . 51

3.1.1 Related work . 51
3.1.2 Contributions . 52

3.2 Combinatorial penalties and convex relaxations 52
3.2.1 Homogeneous and non-homogeneous convex envelopes 53
3.2.2 Lower combinatorial envelopes . 55

3.3 Sparsity-inducing properties of convex relaxations 58
3.3.1 Continuous stable supports . 58
3.3.2 Adaptive estimation . 60

3.4 Sparsity-inducing properties of combinatorial penalties 61
3.4.1 Discrete stable supports . 61
3.4.2 Relation between discrete and continuous stability 62
3.4.3 Examples . 63

3.5 Experiments . 64
3.6 Discussion . 65
3.7 Appendix: Proofs . 67

4 Non-Euclidean Convex Composite Optimization 79
4.1 Introduction . 79

4.1.1 Related work . 80
4.1.2 Contributions . 80
4.1.3 Preliminaries . 81

4.2 Generalized proximal gradient method: Warm-up 81
4.3 Tractability of the generalized proximal operator 82

4.3.1 Atomic proximal operator of polyhedral functions 83
4.3.2 Proximal operator of atomic norms with linearly independent atoms . . 84

4.4 Accelerated generalized proximal gradient method 87
4.5 Experiments . 89

4.5.1 Lasso . 89
4.5.2 Latent group Lasso . 91

4.6 Discussion . 93
4.7 Appendix: Proofs . 95

xii

Contents

5 Non-Convex Proximal Method for Structured Sparsity 109
5.1 Introduction . 109

5.1.1 Related work . 109
5.1.2 Contributions . 110

5.2 Motivating example: Graph cuts . 110
5.3 Discrete proximal gradient descent method 112
5.4 Experiments . 114
5.5 Discussion . 115

6 MAP Estimation for Mixture Models with Combinatorial Priors 117
6.1 Introduction . 117

6.1.1 Related work . 117
6.1.2 Contributions . 118

6.2 Mixture model with combinatorial priors . 118
6.3 Majorization-minimization algorithm . 119
6.4 Examples . 121

6.4.1 Priors on the noise . 121
6.4.2 Priors on the continuous structure of the signal 121
6.4.3 Priors on the discrete structure of the signal 122

6.5 Experiments . 123
6.5.1 Approximately sparse Gaussian mixture model 125
6.5.2 Hidden Markov tree Gaussian mixture model 125
6.5.3 Sparse clustered Gaussian mixture model 125

6.6 Discussion . 126

7 Conclusions 127
7.1 Summary . 127
7.2 Future directions . 128

Appendix A Submodular Analysis 131
A.1 Submodular functions and their Lovász extensions 131
A.2 Convex closure of set functions . 134

Bibliography 150

Curriculum Vitae 151

xiii

1 Introduction

Learning problems are ubiquitous in machine learning, signal processing and statistics appli-
cations, where given some data, we are interested in learning the underlying parameter vector.
Depending on the application, the objective can be to estimate the parameter vector, or to use it
for prediction or classification. In the presence of large and complicated data, solving such tasks
becomes challenging, without a priori model on the data source.

Such models are particularly important in the high-dimensional setting, where the number of
variables exceeds the number of observations. This setting naturally arises in modern data
analysis problems, where the current trend of systematic data collection leads to a large ambient
dimension. Moreover, many applications are intrinsically high-dimensional, due to observations
being expensive (cost or time-wise). Without further assumptions, the learning problem in this
setting is ill-posed (it admits infinitely many solutions). Fortunately, the relevant information of
real-world data typically lies in a low-dimensional space. For example, in machine learning and
statistics, only a small number of features are usually relevant. Similarly, in signal processing,
signals can often be approximated by a small collection of basis or dictionary vectors. This idea
that only few elements out of many are important is known as sparsity, and has been key to the
development of scalable methods that circumvent the curse of dimensionality.

While sparse modeling is powerful, it does not account for potential relationships that may exist
between the variables. Indeed in many applications, the data source naturally exhibit additional
structure beyond sparsity. For example, in computer vision, the pixels corresponding to the
foreground of an image are expected to be clustered together (see Figure 1.1), and the coefficients
of the wavelet transform of an image are naturally organized on a tree (see Figure 1.2); in
genomics, gene expression patterns are better explained by groups of genes sharing a common
biological function [STM+05]. Moreover, it is sometimes advantageous to enforce additional
structure. For example, in deep learning, a neural network with a compact structure, where only a
few groups of weights in adjacent memory space are active, is desirable to reduce computation,
especially in resource constrained devices [WWW+16]. Structured sparsity models capture
such sophisticated structures. Incorporating such models into the learning process leads to

1

Chapter 1. Introduction

Figure 1.1: Background subtraction task: Given a sequence of frames, the goal is to segment out
foreground objects in a new image. From left to right: original image; estimated background; foreground
estimated with sparsity model; foreground estimated with a structured sparsity model (clustered support).
This figure is taken from [MJBO10].

PSNR = 25.3538 dB PSNR = 28.0805 dB

Figure 1.2: Image inpainting task: The goal is to reconstruct the missing pixels of an image. From left to
right: original image (256× 256); its wavelet transform; image with 50% missing pixels; image estimated
with sparsity model; image estimated with a structured sparsity model (tree support).

significant improvements in the estimation performance, as illustrated for example in Figures 1.1
and 1.2. It also leads to better noise robustness, better interpretability and allows recovery with
fewer observations [EM09, BD09, CHDB09, BCDH10, HZ10, JOB10, RRN12]. To highlight
the importance of the last two properties, we note that for example, obtaining more interpretable
results in gene analysis, by focusing on groups of genes instead of single genes, allows biologists
to identify relevant biological pathways in cancer-related data sets [STM+05]. Also, in the
case of Magnetic Resonance Imaging (MRI), reducing the number of measurements allows the
procedure to be shorter and thus less uncomfortable for patients [LDP07]. Moreover, sometimes
observations are simply not available, like in the image inpainting task (see Figure 1.2).

The main goal of this thesis is to improve on existing structured sparsity methods and expand their
success to a wider range of applications. In particular, we are interested in developing effective
methods to exploit available a priori knowledge, which address the following three concerns.

• Computational efficiency: How to efficiently solve the underlying optimization problem?

• Statistical efficiency: How to reduce the number of samples needed for accurate solutions?

• Generality: How to handle a wide range of structures?

In what follows, we will first present the notation used throughout the thesis in Section 1.1, before
introducing more formally the problem set-up of structured sparse learning in Section 1.2. We
follow up with an overview of related work, where we identify some gaps and open problems in

2

1.1. Notation, terminology and prerequisites

the state-of-the-art for structured sparsity, and point out how the results presented in this thesis
fill some of these gaps. In particular, we review in Section 1.3 convex approaches to structured
sparsity, and in Section 1.4 two convex optimization methods for solving the resulting convex
problems. In Section 1.5, we briefly review non-convex approaches to structured sparsity. We
conclude the introduction with an overview of the main contributions made by this thesis.

Some parts of the related work sections are based on the book chapter [KBEH+15], coauthored
with Anastasios Kyrillidis, Luca Baldassarre, Quoc Tran-Dinh, and Volkan Cevher.

1.1 Notation, terminology and prerequisites

We introduce here the notation we will use throughout the thesis, and some basic terminology.

We denote scalars by lowercase letters, vectors by lowercase boldface letters, matrices by boldface
uppercase letters, and sets by uppercase letters.

Real-valued functions: The set of real numbers is denoted by R and the set of non-negative
real numbers by R+. We write R for R ∪ {+∞}. Given an extended real-valued function
f : Rd → R, we denote its domain by dom(f) := {x ∈ Rd : f(x) < +∞}, its epigraph
by epi(f) := {(x, t) ∈ Rd × R : f(x) ≤ t}. We say f is proper if its domain is non-empty,
and lower semi-continuous, or closed, if its epigraph is a closed set. We say f is positively
homogeneous if f(αx) = αf(x), ∀x ∈ Rd, ∀α > 0. We denote the Fenchel conjugate of f by
f∗, defined as f∗(x) = supy∈Rd x

>y − f(y). If f is differentiable, we denote its gradient by
∇f , and if it is non-differentiable we denote by ∂f its subdifferential set. Given a set C ⊆ Rd,
we will denote by ιC(x) the indicator function of the set C, taking value 0 on the set C and +∞
outside it.

Convex sets and functions: A subset C ⊆ Rd is convex, if for any two choices x,y ∈ Rd, the
line segment that connects x and y also belongs to C, i.e., ∀λ ∈ [0, 1], λx + (1 − λ)y ∈ C.
A function f : Rd → R is convex, if its domain is convex, and ∀x,y ∈ dom(f),∀λ ∈
[0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). If f is convex, then −f is called concave.

Set-valued functions: We consider the ground set V = {1, . . . , d}, and its power set 2V =

{S|S ⊆ V } composed of the 2d subsets of V . Given a set S ⊆ V , the notation Sc denotes the
set complement of S with respect to V , and |S| its cardinality. Given a set function F : 2V → R,
we say F is proper if its domain D := {S : F (S) < +∞} 6= ∅ is non-empty, and monotone if
∀A ⊆ B ⊆ V, F (A) ≤ F (B).

Submodular set functions: A finite-valued set function F : 2V → R is submodular if and only
if ∀A ⊆ B ⊆ V,∀i ∈ Bc, F (B ∪{i})−F (B) 6 F (A∪{i})−F (A). If F is submodular, then
−F is called supermodular. If F is both submodular and supermodular, it is called modular.

Vector notation: The i-th entry of a vector x is denoted as xi. In iterative algorithms, we use

3

Chapter 1. Introduction

superscripts xk to denote the k-th vector in a sequence of vectors x1,x2, · · · ,xk . Given x ∈ Rd

and a set S ⊆ V , xS denotes the vector in Rd s.t., [xS]i = xi, ∀i ∈ S and [xS]i = 0, ∀i 6∈ S.
QSS is defined similarly for a matrixQ ∈ Rd×d. We let 1d,0d be the vectors in Rd of all ones
and all zeros, respectively, and Id the d× d identity matrix. We drop subscripts whenever the
dimensions are clear from the context. Accordingly, we let 1S be the indicator vector of the set
S. We drop the subscript for S = V , so that 1V = 1 denotes the vector of all ones.

We call the set of non-zero elements of a vector x the support, denoted by supp(x) = {i : xi 6=
0}. We use the notation from submodular analysis, where a vector x ∈ Rd also denotes the
modular set-function defined as x(S) =

∑
i∈S xi. The symbol ◦ denotes the coordinate-wise

multiplication, i.e., [x ◦ y]i = xiyi. Similarly the operations |x|, x ≥ y and sign(x) are applied
element-wise, i.e., [|x|]i = |xi|, x ≥ y iff xi ≥ yi,∀i ∈ V and [sign(x)]i = ±1 is the sign of xi
with sign(0) = 0. The vector containing the positive part of x is denoted by x+ = max{x,0}
(maximum taken element wise).

Inner product and norms: The inner product between two vectors x,y ∈ Rd is denoted
by 〈x,y〉 = x>y =

∑d
i=1 xiyi. A norm of a vector x is denoted by ‖x‖ and its dual by

‖x‖∗ := max‖y‖≤1 y
>x. For p > 0, the `p-quasi-norm is given by ‖x‖p = (

∑d
i=1 |xi|p)1/p.

‖ · ‖p becomes a norm, if p ≥ 1, and ‖x‖∞ = maxi |xi|. The `0-pseudo-norm is defined as:
‖x‖0 := | supp(x)|. For p ∈ [1,∞], we define the conjugate q ∈ [1,∞] via 1

p + 1
q = 1.

Prerequisites: Throughout the thesis, we make extensive use of concepts from submodular
analysis. We review the relevant notions in Appendix A.

1.2 Learning with structured sparsity

We present in this section the formal set-up of the learning problems we consider in this thesis.

1.2.1 Problem set-up

In a structured sparsity learning problem, we are interested in learning a parameter vector x\ ∈ Rd

from some noisy observations y ∈ Rn that depend on x\, where x\ is assumed to satisfy some
structure, e.g, sparsity. A vector x ∈ Rd is said to be s-sparse, if it has only s < d non-zero
coefficients. In the commonly used linear model, y and x\ are related by y = Ax\ + ε, where
A ∈ Rn×d is a known data matrix and ε ∈ Rn is an unknown noise vector. The high-dimensional
setting corresponds to the case n < d, which in the linear model example implies thatA has a
nontrivial nullspace, hence the impossibility to learn x\, even in the absence of noise, without
further assumptions.

Data fidelity is typically measured by a smooth and convex loss function f : Rd → R+, which
corresponds to an empirical risk in machine learning and a data fitting term in signal processing.

4

1.2. Learning with structured sparsity

Examples of smooth loss functions include the square loss f(x) = ‖y −Ax‖22 in regression
problems, and the logistic loss f(x) =

∑n
i=1 log(1 + exp(−yixTai)) in classification problems.

Structured sparsity models are inherently combinatorial, and can thus be naturally encoded by set
functions F : 2V → R ∪ {+∞} defined on the support supp(x) = {i : xi 6= 0}. Incorporating
such prior information in learning problems leads then to the following problem:

min
x∈Rd

f(x) + λF (supp(x)), (1.1)

where λ ≥ 0 is a regularization parameter that controls the trade-off between data-fitting and
regularization. F (supp(x)) then favors certain supports, or non-zero patterns, over others. For
example, to favor sparse supports, the `0-pseudo-norm F (supp(x)) = | supp(x)| can be used.
To enforce hard constraints, F can be chosen to be an indicator function over a set of allowed
supports; e.g., F (supp(x)) = ι| supp(x)|≤s(x). Problem (1.1) is computationally intractable1 in
general (see e.g., [Nat95]). Two main approaches, each with its own merits and shortcomings,
have been adopted in the literature to confront this computational challenge. One is via non-convex
approaches that provide approximate solutions directly to (1.1). The other is based on continuous
convex relaxations where F (supp(x)) is replaced by a convex surrogate g : Rd → R ∪ {+∞},
yielding the following composite convex minimization problem:

min
x∈Rd

f(x) + λg(x), (1.2)

The main benefit of non-convex approaches is that, by maintaining the combinatorial term in
problem (1.1), they preserve the true structure model. This is particularly important in the case
of structures that have no meaningful convex relaxations (such cases are identified in Chapter
3). Existing non-convex methods are based on iterative greedy algorithms, which are guaranteed
to return approximate solutions to (1.1), but are only known to be tractable in special cases of
structures. See Section 1.5 for further details.

Convex methods on the other hand can utilize a rich set of algorithmic tools guaranteed to
return solutions of arbitrary accuracy to the relaxed convex problem (1.2), and analysis tools
for characterizing the statistical efficiency of the resulting estimator. They also tend to be more
robust to model misspecifications, which is likely to occur in practice.

The challenge in this approach resides in finding a convex surrogate, which can be efficiently
optimized, while still preserving the structure encoded by F , which is crucial to guarantee
statistical efficiency. We present some of the convex surrogates proposed in the literature to
achieve this in Section 1.3, and review some methods to optimize the resulting convex problems
in Section 1.4.

We will adopt the convex approach to structured sparsity throughout most of the thesis, except
1Throughout the thesis, we will use “intractable” to mean NP-Hard.

5

Chapter 1. Introduction

for the last two chapters, where we turn to non-convex approaches to handle structures with no
meaningful convex relaxations.

1.2.2 Performance criteria

As we mentioned earlier, throughout the thesis, when considering an approach for learning with
structured sparsity, we will be concerned with three factors: Computational efficiency, statistical
efficiency, and generality. We now clarify what is meant by the first two notions.

Given a choice of F or g, and a solution x̂ returned by a proposed algorithm solving the corre-
sponding optimization problem. Statistical efficiency is concerned with the number of samples
required for x̂ to estimate x\ and its support, up to some target accuracy, while computational
efficiency is concerned with the time needed to achieve this.

Let x? be a minimizer2 of problem (1.1) for non-convex methods, and of problem (1.2) for
convex ones, and L? the corresponding optimal objective value, e.g., L? = f(x?) + λg(x?) in
the convex approach case. We will split the discussion into the following two parts, as is often
done in classical convex approaches3.

Optimization performance: Given a proposed iterative4 algorithm, let xk be the solution
obtained at an iteration k of the algorithm. We are interested in assessing the scalability of the
algorithm with respect to the following, often conflicting, criteria:

• Computational cost per iteration: The performance of an iterative algorithm highly
depends on the cost of computing xk at each iteration, in terms of dependence on the
dimensions d and n of the problem.

• Number of iterations: The performance of an iterative algorithm also depends on the
number of iterations required to obtain a target numerical accuracy ε > 0, either with
respect to the objective error, i.e., L(xk) − L? ≤ ε or the distance to the optimal point
(if unique), i.e., ‖xk − x?‖ ≤ ε. The number of iterations typically depends both on the
accuracy ε and the dimensions d and n of the problem.

Note that, in large scale optimization problems, such as the ones considered in this thesis, the
dependence in the above two criteria on the ambient dimension d is particularly important.

Statistical performance: We are interested in studying the performance of x? as an estimator
of x\ in terms of the following criteria, where the probability is with respect to all random

2Without further assumptions, x? is not necessarily unique.
3Modern stochastic methods in machine learning tackle the computation and analysis of x̂ simultaneously.
4Optimization algorithms considered in this thesis are all iterative.

6

1.2. Learning with structured sparsity

elements in the problem (e.g., noise and design matrix). For formal definitions, see, e.g., [Liu10].

• Estimation consistency: We say that x? is estimation consistent, if the estimation error,
i.e., ‖x? − x\‖ converges in probability to zero.

• Model selection consistency: This criterion is also called sparsistency. We say that x?

is sparsistent, if the support recovery error, i.e., ‖1supp(x?) − 1supp(x\)‖0 converges in
probability to zero.

In the asymptotic regime, d is finite and fixed, and convergence in the above two criteria is with
respect to n→∞. This regime forbids the high-dimensional setting, and is thus less interesting
in the context of structured sparsity. Nevertheless, studying it typically requires simpler analysis,
and is helpful to develop insights which contribute to the understanding of the high-dimensional
setting. In the non-asymptotic regime, we are interested in the rate of convergence of the errors in
the above two criteria, as a function of the ambient dimension d, the number of samples n, and the
sparsity s = | supp(x\)| (or more generally the “complexity” of x\ under the assumed structured
sparsity model). In particular, the number of samples required to recover (up to some accuracy)
x\, as a function of d and s is called sample complexity. Other performance criteria, such as
prediction error, are also of interest, but we will focus on these two criteria in our discussion.

1.2.3 Penalized and constrained formulations

Note that by allowing F and g to take infinite values, problems (1.1) and (1.2) include two
regularization variants. Given our convex loss function f and a regularizer Ω : Rd → R, the
penalized variant, also known as the Lagrangian form, is given by:

min
x∈Rd

f(x) + λΩ(x), (1.3)

while the constrained variant is given by:

min
x∈Rd
{f(x) : Ω(x) ≤ τ}. (1.4)

If Ω is convex then, under some mild conditions, the two variants are equivalent, in the sense that
x? is a solution of problem (1.3) for some λ > 0, if and only if, it is a solution of problem (1.4)
for some τ > 0 [BL10, Sect. 4.3]. However, the exact relation between λ and τ is not known.

In practice, the choice between one or the other variant, depends on factors such as computational
complexity, stability, and robustness. For example, depending on Ω, one variant can be easier to
solve than the other. Moreover, the solution of problem (1.3) is less sensitive to small changes in
λ, than the solution of problem (1.4) to small changes in τ , which makes tuning λ easier than
tuning τ , in practice. Also, when f is the least squares loss, the penalized formulation can be
more robust to model misspecifications [LST13]. In these cases, the penalized formulation is

7

Chapter 1. Introduction

thus preferable. On the other hand, if one is interested in enforcing a fixed bound τ on Ω(x) ≤ τ ,
the constrained formulation is then preferable. This is particularly relevant in the non-convex
setting, where we might be interested for example in obtaining solutions that are exactly s-sparse.

1.3 Convex approaches

In this section, we present several approaches adopted in the literature to design convex surrogates
of structured sparsity models. In each case, we will pay attention to the structures that can be
expressed by the presented convex penalty and its statistical properties, if known. We defer the
discussion of how to optimize the resulting convex problems to Section 1.4.

1.3.1 Popular structured sparsity-inducing norms

A classical approach for choosing a convex surrogate consists of designing a norm that leads to
the desired set of non-zero patterns in a “reverse-engineering” manner. This approach led to the
design of several interesting structured sparsity-inducing norms. We outline below some of them

Lasso (`1-norm)

We start with the most popular example of sparsity-inducing norms, the `1-norm, which is used as
a convex surrogate of the `0-pseudo-norm. In this case, when f is the least-squares loss, problem
(1.2) reduces to the following formulation, known as basis pursuit denoising (BPDN)5 [CDS98].

min
x∈Rd

1

2
‖y −Ax‖22 + λ‖x‖1. (1.5)

Another closely related formulation is known as the least absolute shrinkage and selection
operator (Lasso) [Tib96]:

min
x∈Rd
{1

2
‖y −Ax‖22 : ‖x‖1 ≤ τ}. (1.6)

In Sections 1.3.3 and 1.3.4, we present a formal justification as to why the `1-norm is the “best”
convex surrogate for the `0-pseudo-norm. We present here some intuitive reasons for why the `1-
norm induces sparsity. From an analytical perspective, we can see this by considering the simple
denoising example, where A = I in the BPDN formulation (1.5). The solution in this case is
given by the soft-thresholding operator, introduced by [DJ95], x?(λ) = sign(y)◦max{|y|−λ, 0}.
For large enough λ, x?(λ) is sparse, since all coefficients |yi| ≤ λ are set to zero. This
behavior mimics the solution obtained by regularizing instead with the `0-pseudo-norm, x?(λ) =

y ◦ 1{i:|yi|≥√2λ}, where all coefficients |yi| ≤
√

2λ are set to zero. The difference between the

5BPDN is also sometimes used to refer to the following formulation: minx∈Rd{‖x‖1 : ‖y −Ax‖22 ≤ τ}.

8

1.3. Convex approaches

Figure 1.3: Unit balls of `0-“norm”, restricted to the unit `∞-ball (left), and `1-norm (right).

two solutions is the additional shrinkage effect imposed in the `1-solution.

From a geometric perspective, it is easy to see that the unit `1-ball is the convex hull of the
standard basis vectors, which are one-sparse, or equivalently of the unit `0-ball, when restricted
inside the unit `∞-ball, i.e., the set {x : ‖x‖0 ≤ 1, ‖x‖∞ ≤ 1} (see Figure 1.3). In fact, from
this perspective, `1-norm is a special case of a class of norms defined as convex hulls of vectors
whose support satisfy the desired structure, which we discuss in Section 1.3.2.

The convex approach proved to be successful in this case. Indeed, replacing the `0-pseudo-
norm with the `1-norm, allows efficient robust recovery of any s-sparse vector x\ ∈ Rd, in the
linear model case, using only n = O(s log(d/s)) samples, under some assumptions onA (e.g.,
restricted isometry property) [CT05, Don06].This sample complexity can be significantly smaller
than the classical Shannon-Nyquist sampling bound, which dictates uniformly sampling a signal
at a rate at least twice its highest frequency in the Fourier domain [Sha49].

In the past decade, substantial work was done towards extending this success to more involved
structures, with various convex penalties proposed in the literature (see [OB16] and [KBEH+15]
for an overview).

Group Lasso

A simple extension of the Lasso is the group Lasso [YL06], also called `1/`p-norm, defined as:

Ω∩p (x) =
∑
G∈G

dG‖xG‖p, (1.7)

where G is a collection of non-overlapping groups that partition V , (dG)G∈G are positive weights,
and where p ≥ 1, with p ∈ {2,∞} being popular choices in practice.

Ω∩p acts as an `1-norm (when weights are equal) over the terms ‖xG‖p, and hence it promotes
sparsity on the group level. This structure, dubbed as block-sparsity, was shown to improve
the estimation performance over standard Lasso, when x\ is block-sparse, both in terms of
sampling complexity and noise robustness [SPH09, EB09, HZ10]. Block-sparsity arises in
applications such as DNA microarrays [PVMH08], equalization of communication channels
[CR02], multi-task learning [OTJ10], and multiple kernel learning [Bac08].

9

Chapter 1. Introduction

Figure 1.4: Unit ball of `1/`∞-norm (left) and `∞-LGL norm (right), for G = {{1, 2}, {2, 3}}.

Figure 1.5: The sets in blue or green are the groups to include in G, along with their complements,
to select interval (left) or rectangular (right) patterns, as proposed in [JAB11]. The sets in red are
examples of the corresponding induced non-zero patterns. This figure is taken from [OB16].

Group Lasso was further generalized to the case of overlapping groups in [ZRY09, JOV09,
JAB11, MJOB11]. Figure 1.4 (left) displays the unit `1/`∞-norm ball, for an example of
overlapping groups. This norm was shown, in [JAB11], to induce supports corresponding to
the intersection of a sub-collection of the complements of groups in G. Conversely, given a
intersection-closed6 set of non-zero patterns, it is possible to engineer the groups in G in order to
favor these patterns via Ω∩p .

For example, [JAB11] showed that using the groups displayed in Figure 1.5 (left) induces interval
patterns; a structure desirable in applications such as time series, or cancer diagnosis [RBV08].
Similarly, using the groups displayed in Figure 1.5 (right) induces rectangular patterns; a struc-
ture desirable in applications such as background subtraction [CHDB09, MJBO10], dictionary
learning [MJOB11] and face recognition [JOB10]. Ω∩p can also be used to induce hierarchical
structures which we discuss below.

The statistical properties of Ω∩p were studied in [JAB11], with conditions for consistent estimation
of the non-zero patterns presented, both in low and high-dimensional settings. In Section 1.3.3,
we see why the overlapping `1/`∞-norm is the “best” convex surrogate, in some sense, for
group-intersection structures.

Latent group Lasso

As mentioned above, overlapping `1/`p-norm can induce supports belonging to an intersection-
closed set of supports, while in several applications, non-zero patterns corresponding to the

6A set S is intersection-closed if ∀S1, S2 ∈ S, S1 ∩ S2 ∈ S.

10

1.3. Convex approaches

Figure 1.6: Unit ball of Ω∩∞ (left), and corresponding groups GH = {{1, 2, 3}, {2}, {3}} (right).

Figure 1.7: Examples of parent-child and family models. Active groups are indicated by dotted
ellipses. The support (black nodes) is given by the union of the active groups. (Left) Parent-child
model. (Right) Family model.

union of a sub-collection of groups in G are more desirable. This is particularly important, in
applications such as cancer prognosis from high-dimensional gene expression data, where the
groups are naturally predefined, e.g., genes involving the same biological function should be
grouped together, as opposed to being manually chosen. This motivated another generalization
of group Lasso to overlapping groups, given by the latent group Lasso (LGL), introduced by
[JOV09] (see also [OJV11]). Given a collection of groups G, and associated positive weights
(dG)G∈G, the LGL norm is defined as;

Ω∪p (x) = min
v∈Rd×|G|

{
∑
G∈G

dG‖vG‖p :
∑
G∈G

vG = |x|, supp(vG) ⊆ G}. (1.8)

Note that Ω∪p and Ω∩p are equal in the case of non-overlapping groups, but in general they are
different, as it is apparent for example from Figure 1.4. Ω∪p can also be used to induce hierarchical
structures as we discuss next.

A detailed analysis of Ω∪p and its statistical properties, in terms of group-support recovery, in the
low-dimensional setting, is presented in [OJV11]. In Sections 1.3.4 and 2.5.1, we see why the
latent group Lasso is the “best” convex surrogate, in some sense, for group-cover structures.

Hierarchical sparsity

In a hierarchical sparsity model, the variables or groups of variables are organized over a directed
tree, (or a forest) T , and they satisfy hierarchical relations, e.g., an element can be selected only

11

Chapter 1. Introduction

if all its ancestors in T are also selected; this is known as the rooted connected tree structure. The
more general case where variables are organized over a directed acyclic graph was also studied,
see, e.g., [YB+17] and [OB16].

Hierarchical structures are found in many applications, such as image processing, to exploit the
multi-scale structure of wavelet coefficients, see Figure 1.2 and [DWB08, ZRY09, BCDH10,
JMOB11]; bioinformatics, to leverage the hierarchical structure of gene networks for multitask
regression [KX10]; deep learning, where hierarchies of latent variables are used in convolutional
neural networks [Ben09].

Such structure was shown to result in better performance than standard Lasso, both in terms of
noise robustness and sample complexity. In particular, [BCDH10] showed that we can recover
any s-sparse vector x\ ∈ Rd that satisfies a rooted connected tree structure, using only n = O(s)

samples, in the linear model case, and under similar assumptions onA as in Lasso.

Both overlapping group Lasso and latent group Lasso were used in the literature to induce hierar-
chical structures. In particular, if we define groups in GH as each node and all its descendants
in T , then the corresponding Ω∩p results in the hierarchical group lasso [ZRY09]. Figure 1.6
displays an example of the descendants groups and the corresponding unit ball of Ω∩∞. In Section
2.5.2, we see why the `∞-hierarchical group Lasso is the “best” convex surrogate, in some sense,
for the rooted connected tree structure.

On the other hand, the latent group Lasso norm was used with groups defined in GA as each node
and all its ancestors in T , to induce hierarchical structures. A systematic comparison of Ω∩2 with
GH , and Ω∪2 with GA, and their statistical properties, is presented in [YB+17]. In particular, it
is shown that though the two penalties are not identical with these groups, they do lead to the
same class of non-zero patterns, with the difference that group Lasso shrink more aggressively
parameters deep in the hierarchy.

Other group structures were also used with the latent group Lasso norm. For example, a parent-
child model, where groups consist of all parent-child pairs in T (see Figure 1.7, left), and a
family model, where groups consist of each node and all its children (see Figure 1.7, right), were
proposed in order to favor tree-structures, but also allowing for a certain degree of flexibility in
deviations from the rooted connected tree structure [BBC+16, RNWK11].

Exclusive Lasso

In certain applications, it is desirable to induce non-zero patterns, where sparse coefficients within
a group compete against each other, i.e., a non-zero entry discourages other entries, within the
same group, to be non-zero. For example, this structure naturally arises in neurobiology. Inspired
by the statistical analysis in [GK02], the authors in [HDC09] consider a simple one-dimensional
model, where a neuronal signal behaves as a train of spike signals with some refractory period
∆ > 0: there is a minimum non-zero time period ∆ where a neuron remains inactive between

12

1.3. Convex approaches

0 50 100 150 200 250 300 350 400 450 5000

0.1

0.2

0.3

0.4

0.5

0.6

Time (ms)

M
a
g
n
it
u
d
e

Observed neuronal signal

Spikes train to be detected

6

Figure 1.8: Neuronal spike train example

two consecutive electrical excitations. Figure 1.8 illustrates how a collection of noisy neuronal
spike signals with ∆ > 0 might appear in practice.

The exclusive Lasso, also called `p/`1-norm, proposed by [ZJH10]7, promotes such dispersive
structure. Given a collection of groups G, and associated positive weights (dG)G∈G, exclusive
Lasso is defined as:

Ωexclusive
p (x) = (

∑
G∈G
‖xG‖p1)1/p. (1.9)

Ωexclusive
p acts as an `1-norm on each group, and thus promotes sparsity within each group. In

Sections 1.3.4 and 2.5.3, we see why the exclusive Lasso is the “best” convex surrogate, in some
sense, for dispersive structures.

1.3.2 Atomic norms

A more principled general approach for choosing a convex surrogate of a structured sparsity
model was proposed in [CRPW12]. This approach considers models where x\ is “simple” in
the sense that it can be written as the sum of a few atoms from an atomic set A, with possibly
infinite atoms, i.e., x\ =

∑s
i=1 cia

i. The proposed convex penalty is then given by the gauge of
the convex hull of the atomic set:

‖x‖A = inf{t ≥ 0 : x ∈ t conv(A)}, (1.10)

which, assuming without loss of generality that the centroid of A is zero, can be rewritten as:

‖x‖A = inf{
∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0,∀a ∈ A}, (1.11)

‖x‖A is a norm, called the atomic norm, whenever A is centrally symmetric around the origin,
i.e., when a ∈ A if and only if −a ∈ A. This convex penalty is in general intractable to

7In the original definition of exclusive Lasso in [ZJH10], G is a partition of V .

13

Chapter 1. Introduction

evaluate and to optimize (e.g., when conv(A) is the cut polytope), but for certain cases of A
it can be evaluated exactly, or approximated via semidefinite programming, and the resulting
convex optimization problems are tractable (see [CRPW12] for details). Moreover, for certain
choices of A, the atomic norm recovers popular structured sparsity-inducing norms, such as:

(i) `1-norm: If A is the set of standard basis vectors, i.e., A = {a ∈ Rd : ‖a‖0 = 1, ‖a‖p ≤
1} (for any p ≥ 1), then ‖x‖A = ‖x‖1.

(ii) Latent group Lasso norm: For a collection of groups G, and positive weights (dG)G∈G,
if A = {a ∈ Rd : supp(a) ⊆ G, ‖a‖p = d−1

G , for some G ∈ G}, then ‖x‖A = Ω∪p (x)

defined in Eq. (1.8), as shown in [OB12].

Furthermore, Section 1.3.4 introduces another class of structure-inducing norms, which can be
viewed as atomic norms too. For other interesting examples, we refer the reader to [CRPW12].
Conditions for exact and robust recovery of x\ using general atomic norms, along with bounds
on the corresponding sample complexity are presented in [CRPW12].

The main drawback to this approach is that the proposed convex penalties are gauge functions
and thus are necessarily positively homogeneous; we discuss why this is problematic, in terms of
capturing general structures, in Chapters 2 and 3.

1.3.3 Convex relaxations of submodular penalties

Another systematic approach, proposed in [Bac10a], considers choosing the convex surrogate
to be the tightest convex relaxation of the desired structured sparsity model. Namely, given
a positive-valued set function F : 2V → R+, such that F (∅) = 0, and F (A) > 0,∀A ⊆ V ,
encoding the structure on the support of x ∈ Rd, this approach proposes to use the convex
envelope of F (supp(x)), i.e., its largest (thus tightest) convex lower bound8, over the unit
`∞-ball, as a natural convex surrogate for it.

In particular, this approach is applied in [Bac10a] for structures that can be expressed by a
monotone submodular function (see definitions in Section 1.1). The convex envelope of a
function is given by its biconjugate, i.e., the Fenchel conjugate of the Fenchel conjugate. Let
F∞(x) = F (supp(x)) + ι‖x‖∞≤1(x), then the convex envelope of F∞ is given by Θ∞ := F ∗∗∞ .
Note that restricting the values of x to a bounded domain (e.g., unit `∞-ball) is a necessary
technical requirement for deriving non-trivial relaxations of such functions. Unfortunately, the
convex envelope Θ∞ is in general intractable to evaluate and to optimize9. However, for the class
of monotone submodular functions, [Bac10a] shows that Θ∞ is given by the Lovász extension

8Throughout the thesis, we will thus use convex envelope and tightest convex relaxation interchangeably.
9We can see this for example from the connection between the convex envelope of F∞ and the convex closure of

F , which we establish in Chapter 2.

14

1.3. Convex approaches

Figure 1.9: `0-pseudo-norm (red) and its convex envelope over the unit `∞-ball; the `1-norm
(blue), in R2.

[Lov83] of F , Θ∞(x) = fL(|x|), where fL is defined as follows:

fL(x) =

d−1∑
k=1

xjk [F ({j1, . . . , jk})− F ({j1, . . . , jk−1})], (1.12)

where x is sorted in decreasing order xj1 ≥ · · · ≥ xjd . When F is submodular, fL is known to
be convex. For further details about the Lovász extension see Appendix A.1.

We can see from the definition of the Lovász extension in (1.12), that Θ∞ in this case is a norm,
and is efficiently computable. Tractable algorithms to solve the resulting convex optimization
problems, regularized with Θ∞, are also proposed in [Bac10a] (see also Section 1.4.1). Moreover,
for certain choices of the submodular function F , Θ∞ recovers popular structured sparsity-
inducing norms, such as:

(i) `1-norm: If F is the cardinality function, F (S) = |S|, then Θ∞(x) = ‖x‖1. Figure 1.9
displays the `0-pseudo-norm, restricted within the `∞-ball, and its convex envelope the
`1-norm. It is easy to see from this figure, why considering the convex envelope over an
unbounded domain would simply yield the zero function.

(ii) `1/`∞-norm: For a collection of groups G, and positive weights (dG)G∈G, if F is the
overlap count function, F (S) =

∑
G∈G,G∩S 6=∅ dG, then Θ∞ = Ω∩∞, defined in Eq. (1.7).

For other interesting examples, we refer the reader to [Bac10a]. In Chapter 2, we show that this
approach is also tractable for another class of interesting set functions.

Note that the approach outlined here is similar to the one in Section 1.3.2, in the sense that both
approaches attempt to compute the “best” convex surrogate of a given structured sparsity model.
Indeed, the notion of convex envelope extends the notion of convex hull of sets to functions. In

15

Chapter 1. Introduction

particular, the epigraph of the convex envelope Θ∞ corresponds to the closure of the convex hull
of the epigraph of F∞. Moreover, the atomic norm ‖x‖A of a compact atomic setA is the convex
envelope of the function x → inf{t ≥ 0 : x ∈ tA}. However, a key difference is that, unlike
atomic norms, convex penalties obtained as convex envelopes of F (supp(x)) are not necessarily
norms, when F is not monotone submodular, as we show in Chapter 2. In that chapter, we identify
another class of set functions, for which the convex envelope Θ∞ is efficiently computable.

The statistical properties of Θ∞, with conditions for support recovery and estimation, in the
high dimensional setting, are presented in [Bac10a]. In particular, it is shown that the non-zero
patterns allowed with these norms correspond to the stable sets of F , i.e., sets A ⊆ V that satisfy
∀B ⊃ A,F (B) > F (A).

1.3.4 Homogeneous convex relaxations of `p-regularized penalties

A similar principled approach to the one discussed above, proposed in [OB12], considers `p-
regularized general combinatorial functions of the form Fp(x) = 1

qF (supp(x)) + 1
p‖x‖p, for

p ≥ 1, where as before the set function F controls the structure of the model in terms of
allowed/favored non-zero patterns, and the additional `p-norm serves to control the magnitude of
the coefficients. For p = ∞, Fp reduces to F∞(x) = F (supp(x)) + ι‖x‖∞≤1(x). The choice
p 6=∞ might be preferable to avoid the clustering artifacts of the values of the learned vector
induced by the `∞-norm.

This approach proposes to use the largest positively homogeneous convex lower bound of Fp as a
convex surrogate for it. This is achieved by computing first the positively homogeneous envelope
of Fp, i.e., its largest positively homogeneous lower bound, given by F (supp(x))1/q‖x‖p,
then computing the corresponding convex envelope. We call the resulting convex penalty the
homogeneous convex envelope of Fp, and denote it by Ωp.

[OB12] showed that the homogeneous convex envelope of Fp, for any set function F , is given by
a generalized latent group Lasso norm:

Ωp(x) = min
v
{
∑
S⊆V

F (S)1/q‖vS‖p :
∑
S⊆V

vS = |x|, supp(vS) ⊆ S}. (1.13)

Note that the norm in Eq. (1.13) indeed corresponds to a latent group Lasso norm as defined in Eq.
(1.8), with G containing all the power-set of V . Moreover, Ωp can be viewed as an atomic norm,
associated with the atomic set A = {a ∈ Rd : supp(a) ⊆ S, ‖a‖p = 1, for some S ∈ DF },
where DF is the core set of F , corresponding to the set of faces of a polytope associated with Ωp.
See [OB16, Section 2.3] for the precise definition.

Unfortunately, the homogeneous convex envelope Ωp is also in general intractable to evaluate
and to optimize. However, if F is a monotone submodular function, a tractable decomposition
algorithm to compute Ωp for any p ≥ 1, was provided in [OB16, Section 6.3]. This algorithm

16

1.4. Convex optimization for structured sparsity

requires solving a sequence of at most d submodular minimization problems, which can be done
in polynomial time for general submodular functions F (see Section A.1). Tractable algorithms
to solve the resulting convex optimization problems, regularized with Ωp, are also proposed in
[OB16] (see also Section 1.4.1). Moreover, for certain choices of F (including non-submodular
ones), Ωp recovers popular structured sparsity-inducing norms, such as:

(i) `1-norm: If F is the cardinality function, F (S) = |S|, then Ωp(x) = ‖x‖1 for any p ≥ 1.

(ii) Submodular norms: If F is monotone submodular, then the homogeneous convex enve-
lope coincides with the convex envelope, when p =∞, i.e., Ω∞ = Θ∞ = fL(| · |), and it
is then easily computable (the decomposition algorithm is not needed in this case). For
general p though, the two envelopes are not necessarily equal (see next example).

(iii) `1/`p-norm: For a collection of groups G, and positive weights (dG)G∈G, if F is the
submodular overlap count function, F (S) =

∑
G∈G,G∩S 6=∅ dG, then Ωp = Ω∩p , defined in

Eq. (1.7), only if G is a partition of V . Otherwise, for overlapping groups, this identity
does not hold for p <∞. In this case, the norm, called overlap count Lasso, does not have
a simple closed form in general (but it can be computed using the decomposition algorithm).
For more details on the difference between overlap count Lasso and `1/`p-norms, see
[OB16, Section 4.1].

(iv) Latent group Lasso norm: If F is the (non-submodular) minimal weighted set cover
function, F (S) = minω∈{0,1}|G|{

∑
G∈G dGωG :

∑
G∈G ωG1G ≥ 1S}, then Ωp = Ω∪p ,

defined in Eq. (1.8). Note that this norm is not tractable in general (e.g., when G = 2V

as in Eq. (1.13), but for example if the number of groups in G is polynomial, it can be
computed by linear programming.

(v) `p/`1-norm: If F is the (non-submodular) function F (S) = maxG∈G |S ∩G|, and G is a
partition of V , then Ωp = Ωexclusive

p , defined in Eq. (1.9).

For other interesting examples, we refer the reader to [OB16]. An extension of the statistical
results presented in [Bac10a] for Θ∞, in the case of monotone submodular functions, to Ωp for
the same class of functions, with any p ≥ 1, is provided in [OB16].

This approach has a similar drawback to the approach of atomic norms, namely that the proposed
convex penalties are necessarily positively homogeneous; we discuss why this is problematic, in
terms of capturing general structures, in Chapter 3. In that chapter, we study the non-homogeneous
counterpart of Ωp, i.e., the convex envelope of Fp, for general set functions, and any p ≥ 1.

1.4 Convex optimization for structured sparsity

In the previous section, we reviewed existing approaches to convert the combinatorial term F in
problem (1.1) to a convex term g. The resulting convex penalties are naturally non-smooth. In

17

Chapter 1. Introduction

this section, we review two first-order methods10 tailored to optimize the corresponding convex
problem (1.2), where f is a smooth differentiable function, and g is a non-smooth convex function.
In particular, f is assumed to have a Lipschitz continuous gradient with respect to ‖ · ‖, i.e.,
‖∇f(x) − ∇f(y)‖∗ ≤ L‖x − y‖,∀x,y ∈ Rd, for some L > 0, and where ‖ · ‖∗ is the dual
norm of ‖ · ‖. In some cases, f can be further assumed to be strongly-convex with respect to ‖ · ‖,
i.e., f(x) ≥ f(y) + 〈x− y,∇f(y)〉+

µ

2
‖x− y‖2, ∀x,y ∈ Rd, for some µ > 0.

In large-scale problems, first-order methods are often preferred to second-order methods, despite
requiring a larger number of iterations to achieve a given accuracy, due to their lower-complexity
per iteration. In the context of structured-sparsity, existing first-order optimization algorithms
often fall under the categories of proximal gradient methods (also known as forward–backward
splitting methods) and Frank-Wolfe (FW) methods (also known as conditional gradient methods).

In what follows, we present these two methods, and highlight their respective advantages and
drawbacks. For each method, we will pay attention to its computational complexity per iteration,
its convergence rate guarantees, the sparsity of its solutions, and its ability to handle general
norms. Our interest in the last two properties is motivated by the following: First, optimization
algorithms which maintain sparse iterates are desirable in structured sparsity problems, where we
indeed seek sparse solutions, but also in general large-scale problems, due to the computational
benefit this property entail. Second, algorithms which allow arbitrary choices of the norm ‖ · ‖,
instead of the classical `2-norm, enable us to adapt the norm to the geometry of the given problem.
This property can lead to significant improvement in the convergence rate in terms of dimension
dependence, as observed for example in [KLOS14, Nes05, BWB14, dGJ13].

1.4.1 Proximal gradient methods

Proximal methods date back to [Mar70]. They have received a lot of attention both from the
machine learning and signal processing communities, see, e.g., [WNF09, MRS+10, Bac10b,
CP11], due to their relatively fast convergence rate and their suitability for large-scale non-smooth
convex problems of the form (1.2).

Algorithm: The main idea of proximal gradient methods is to minimize at each iteration k, a
quadratic approximation of f , tight at the current iterate xk, while leaving g intact. Assuming
the gradient of f is L2-Lipschitz continuous, with respect to the `2-norm, implies the following
quadratic majorizer of f , at any point y ∈ Rd, and ∀γ ∈ (0, 1/L2]:

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+
1

2γ
‖x− y‖22. (1.14)

10First-order methods are methods that only use the first derivative of the objective function.

18

1.4. Convex optimization for structured sparsity

The following problem is then solved at each iteration k:

min
x∈Rd

1

2γk
‖x− (xk − γk∇f(xk))‖22 + λg(x) (1.15)

In the basic proximal gradient method, the next iterate is set to the unique (by strong convexity)
solution of (1.15). In the special case where g is an indicator function g = ιC , this algorithm
is called projected gradient method, since problem (1.15) reduces to a projection on C. Also if
g = 0, we recover the standard gradient descent algorithm. Accelerated variants of the proximal
gradient method, such as [Tse08, BT09a, Nes13], include an additional extrapolation step. For
example, one simple version is to set the next iterate to the solution of problem (1.15) with xk

replaced with xk + αk(x
k − xk−1), for some carefully chosen αk ∈ (0, 1].

When the Lipschitz constant L2 is not known, the step size γk can be found by line search.
For example, one simple line search strategy, proposed by [BT09b, Section 1.4.3], consists of
iteratively increasing γk until the bound in (1.14) holds. Such adaptive choice of the step size
can be helpful even in cases where L2 is known, because it allows the algorithm to adapt to the
local properties of the objective.

The solution of (1.15) corresponds to an instance of the proximal operator [Mor62] of g:

proxλg(u) := arg min
x∈Rd

1

2
‖x− u‖22 + λg(x) (1.16)

When g is an indicator function g = ιC , Eq. (1.16) becomes a projection on C, and is denoted
by projC(u). Note that this operator is well-defined, since the solution in (1.16) is unique. The
iterates of the basic proximal gradient method can then be written as

xk+1 = proxλg(x
k − γk∇f(xk)),

and that of its simple accelerated variant as

yk+1 = xk + αk(x
k − xk−1),

xk+1 = proxλg(y
k+1 − γk∇f(yk+1)).

Complexity per iteration: The cost per iteration of proximal gradient methods is dominated by
the cost of computing the proximal operator. This operator has several nice properties which
are helpful for computing it, and for establishing convergence of proximal methods, see e.g.,
[CW05]. We review here one particular property, known as the Moreau decomposition, which
relates the proximal operator of g to the one associated with its Fenchel conjugate g∗:

u = proxg(u) + proxg∗(u) (1.17)

19

Chapter 1. Introduction

This relation allows us to efficiently compute both proximal operators, whenever one of them is
efficiently computable. In the special case where g = ‖ · ‖ is a norm, then g∗ = ι‖·‖∗≤1, and Eq.
(1.17) reduces to

u = prox‖·‖(u) + proj‖·‖∗≤1(u). (1.18)

For some choices of structured sparsity-inducing norms, the proximal operator can be computed
efficiently. We present now some of these examples:

(i) `1-norm: proxλ‖·‖1 has a closed form solution, given by proxλ‖·‖1(u) = sign(u) ◦
max{|u|−λ, 0}. This is the soft-thresholding operator we presented in Section (1.3.1). The
proximal gradient method in this case is often called ISTA (iterative shrinkage-thresholding
algorithm), and its accelerated variant FISTA (fast ISTA) [BT09a].

(ii) Submodular norms: If g is the norm obtained from the convex envelope Θ∞ or the homo-
geneous convex envelope Ωp of a monotone submodular function (see Sections 1.3.3 and
1.3.4)11, then its proximal operator can be computed by a decomposition algorithm[OB16,
Section 6.3]. As in the decomposition algorithm used to compute the norm itself, this
algorithm requires solving a sequence of at most d submodular minimization problems.

(iii) Block `1/`p-norm: If G is a partition of V , the proximal operator of Ω∩p , defined in Eq.
(1.7), can be computed separately on each group; [proxλΩ∩p

(u)]G = proxλdG‖·‖p(uG),∀G ∈
G. For p = 2, we obtain the group soft-thresholding operator [proxλΩ∩2

(u)]G = sign(uG)◦
max{‖uG‖2−λdG, 0}. For p =∞, the relation in Eq. (1.18) can be exploited to compute
[proxλΩ∩∞

(u)]G as the residual of the Euclidean projection on the `1-ball, which can be
done in linear time [DSSSC08].

(iv) Hierarchical `1/`p-norm: If the groups in G are tree-structured, in the sense that every
pair of groups are either disjoint or one is contained in the other, [JMOB11] provided
efficient algorithms to compute proxλΩ∩p

(u) for p = 2,∞. The algorithm consists of
sequentially projecting uG on the dual ball, given a particular ordering of the groups. The
resulting complexity is O(d) for p = 2, and O(dh) where h is the height of the tree. For
example, this applies to the rooted connected tree model presented in Section 1.3.1, where
the descendant groups GH are indeed tree-structured.

(v) Overlapping `1/`p-norm: If the groups in G are overlapping and not-tree structured,
proxλΩ∩p

(u) becomes more difficult. It can still be solved efficiently in the special case of
p =∞, where proxλΩ∩∞

(u) is the dual to a quadratic min-cost flow problem, as shown in
[MJBO10]. Alternatively, the decomposition algorithm can be used, since `1/`∞-norm is
a submodular norm (see Section 1.3.4). However, in the general case where p ∈ (1,∞),
no efficient algorithm to compute proxλΩ∩p

is known.

(vi) Latent group Lasso norm: If G is a partition of V , recall that Ω∪p , defined in Eq. 1.8, is
equal to the `1/`p-norm, hence its proximal operator can be easily computed in this case.

11Recall that the two envelopes are equal for p =∞; Θ∞ = Ω∞ = fL(| · |).

20

1.4. Convex optimization for structured sparsity

However, in the overlapping-groups case, computing proxλΩ∪p
is challenging. A simple

workaround is to duplicate the variables that belong to overlaps between the groups, which
reduces this case back to the partition case. However, such approach is costly when the
groups have substantial overlap. Another approach to compute proxλΩ∪p

approximately
was proposed in [VRMV14]. It exploits the relation in Eq. (1.18) to reduce proxλΩ∪p

to a
projection over the intersection of `p-balls associated with each group. A preprocessing step
is proposed to restrict the projection to only “active” groups. The resulting projection can
be computed in general via the cyclic projection algorithm of [BD86], which is guaranteed
to converge, but with no convergence rate guarantees. In the case p = 2, the projection
can be computed by solving a dual problem based on Bertsekas’ projected Newton method
[Ber82], which is only guaranteed to converge under a strong regularity condition on the
Hessian of the objective near the optimal solution. Hence, an efficient method to solve
proxλΩ∪p

, exactly or approximately, remains an open problem.

For further examples, we refer the reader to [Bac10b] and [OB16]. Moreover, efficient implemen-
tations of the proximal solvers of the `1/`p-norm, in [MJBO10] and [JMOB11], are available in
the open source toolbox SPAMS (SPArse Modeling Software) 12.

Convergence rate: Proximal gradient method converges with a rate of O(L2R
2
2/k), when

γk = 1/L2, where R2 = ‖x0 − x?‖2, and x? is any minimizer of problem (1.2). While,
accelerated proximal gradient method converges, in objective value, with a rate of O(L2R

2
2/k

2).
This rate was shown to be optimal, in terms of dependence on k, for first-order methods in
[NYD83]. It is worth noting that unlike basic gradient methods, accelerated methods are not
descent algorithms, i.e., the objective function does not necessarily decrease at each iteration.

Furthermore, both basic and accelerated proximal gradient methods adapt to the strong convexity
of the objective, achieving a linear convergence of O(R2 exp(−µ

Lk)) for the basic variant, and

O(R2 exp(−
√

µ
Lk)) for the accelerated variant, when µ > 0. These rates were also shown to

hold if the proximal operator is only solved approximately, as long as the approximation error
decreases, at each iteration k, with a fast enough rate [SRB11, VSBV13, LMH15, LZ16].

Complexity in non-Euclidean spaces: Our discussion so far has focused on the classical
Euclidean proximal gradient methods. However, the choice of the `2-norm in these methods,
may lead to suboptimal convergence, in terms of dimension dependence, for problems which
are not “well-behaved” in the `2-norm. For instance, consider the case where g = ι‖·‖∞≤1 and f
is such that both L2 ≤ 1 and L∞ ≤ 1, where L∞ is the Lipschitz constant of f with respect to
the `∞-norm. A similar setting occurs for example in maxflow problems [KLOS14]. Euclidean
proximal gradient method converges with a rate of O(d/k), in this case. While, if we were to
measure L and R with respect to the `∞-norm, the corresponding rate would be O(1/k).

Such observation motivated extensions of gradient methods to non-Euclidean methods able to

12http://spams-devel.gforge.inria.fr/

21

Chapter 1. Introduction

adapt to the geometry of the problem. In particular, extensions of proximal gradient method and
its accelerated variant, where the `2-norm in Eq. (1.14) is replaced by a Bregman divergence,
were considered for example in [Tse08, Lan12]. However, as Bregman divergences are required
to be strongly convex in the underlying norm, they also can introduce unnecessary dimension
dependence terms in the convergence rate.

Another extension of proximal gradient method, where the `2-norm in Eq. (1.14) is replaced
by an arbitrary norm ‖ · ‖, was also considered in [RT14], and for the constrained case in
[Nes05, AZO14]. We refer to this extension as generalized proximal gradient method (GPM).
GPM was proved to converge inO(LR/k), where both L andR are measured with respect to ‖·‖
[RT14]. However, the resulting proximal operator to be solved at each iteration in GPM, is not
well-studied outside the Euclidean setting. Indeed, for non-Euclidean norms, it was only shown
to be tractable in the special case where g is the indicator function of the simplex, and ‖ · ‖ is the
`1-norm [Nes05]. We fill this gap in Chapter 4, where we provide an efficient scheme to compute
the non-Euclidean proximal operator, for a broad class of regularizers and norms, including
examples where the Euclidean proximal operator is not known to be efficiently computable. We
also introduce an accelerated variant of GPM, with a small extra computational cost.

Solution’s sparsity: The iterates of Euclidean proximal gradient method and its accelerated
variant do not admit sparse representations. In Chapter 4, we show that for some choices of
regularizers and norms, the iterates in GPM correspond to a sparse convex combination of only
few atoms. Unfortunately, this property is lost with acceleration.

1.4.2 Conditional gradient methods

The Frank-Wolfe algorithm was first introduced in [FW56]. It has recently experienced a
remarkable revival, particularly in the context of sparse optimization and machine learning, due
to its relatively cheap and sparse updates.

FW is a projection-free method for optimizing convex objectives over a compact convex domain,
i.e., for solving the special case of problem (1.2), where g is an indicator function; g(x) = ιC(x),
for some compact convex set C ⊆ Rd. It was also extended to handle any closed convex
function g, with a bounded domain, see, e.g., [BLM09, Nes15, HJN15, YZS17]. We refer to this
generalized version as generalized condition gradient (GCG) method. Furthermore, variants
of GCG able to handle special cases of functions g with unbounded domain, were presented in
[HJN15] for norm regularizers, and in [YZS17] for gauge regularizers.

Algorithm: The main idea of conditional gradient methods is to minimize at each iteration k,
a linear approximation of f , given by its supporting hyperplane at the current iterate xk, while
leaving g intact. By convexity, the supporting hyperplane of f at any point y ∈ Rd, is given by:

f(x) ≥ f(y) + 〈∇f(y),x− y〉. (1.19)

22

1.4. Convex optimization for structured sparsity

The following problem is then solved at each iteration k:

ŝ ∈ arg min
x∈Rd

〈∇f(xk),x〉+ λg(x) (1.20)

In FW and GCG, the next iterate is updated by taking a convex combination of the previous
iterate and the new point; xk+1 = (1 − γ)xk + γŝ, where γ is either chosen by line search
γ ∈ arg minγ∈[0,1] f(xk + γ(ŝ− xk)), or set to γ = 2

k+2 .

Note that problem (1.20) corresponds to computing a subgradient of the Fenchel conjugate of g,
i.e., ŝ ∈ ∂g∗(−∇f(xk)). We will thus refer to this operation as the Fenchel conjugate operator
of g. In the constrained variant, where g is an indicator function, this operator reduces to the
linear minimization oracle (LMO) associated with C; ŝ ∈ LMOC(z) := arg minx∈C〈z,x〉.

Complexity per iteration: The cost per iteration of conditional gradient methods is dominated
by the cost of computing the Fenchel conjugate operator or the LMO. These operators are usually
much cheaper than proximal operators. Indeed, in several problems, both within structured
sparsity (e.g., latent group Lasso, exclusive Lasso, and general overlapping group Lasso (for
p 6=∞)), and beyond it in applications such as structured SVM, sparse PCA, variational inference,
and submodular minimization, computing the proximal/projection operator is expensive or even
intractable, while the LMO can be efficiently implemented. We provide below two examples of
structured sparsity-inducing norms whose LMO admits a closed form solution:

(i) `1-ball: LMO‖x‖1≤1(z) = − sign(zimax)1imax , where imax ∈ arg maxi |zi|.

(ii) Latent group Lasso ball: LMOΩ∪p (x)≤1(z) = −d−1
Gmax

sign(zGmax) ◦
(zGmax
‖zGmax‖q

)q−1,
where Gmax ∈ arg maxG∈G ‖zG‖q.

Furthermore, in Chapter 2, we show that the LMO, and Fenchel conjugate operator, of several
other examples of structured sparsity-inducing penalties (including latent group Lasso, exclusive
Lasso, and general overlapping group Lasso) can be efficiently computed via linear programming.
For other interesting examples, we refer the reader to [Jag13].

Convergence rate: Convergence results for conditional gradient methods in the literature are
expressed using a variety of “constants”13, characterizing the properties f and the domain of g.
To simplify our presentation, we omit these constants here.

CGD converges in objective value with a rate of O(1/k) [Cla10, Jag13, Nes15, YZS17]. This
convergence rate still holds if the LMO is only solved approximately [Jag13]. Moreover, this rate
is tight in general.

Indeed, [CC68] and [Wol70] showed that, even when f is strongly convex, classical FW converges
at the slow rate of Ω(1/k1+δ), for any δ > 0, if the optimal solution x? lies at the the boundary of

13These constants can be dimension dependent.

23

Chapter 1. Introduction

the feasible set C. Over the past years, significant effort was made towards investigating whether
projection-free methods with convergence rates matching that of accelerated projected gradient
descent exists. Table 1.1 provides a summary of such results.

In the case where f is strongly convex, [GM86] showed that FW converges linearly, if the feasible
set is a polytope, and the optimal solution is in its interior. When the location of x? is unrestricted,
[GH15] obtains a O(1/k2) rate, for strongly convex sets, while [GH13] obtains a linear rate, for
polyhedral feasible sets, using a variant of LMO, called local LMO, where x is restricted in an
`2-ball, i.e., ŝ ∈ arg minx∈C,‖x−xk‖2≤rt〈∇f(xk),x〉 for some rt > 0.

In the more general case, where f(x) = g(Ax) + 〈b,x〉, for some A ∈ Rn×d, b ∈ Rd, and
where g is strongly convex, [LJJ15, BS17] showed that a variant of FW, called away-step FW,
enjoys linear convergence, if the feasible set is a polytope. Away-step FW chooses at each
iteration, to either take the regular FW direction, or an away direction, which remove weights
from currently active ‘bad’ atoms. The direction which leads to better progress is chosen. The
classical variant of FW also converges linearly, for a special case of this class of functions, namely
if f is the least squares loss, even when the feasible set if not a polytope [BT04].

In the general non-strongly convex case, [LZ16] presented a variant of FW able to achieve
an accelerated rate in terms of the number of gradient evaluations needed, but not in terms of
LMO calls. Accelerated variants of FW achieving a faster rate Õ(1/k2),14 in both gradient
and LMO calls, for polyhedral feasible sets, can be easily obtained by combining generic
acceleration schemes such as [LMH15, LZ16] with the linearly convergent variants of FW
such as [LJJ15, GH13]. However, the constants involved in the resulting convergence rate are
dimension-dependent, and in practice we observe that this acceleration does not seem useful. A
more careful study of the performance of such variants is thus needed.

For the penalized variant of problem (1.2), the convergence of GCG is less well studied. To the
best of our knowledge, the only convergence result which improves on the O(1/k), is provided
by [Nes15], which shows the GCG converges with a O(1/k2) rate, if g is strongly convex and
has a bounded domain.

Complexity in non-Euclidean spaces: Note that the iterates of FW and GCD, and accordingly
their performance, do not depend on the choice of the norm used to measure smoothness and
strong convexity. Hence, convergence guarantees of these methods can often be obtained with
respect to arbitrary norms. For example, for the constrained variant of problem (1.2), the iterates
of FW were shown in [Jag13] to satisfy f(xk) − f(x?) ≤ O(

Cf
k+2), where Cf is a curvature

constant, characterizing the “non-linearity” of f , defined as

Cf = sup
γ∈[0,1]

{ 2

γ2
(f(x)− f(y) + 〈∇f(y),x− y〉) : y, s ∈ C,x = y + γ(s− y)}.

It is easy to see that Cf ≤ LD2, where D = maxx,y∈C ‖x− y‖, with both L and D measured

14The Õ notation hides logarithmic terms.

24

1.5. Non-convex approaches

Ref. Oracle Feasible Set Objective Fct. Location of x? Rate
[Jag13] LMO convex convex unrestricted O(1/k)

[GM86] LMO polytope strongly convex interior O(exp(−k))

[BT04] LMO convex f(x) = ‖y −Ax‖22 interior O(exp(−k))

[GH13] Local LMO polytope strongly convex unrestricted O(exp(−k))

[GH15] LMO strongly convex strongly convex unrestricted O(1/k2)

[LZ16] LMO convex convex unrestricted O(1/k) LMO
O(1/k2) gradients

[LJJ15, BS17] LMO polytope f(x) = g(Ax) + 〈b,x〉 unrestricted O(exp(−k))
+ Away Step g strongly convex

[LMH15, LZ16] LMO polytope convex unrestricted Õ(1/k2)
+ [LJJ15, GH13] + Away Step

Table 1.1: Summary of FW convergence rate results.

with respect to any norm. Note though that not all the variants of FW discussed above share this
property. For example, the variant in [GH13] uses the `2-norm in its local LMO. Similarly, the
accelerated variants based on [LMH15, LZ16] also implicitly use the `2-norm.

Solution’s sparsity: One of the main attractive properties of FW is the sparsity of its iterates.
At each iteration k, xk corresponds to a sparse convex combination of k “atoms” in C. To
see this, let C = conv(A) where A is an atomic set, then the LMO returns an atom, since
LMOC(z) = arg minx∈A〈z,x〉.

Conclusion: The discussion in Sections 1.4.1 and 1.4.2 can be summarized as follows: Condi-
tional gradient methods enjoy cheap and sparse iterates, their performance is independent of the
choice of the norm used to measure properties of f , but they suffer a relatively slow convergence
rate in general, and are not able to handle general regularizers with unbounded domain. On the
other hand, (accelerated) proximal gradient methods enjoy optimal convergence rates, in terms of
iteration-dependence, but require more expensive and dense iterates. Their performance does
depend on the choice of the norm used to measure properties of f , where a careful choice can
avoid unnecessary dimension-dependence. Developing an algorithm which can achieve the best
of both worlds remains an open question of great theoretical and practical interest.

1.5 Non-convex approaches

In this section, we briefly review non-convex approaches to structured sparsity, which directly
address the structured sparsity learning problem (1.1), without relying on convex relaxations.

Existing non-convex approaches have mostly focused on constrained formulations of Problem
(1.1), where F is an indicator function over a set of allowed supportsM; F (S) = ιS∈M(S).
The resulting problem is then of the form

min
x∈Rd
{f(x) : supp(x) ∈M} (1.21)

25

Chapter 1. Introduction

Several methods have been developed to provide approximate solutions to this NP-Hard problem.
These methods typically belong to two categories; greedy algorithms and discrete projected
gradient descent methods. Theoretical recovery guarantees for these methods were also provided,
under some conditions on f , such as restricted isometry property (RIP), both for the simple
sparsity model [Tro04], and for general structured sparsity models [HZM11, BCDH10].

1.5.1 Greedy algorithms

Most existing greedy sparse-recovery algorithms are variants of orthogonal matching pursuit
(OMP) [MZ93, TG07] and forward selection methods [Mil02, Wei05].

The main idea of these iterative greedy algorithms is to add variables, that maximize progress
locally, to the support of the current estimate xk, starting from x0 = 0, until the target sparsity
or model complexity s is reached. In particular, whenM is the set of s-sparse supports, i.e.,
M = {S : |S| ≤ s}, and f is any loss function, forward selection15 algorithm adds, at each
iteration k, the variable which reduces the objective the most:

ik ∈ arg min
i∈Sck

min
supp(x)⊆Sk

f(x) (1.22)

Sk+1 = Sk ∪ {ik}

Let Ŝ be the returned support, then the estimate solution is given by x̂ ∈ arg minsupp(x)⊆Ŝ f(x).

The greedy selection criterion (1.22) can be implemented efficiently when f is the least squares
loss, but in general it can be computationally expensive. Another possible choice is to select the
variable which is most correlated with the residual. OMP uses such criterion, and executes the
following steps at each iteration k:

ik ∈ arg max
i∈V

|〈1i,∇f(xk)〉|

Sk+1 = Sk ∪ {ik}
xk+1 ∈ arg min

supp(x)⊆Sk+1

f(x) (1.23)

For example, if f(x) = 1
2‖y −Ax‖22, we have ik ∈ arg maxi∈V |〈ai,y −Axk〉|, where ai is

the ith column ofA, and y−Axk is a residual term. OMP is then computationally more efficient
than forward selection, but satisfies a weaker optimality guarantee (see, e.g., [EKDN16]).

An interesting connection between these greedy algorithms and submodular maximization was es-
tablished in [DK11, EKDN16], where it is shown that the functionR(S) = −minsupp(x)⊆S f(x)

satisfies a weak notion of submodularity.

A popular variant of OMP worth mentioning is the compressive sampling matching pursuit

15This is sometimes also called OMP in the literature.

26

1.5. Non-convex approaches

(CoSaMP) algorithm[NT09]. In this variant, the s largest elements of the gradient are added
to the support, instead of only the largest one, and the estimation step (1.23) is followed by a
projection step, where we retain only the s largest entries of xk+1.

Extensions of these matching pursuit algorithms to general structured sparsity models were
also developed. For instance, [HZM11] presented a generalization of OMP to group sparse
structures, whereM is the set of supports which can be covered by the union of s-groups, i.e.,
M = {S : F (S) ≤ s}, where F (S) = minω∈{0,1}|G|{

∑
G∈G dGωG :

∑
G∈G ωG1G ≥ 1S} is

the minimal weighted set cover function, and G is a given collection of groups. In this variant,
each iteration selects a group G to add to the current support instead of a single index.

Similarly, [BCDH10] presented a generalization of CoSaMP to general structured sparsity
models, described as union of s-dimensional spaces, i.e.,M = {S : | supp(S)| ≤ s, supp(S) ⊆
G for some G ∈ G}. In this variant, the projection of the gradient and the estimate on the set of
s-sparse supports, is replaced by a general projection step overM:

projM(u) ∈ arg min
supp(x)∈M

‖x− u‖2. (1.24)

WhenM = {S : |S| ≤ s}, projM(u) returns the largest s-entries of u, and is known as the
hard-thresholding operator. In general though, this projection is NP-Hard, which motivated the
development of extensions of CoSaMP, allowing for approximate projections [DNW13, HIS15a].

1.5.2 Discrete projected gradient descent method

Another popular non-convex method used to solve problem (1.21) is the discrete projected
gradient descent method. As in the convex variant of this algorithm (see Section 1.4.1), the
iterates are given by

xk+1 ∈ projM(xk − γ∇f(xk)), (1.25)

where the gradient of f is assumed to be L-Lipschitz continuous, and the step size γ ∈ (0, 1/L].

WhenM is the set of s-sparse supports, this method is known as the iterative hard thresholding
(IHT) method [HGT06]. The generalization of IHT, given by (1.25), was studied in [BCDH10],
for general structured sparsity models described as union of s-dimensional spaces. Furthermore,
variants allowing for inexact projections were proposed in [GE13, HIS15a, JRD16].

We conclude the discussion in this section with some examples of structured sparsity models
M = {S : F (S) ≤ s}, which admit exact or approximate discrete projections:

(i) Sparse model: When F (S) = |S|, as discussed above, projM(u) is the hard-thresholding
operator, which returns the largest (in absolute value) s-entries of u.

(ii) Tree model: IfM is the set of s-sparse rooted connect tree supports, then projM can be

27

Chapter 1. Introduction

computed exactly via dynamic programming [CT13, BBC+16].

(iii) Dispersive model: IfM is the set of s-sparse supports, with a minimum distance ∆ > 0

between any two non-zero, i.e., M = {S : |S| ≤ s, |i − j| > ∆,∀i 6= j ∈ S}, then
projM can be computed exactly via linear programming [HDC09].

(iv) Minimal set cover model: WhenF (S) = minω∈{0,1}|G|{
∑

G∈G dGωG :
∑

G∈G ωG1G ≥
1S}, the projection results in a weighted maximum coverage problem, which is NP-
Hard in general, but can be approximated by a greedy algorithm achieving a (1 − 1/e)-
approximation ratio [NWF78]. This was used in [JRD16], which showed that near optimal
solutions to problem (1.21) can still obtained with this approximate greedy projection.
Moreover, [BBC+16] showed that for certain group structures G, where the groups have
acyclic interactions, the projection can be computed exactly via dynamic programming.

(v) Graph model: [HIS15b] introduced a weighted graph model, where given a graph G =

(V,E), M = {S : |S| ≤ s, γ(FS) ≤ g, w(FS) ≤ b}, where γ(FS) is the number of
connected components formed by the forest FS corresponding to S and w(FS) is the total
weight of edges in the forest FS . The projection in this case is also NP-Hard, but it can be
approximated by a nearly-linear time algorithm provided in [HIS15b]. This approximate
projection can be used in the framework of [HIS15a] to provide near optimal solutions to
problem (1.21).

1.6 Overview of contributions

This thesis presents novel methods for incorporating general structured sparsity models in learning
problems, which balance computational and statistical efficiency trade-offs.

The first part of the thesis (Chapters 2 and 3) focuses on how to turn discrete descriptions of
structures to convex ones, amenable to efficient optimization, without loosing too much in the
process. The second part (Chapter 4) is concerned with how to efficiently optimize the resulting
convex problems. In the third part of the thesis (Chapters 5 and 6), we return to the discrete
descriptions and try to address them directly.

In particular, the contributions made by each chapter are as follows:

• The goal of Chapter 2 is to compute tractable tight convex relaxations for a large range
of sparsity structures. Prior to our work, this was only feasible for structures described
by monotone submodular functions. This chapter introduces a new class of structured
sparsity penalties, called “ILP penalties", which are set functions that can be expressed by
linear programs with integral solutions. By borrowing tools from integer programming,
we demonstrate that the convex envelope of functions in this class can be computed and
optimized efficiently. We also show that many important heuristically designed penalties
in the literature fall within our framework, and propose other new interesting penalties. We

28

1.6. Overview of contributions

also illustrate on concrete examples how the common practice of imposing homogeneity
on convex penalties leads to an unnecessary loss of structure.

• The goal of Chapter 3 is to study which structure is necessarily lost by relaxing general `p-
regularized combinatorial functions to continuous convex penalties, and which is preserved.
This was previously studied only for the homogeneous convex envelope. Motivated by the
observation made in Chapter 2, we consider instead the non-homogeneous convex envelope,
and set out to present a rigorous comparison of the two relaxations. We thus study their
geometric properties and present statistical conditions under which consistent estimation
and model selection is possible under each relaxation. This chapter demonstrates that the
non-homogeneous convex envelope is tighter, and is able to preserve, both in a geometric
and a statistical sense, a larger class of combinatorial structures than its homogeneous
counterpart; specifically it can geometrically preserve any monotone structure. This
translates to better support recovery performance, as we characterize statistically and
observe empirically.

• The goal of Chapter 4 is to develop faster convex optimization methods, to solve problems
regularized with convex structured sparsity-inducing penalties. In particular, we consider a
generalized extension of the proximal gradient method (GPM). Unlike classical proximal
gradient methods, this method does not operate in the Euclidean space, but employs instead
other general norms. This flexibility allows this method to adapt to the geometry of the
given problem leading to significant improvements in computational complexity. Prior to
our work, this method was only known to be feasible when the convex regularizer is the
simplex constraint, and the chosen norm is the `1-norm. This chapter proposes a novel
tractable scheme to compute the iterates required by GPM for any polyhedral regularizer
and norm, thus establishing the tractability of GPM for this broad class of functions.
We also introduce an accelerated variant of GPM, with a small extra computational cost.
Furthermore, for a special class of regularizers, namely for atomic norms with linearly
independent atoms, and a matching norm, we devise an efficient greedy algorithm that
computes the iterates of GPM, in almost the same cost as Frank-Wolfe iterates. The
resulting iterates also correspond to a sparse convex combination of few atoms. We
illustrate on important examples of structured sparsity-inducing norms, Lasso and Latent
Group Lasso, that our results offer significant speed-up over state-of-the-art methods.

• The goal of Chapter 5 is to handle structures for which the convex approach fails. An
important implication of the results in Chapter 3 is that non-monotone structures do not
admit tight convex relaxations. Furthermore, such relaxations are in general intractable, for
(even monotone) structures, outside the class of submodular and ILP penalties. To address
such cases, this chapter proposes to use a discrete proximal gradient descent method,
efficient for several classes of structures, including submodular, supermodular and ILP
penalties. We demonstrate numerically superior performance over alternative heuristic
convex methods.

• The goal of Chapter 6 is to handle structured “sparse” signals where the small coeffi-

29

Chapter 1. Introduction

cients are not exactly zero. To this end, we propose a probabilistic mixture model with
combinatorial priors. This chapter adapts the non-convex method introduced in Chapter
5 to approximate the corresponding non-convex maximum a posteriori estimate. The
resulting algorithm is again efficient for several classes of structures, including submodular,
supermodular and ILP penalties. We demonstrate numerically that our proposed approach
performs better than alternative convex methods for non-truly sparse signals.

30

2 Convex Relaxations via Linear Pro-
gramming

2.1 Introduction

In this chapter, we adopt the convex approach to structured sparse learning. As discussed in
the introduction chapter, the challenge in this approach resides in finding a computationally
tractable convex surrogate that tightly captures the desired structured sparsity model. We follow
the systematic approach adopted in [Bac10a], where the convex surrogate is chosen to be the
tightest convex relaxation, i.e., the convex envelope, of a combinatorial penalty expressing the
desired structure. However, we recall that evaluating and optimizing such convex surrogates is in
general intractable. In this chapter, we are thus interested in addressing the following question:

Which set functions, able to naturally express structured sparsity models,
admit tractable convex envelopes, which can be efficiently optimized?

2.1.1 Related work

The above question was partially answered in [Bac10a], which showed that the convex envelope
of monotone submodular functions can be efficiently computed and optimized (see Section 1.3.3).
Though a natural model for a number of useful structures, submodular functions are unable to
capture all structures encountered in practice. On the other hand, [OB12] considered general
`p-regularized set functions and provided formulations for their homogeneous convex envelopes.
These formulations can be computed and optimized efficiently for submodular functions and
a limited number of other special cases, but are still intractable in general (see Section 1.3.4).
Moreover, in this chapter we observe that imposing homogeneity may cost an unnecessary loss
of structure in some cases (see Section 2.5). This effect is studied in details in Chapter 3.

2.1.2 Contributions

In this chapter, we propose a framework for structured sparsity modeling based on linear
programming, that addresses both tractability and tightness concerns of convex approaches. We

31

Chapter 2. Convex Relaxations via Linear Programming

introduce a new class of set functions, namely functions that can be expressed via a linear
program (LP) with integral solutions, which admit tractable convex envelopes. We call this class
of functions ILP penalties. Our framework complements the submodular modeling approach; it
allows us to derive tight convex relaxations for several submodular and non-submodular functions.

Our specific contributions are summarized as follows:

• We identify a sufficient condition for the convex envelope of a general set function to be
tractable (Section 2.2).

• We show that ILP penalties in particular satisfy this sufficient condition. The resulting
convex envelopes (which are not necessarily norms) take the form of linear programs, and
can be evaluated and optimized efficiently (Section 2.4).

• We provide examples of functions that belong to a subclass of ILP penalties, consisting of
functions that can be expressed via an LP with totally unimodular constraints. As a result,
we recover and give new theoretical interpretations to several popular structured sparsity
norms, such as the latent group Lasso, hierarchical group Lasso, and exclusive Lasso.
We also define new convex penalties, that can be used to express structures encountered
in practice with no known tight convex relaxation (Section 2.5). Their performance is
illustrated on numerical examples in Section 2.6.

This chapter is based on the joint work with Volkan Cevher [EHC15].

2.2 Tractable convex envelopes

We consider set functions F : 2V → R, where V = {1, · · · , d}, to encode structured sparsity
models over the support of an unknown parameter vector x ∈ Rd. As in [Bac10a], we propose
to use the convex envelope of F (supp(x)) over the unit `∞-ball as a convex surrogate for it.
Recall that restricting the convex envelope of F (supp(x)) over a bounded domain is necessary,
otherwise it would evaluate to a constant. In this chapter, we thus assume, without loss of
generality, that ‖x‖∞ ≤ 1. It is also interesting to consider the case where the magnitude of x is
penalized with a general `p-norm, as done in [OB12]. We defer this case to Chapter 3.

Recall that the convex envelope of a function is given by its biconjugate. We start by identifying
a sufficient condition for the tractable computation of the biconjugate of F (supp(x)) over the
unit `∞-ball.

Lemma 1. Given a set function F : 2V → R, let F∞(x) = F (supp(x)) + ι‖x‖∞≤1(x)

and denote its biconjugate by Θ∞ := F ∗∗∞ . If F admits an extension f̂ : [0, 1]d → R, i.e.,
f̂(1S) = F (S),∀S ⊆ V , which satisfy the following assumptions:

A1. f̂ is a proper and lower semi-continuous (l.s.c.) convex function,

32

2.2. Tractable convex envelopes

A2. maxs∈{0,1}d |z|>s− f̂(s) = maxs∈[0,1]d |z|>s− f̂(s), ∀z ∈ Rd,

then Θ∞(x) = infs∈[0,1]d{f̂(s) : s ≥ |x|}, and Θ∞ can be efficiently computed, if the resulting
optimization problem can be efficiently solved.

Proof. It holds that

F ∗∞(z) = sup
‖x‖∞≤1

x>z − F (supp(x))

= sup
s∈{0,1}d

sup
‖x‖∞≤1
1supp(x)=s

x>z − f̂(s) (by A1)

= max
s∈{0,1}d

|z|>s− f̂(s) (by Hölder’s inequality)

= max
s∈[0,1]d

|z|>s− f̂(s) (by A2)

Assumption A2 guarantees that the above convex relaxation of F ∗∞ is exact. Otherwise, the last
equality will only hold as an upper bound.

F ∗∗∞ (x) = sup
z∈Rd

x>z − F ∗∞(z)

= sup
z∈Rd

min
s∈[0,1]d

z>x− |z|>s+ f̂(s)

?
= min
s∈[0,1]d

sup
z∈Rd

sign(z)=sign(x)

|z|>(|x| − s) + f̂(s)

= inf
s∈[0,1]d

{f̂(s) : s ≥ |x|}

where F ∗∗∞ (x) = +∞ if x 6∈ [−1, 1]d ∩ dom(f̂). Given assumption A1, (?) holds by Sion’s
minimax theorem [S+58, Corollary 3.3].

Note that the main difficulty in computing the convex envelope of F∞ is that the Fenchel
conjugate F ∗∞ requires solving a combinatorial problem which in general is NP-Hard. In fact,
if F∞ has a tractable Fenchel conjugate, its envelope can be numerically approximated by a
subgradient method [JSK11].

Remark 1. It is worth noting that, without assumption A2, the resulting convex function in
Lemma 1 will still be a convex lower bound of F∞, albeit not necessarily the tightest one.

A natural choice for the convex extension f̂ required in Lemma 1 is the convex closure f−

of F , i.e., the largest convex lower bound of F on [0, 1]d (see Appendix A.2). Indeed, the
convex closure of any proper set function F does satisfy the two assumptions in Lemma 1 (see
Proposition 26 and Corollary 12). The following proposition shows that this is actually the only
possible choice of f̂ satisfying the assumptions in Lemma 1.

33

Chapter 2. Convex Relaxations via Linear Programming

Proposition 1. Given a set function F : 2V → R, and an extension f̂ : [0, 1]d → R of F
satisfying assumptions A1 and A2 in Lemma 1, then f̂ = f− is the convex closure of F , and
Θ∞(x) = infs∈[0,1]d{f−(s) : s ≥ |x|}.

Proof. Assume that f̂ 6= f−, then ∃s̄ ∈ [0, 1]d s.t. f̂(s̄) < f−(s), by A1 and the defini-
tion of f− as the largest convex lower bound on F . f− can also be equivalently defined as
f−(s) = maxκ∈Rd,ρ∈R{κ>s+ ρ : κ(S) + ρ ≤ F (S),∀S ⊆ V } (see Def. 20). Let κ̄, ρ̄ be the
corresponding maximizers for s̄, then κ̄(S) + ρ̄ ≤ F (S),∀S ⊆ V . Hence, we have

min
s∈[0,1]d

f̂(s)− κ̄>s ≤ f̂(s̄)− κ̄>s̄

< f−(s̄)− κ̄>s̄
= ρ̄ ≤ min

s∈{0,1}d
f−(s)− κ̄>s

= min
s∈[0,1]d

f̂(s)− κ̄>s, (by A2)

which leads to a contradiction.

Hence, computing the convex envelope Θ∞ reduces to computing the convex closure f− of F .
Unfortunately, computing and optimizing the convex closure itself is NP-hard in general [Von07].

However, if F is a monotone submodular function, its convex closure is given by its Lovász
extension, i.e., f− = fL (see Proposition 28), which can be efficiently computed (see Section
A.1). Lemma 1 then recovers the result by [Bac10a] showing that the corresponding convex
envelope is Θ∞(x) = infs∈[0,1]d{fL(s) : s ≥ |x|} = fL(|x|). In this case, Θ∞ is a norm.
However, unlike [OB12], we do not impose homogeneity on our convex relaxation of F∞. As a
result, contrary to classical convex penalties, Θ∞ is not necessarily a norm.

Set functions whose convex closure is efficiently computable are not limited to submodular
functions. Indeed, we can naturally express various structured sparsity models via integer
programs (IP), where the linear objective encourages classical sparsity penalties (e.g., simple
sparsity and group sparsity), and the linear constraints enforce further structure on the support.
When the constraints result in an integral solvable polyhedron, the corresponding model admits a
tractable convex envelope. This observation is a direct corollary of properties of integer programs,
which we review next.

2.3 Review of integral linear programming

Given a non-empty polyhedron P := {β ∈ Rm+ : Mβ ≤ c}, where M ∈ Rl×m and c ∈ Rl,
solving the IP over P given by maxβ∈Zm{θ>β : β ∈ P} is NP-Hard in general. It is natural
to consider instead the corresponding LP-relaxation, i.e., maxβ∈Rm{θ>β : β ∈ P}, where the

34

2.4. Integral linear programming penalties

integrality constraint is relaxed. We say that a polyhedron P is solvable, if we can solve linear
programs over P efficiently1.

In general, LP-relaxation only obtains an upper bound on the optimal value of the IP. However, in
some cases the LP-relaxation is exact, i.e., maxβ∈Zm+ {θ

>β : β ∈ P} = maxβ∈Rm+ {θ
>β : β ∈

P}. We call the corresponding LP integral.

Definition 1 (Integral linear programs2). A linear program maxβ∈Rm+ {θ
>β : Mβ ≤ c} is said

to be integral if it has at least one integral optimal solution.

Proposition 2 (Integral polyhedra [NW99, Prop. 1.3]). If P is integral, i.e., all of its extreme
points are integral, then the corresponding LP is integral for all θ ∈ Rl for which it has an
optimal solution and vice versa.

We present below a sufficient condition for P to be integral.

Definition 2 (Total unimodularity). A matrix M ∈ Rl×m is totally unimodular (TU) iff the
determinant of every square submatrix ofM is 0 or ±1.

Proposition 3 ([NW99, Prop. 2.2]). Given a TU matrix M ∈ Rl×m, the polyhedron P :=

{β ∈ Rm+ : Mβ ≤ c} is integral for all vectors c ∈ Zl for which it is non-empty.

Checking if a matrix is TU can be done via a O((l +m)3)-time algorithm [Tru90]. A practical
implementation of a simplified version of this algorithm, with a slower O((l + m)5)-time
complexity, is provided by [WT13]3. Moreover, one can often identify if a matrix is TU by
inspection. Indeed, in Section 2.5, we are able to identify if matrices in the examples we consider
are TU, by exploiting certain properties of total unimodularity. We list these properties in the
appendix of this chapter.

Remark 2. A weaker sufficient condition for the integrality of P is for the systemMβ ≤ c to
be total dual integral (TDI) [GP79] and c to be integral4. This condition can also be verified in
polynomial time [CLS84]. For more details about TDI, we refer the reader to [NW99].

2.4 Integral linear programming penalties

We are now ready to present a simple template for our proposed structured sparsity model.

Definition 3 (ILP penalties). We define an integral linear programming (ILP) penalty asFILP(supp(x))

where FILP is a set function that can be written as

FILP(S) := inf
ω∈{0,1}M

{d>ω + e>s : Mβ ≤ c,1S = s}, (2.1)

1P can be solvable even if m, l are exponentially large, e.g., submodular polyhedra are solvable (see Sect. A.1).
2Integral linear programs (which is an LP with at least one integral optimal solution) should be distinguished from

integer linear programs (where variables are constrained to be integral).
3Software available at: https://www.utdallas.edu/~klaus/TUtest/index.html
4For example, the linear systems describing submodular polyhedra are TDI [Fuj05, Corollary 3.21].

35

https://www.utdallas.edu/~klaus/TUtest/index.html

Chapter 2. Convex Relaxations via Linear Programming

where β =

[
ω

s

]
and the polytope P = {β ∈ [0, 1]d+M : Mβ ≤ c} is integral and solvable. In

the special case where c ∈ Zl and the linear system Mβ ≤ c is TDI (see Remark 2), we call
FILP a TDI penalty, and if in additionM is TU (see Definition 2), we call FILP a TU penalty.

The above template offers the following parameters: e ∈ Rd is an arbitrary weight vector
encouraging (weighted) sparsity on the support, ω ∈ {0, 1}M is useful for modeling latent
variables (e.g. groups), and accordingly the weight vector d ∈ RM encourages (weighted)
sparsity on the latent variables (e.g., group sparsity), and finally the linear constraintsMβ ≤ c,
whereM ∈ Rl×(M+d) and c ∈ Rl, enforce further structure on the sparsity pattern. For example,
to express simple sparsity, we set e = 1 and everything else to zero. We provide more interesting
examples in Section 2.5.

From Prop. 2, it follows that proper ILP penalties satisfy the assumptions described in Lemma
1, where the convex extension is defined as f̂ILP(s) := infω∈{0,1}M {d>ω + e>s : Mβ ≤
c},∀s ∈ [0, 1]d, and by Prop. 1, f−ILP = f̂ILP. The resulting convex envelope is given below.

Proposition 4 (Convex envelope of ILP penalties). The convex envelope of an ILP penalty over
the `∞-ball is given by the following LP:

ΘILP
∞ (x) = inf

s∈[0,1]d,ω∈[0,1]M
{d>ω + e>s : Mβ ≤ c, |x| ≤ s} (2.2)

ΘILP
∞ often admits a closed form solution (see Section 2.5). Otherwise, it can be evaluated by

solving the LP (2.2), which can be done efficiently, since P is assumed solvable in Def. 3.
Furthermore, since the Fenchel conjugate-type operator of ΘILP

∞ can be computed efficiently,
again via LP, then we can use the conditional gradient method to solve the learning problems
regularized with ΘILP

∞ (see Section 1.4.2).

2.5 Examples of totally unimodular penalties

Besides allowing tractable tight convex relaxations, the choice of ILP penalties, and in particular
TU penalties5, is motivated by their ability to capture several important structures encountered in
practice. In what follows, we study several TU penalties and their convex relaxations. We present
a reinterpretation of several well-known norms in the literature, as well as introduce new ones.

2.5.1 Group sparsity

Group sparsity is an important class of structured sparsity models that arise naturally in machine
learning and signal processing applications (see Section 1.3.1), where prior information on x
dictates certain groups of variables to be selected or discarded together.

5We focus on TU penalties because of the relative ease of checking if this property holds. It is an interesting
research question to identify what structures can be captured by more general penalties (e.g., TDI penalties).

36

2.5. Examples of totally unimodular penalties

1
variables

2 3 4 5 6 7

G1

groups
G2 G3 G4 G5

G1

G2

G3 G4 G5

{2}
{6} {5}

{3}

Figure 2.1: (Left) Bipartite graph representation, (Right) Intersection graph representation of the group
structure G = {G1 = {2}, G2 = {1, 3, 4}, G3 = {2, 3, 6}, G4 = {5, 6}, G5 = {5, 7}}

A group sparsity model thus features a group structure G, which is a collection of potentially
overlapping groups G = {G1, · · · , GM} that cover the ground set V , where each group Gi ⊆ V
is a subset of variables. A group structure construction immediately supports two compact graph
representations (see Figure 2.1).

First, we can represent G as a bipartite graph (V ∪G, E) [BBC+16], where the groups form one
set of vertices, and the variables form the other. A variable i ∈ V is connected by an edge to a
group Gj ∈ G iff i ∈ Gj . We denote byB ∈ {0, 1}d×M the biadjacency matrix of this bipartite
graph; Bij = 1 iff i ∈ Gj , and by E ∈ {0, 1}|E|×(M+d) its edge-node incidence matrix; Eij = 1

iff the vertex j is incident to the edge ei ∈ E. Second, we can represent G as an intersection
graph (G, E) [BBC+16], where the vertices are the groups Gi ∈ G. Two groups Gi and Gj are
connected by an edge iffGi∩Gj 6= ∅. This structure makes it explicit whether groups themselves
have cyclic interactions via variables, and identifies computational difficulties.

Overlap count function

In group sparse models, we typically seek to express the support of x using only few groups. One
natural penalty to consider then is the monotone submodular function that counts the weighted
number of groups that are intersected by the support F∩(S) =

∑
Gi∈G,S∩Gi 6=∅ di. The convex

envelope of this function is the `∞-group Lasso norm (see Section 1.3.1), as shown in [Bac10a].
We now show how to express F∩ as a TU penalty.

Definition 4 (Overlap count function as TU penalty). We can rewrite F∩ as

F∩(S) = min
ω∈{0,1}M

{dTω : Hβ ≤ 0,1S = s},

whereH is the following matrix:

H :=


−IM ,H1

−IM ,H2

· · ·
−IM ,Hd

 , Hk(i, j) =

{
1 if j = k, j ∈ Gi
0 otherwise

,

d ∈ RM+ are positive group weights, andHβ ≤ 0 corresponds to sj ≤ wi,∀j ∈ Gi.

37

Chapter 2. Convex Relaxations via Linear Programming

For any coefficient in the support S = supp(x), the constraint Hβ ≤ 0 forces all the groups
that contain this coefficient to be selected. H is TU, since each row ofH contains at most two
non-zero entries, and the entries in each row with two non-zeros sum up to zero, which is a
sufficient condition for total unimodularity [NW99, Proposition 2.6]. The convex envelope of
F∩(supp(x)) is then given by Proposition 4, which yields the group Lasso norm, as expected.

Corollary 1. The convex envelope of F∩(supp(x)) over the unit `∞-ball is

Θ∩∞(x) =
∑
Gi∈G

di‖xGi‖∞,

for x ∈ [−1, 1]d, and Θ∩∞(x) =∞ otherwise.

Minimal set cover

The Overlap count function induces supports corresponding to the intersection of the complements
of groups, while in several applications, it is desirable to explain the support of x as the union of
groups in G. In particular, we can seek the minimal set cover of x.

Definition 5 (Minimal weighted set cover).

F∪(S) := min
ω∈{0,1}M

{dTω : Bω ≥ 1S},

where d ∈ RM+ are positive group weights, and B is the biadjacency matrix of the bipartite
graph representation of G.

F∪ is a non-submodular function that was previously considered in [BBCK13, OJV11, HZM11].
Evaluating F∪ is NP-Hard in general 6, but in some cases, namely when F∪ is an ILP penalty, it
can be computed exactly. The latent group Lasso norm (see Section 1.3.1) was proposed as a
potential convex surrogate for it, and was later shown in [OB12] to be its homogeneous convex
envelope. But is this the tightest convex relaxation, even without imposing homogeneity?

In general no; the latent group Lasso norm can be tractably evaluated (if the number of groups is
polynomial), while the convex envelope Θ∪∞ of F∪ is in general NP-Hard to evaluate7. Hence,
the two convex penalties do not coincide in general. However, we show that when F∪ is an ILP
penalty they do. In this case, the convex envelope of F∪ is given by Proposition 4, which indeed
yields the `∞-latent group Lasso norm.

6F∪ can be approximated by a greedy algorithm achieving an optimal approximation ratio of O(log d) [Fei98].
7In chapter 3, we show that Θ∪∞(1S) = F∪(S), ∀S ⊆ V , hence the intractability of Θ∪∞ follows from that of F∪.

38

2.5. Examples of totally unimodular penalties

Corollary 2. If F∪(supp(x)) is an ILP penalty, its convex envelope over the unit `∞-ball is

Θ∪∞(x) = min
ω∈[0,1]M

{dTω : Bω ≥ |x|}

= min
v∈[−1,1]d×M

{
M∑
i=1

di‖vGi‖∞ : x =
M∑
i=1

vGi , supp(vGi) ⊆ Gi}, (2.3)

for x ∈ [−1, 1]d, and Θ∪∞(x) =∞ otherwise.

Note that (2.3) differs slightly from the original definition of `∞-latent group Lasso norm, with
the additional constraint vGi ∈ [−1, 1]d. If we consider instead a more relaxed version of F∪,
where ω ∈ ZM , we recover the usual formulation of latent group Lasso norm, with vGi ∈ Rd.

A special case where F∪ is an ILP penalty occurs when the biadjacency matrixB is TU— we
call the corresponding G a TU group structure. F∪ is a TU penalty in this case. To see this, note
that F∪ can be written in the form given in Definition 3 withM = [−B, Id] and c = 0. Thus,
when B is TU, so is M [NW99, Proposition 2.1]. Several group structures considered in the
literature are indeed TU group structures.

Example 1 (Bipartite groups). One important class of TU group structures are groups whose
intersection graph is bipartite (which includes acyclic graphs) [BBC+16, Proposition 2]. One
such example is illustrated in Figure 2.1. This class clearly includes non-overlapping groups, for
which Θ∪∞ = Θ∩∞. It also includes other interesting group structures, such as the parent-child
model, defined for variables organized over a tree, where groups consists of all parent-child
pairs (see Figure 1.7, left), and the family model, where groups consists of each node and all its
children (see Figure 1.7, right) [BBC+16]. Such groups are used with the latent group Lasso
norm to encourage hierarchical structures, while allowing some flexibility to deviate from the
exact tree-model (defined in Section 2.5.2) [BBC+16, RNWK11].

Example 2 (Interval groups). Another important class of TU group structures are groups that
lead to an interval matrixB, i.e., a binary matrix such that in each row the 1s appear consecu-
tively [NW99, Corollary 2.10]. For example, when variables are organized over a tree, groups
consisting of each node and its ancestors lead to an interval matrix (after permutation of the
columns) [BBC+16]. Such groups are also used with the latent group Lasso norm to encourage
hierarchical structures [YB+17]. Another interesting example occurs in the context of dispersive
models (c.f., Section 2.5.3).

Sparse set cover

Both penalties we considered so far only induce sparsity on the group level; if a group is selected,
all variables within the group are encouraged to be non-zero. In some applications, it is desirable
to enforce sparsity both on the individual and the group level. This motivates the following
natural penalty.

39

Chapter 2. Convex Relaxations via Linear Programming

Definition 6 (Sparse weighted g-group cover).

F∪,g(S) := inf
ω∈{0,1}M

{1Ts : Bω ≥ s,dTω ≤ g,1S = s},

where g ∈ R+ is a group budget, d ∈ RM+ are positive group weights, B is the biadjacency
matrix of the bipartite graph representation of G.

F∪,g is an extension of the minimal set cover penalty, where instead of looking for the signal with
the smallest cover, we seek the sparsest signal that admit a cover with fewer than g groups (if

d = 1). F∪,g is a TU penalty whenever B̃ =

[
B

1

]
is TU [NW99, Proposition 2.1], which is the

case, for example, whenB is an interval matrix (c.f., Example 2).

Corollary 3. If F∪,g(supp(x)) is an ILP penalty, its convex envelope over the unit `∞-ball is

Θ∪,g∞ (x) = inf
ω∈[0,1]M

{‖x‖1 : Bω ≥ |x|,dTω ≤ g},

for x ∈ [−1, 1]d, and Θ∪,g∞ (x) =∞ otherwise.

The resulting convex program thus combines the latent group Lasso norm with the `1-norm
and provides an alternative to the sparse group Lasso in [SFHT13], for the overlapping groups
case. We observe that in this case the convex envelope Θ∪,g∞ is not a norm, and if we were to
impose homogeneity on it, we would have completely lost the group sparsity structure. Indeed,
we know from [OB12] that for any set function where F ({e}) = 1 for all singletons e ∈ V and
F (S) > |A|,∀A ⊆ V— a property which applies to F∪,g— the corresponding homogeneous
convex envelope is the `1-norm. We illustrate the performance of sparse g-group cover penalty
and the effect of this loss of structure via a numerical example in Section 2.6.1.

2.5.2 Hierarchical sparsity

We study the hierarchical sparsity model (see Section 1.3.1), where the coefficients of x are
organized over a tree (or a forest) T , and its support is sparse and form a rooted connected subtree
of T , i.e., a node is in the support iff all its ancestors are in the support too (see Figure 2.2). We
can naturally describe such a hierarchical model as a TU model.

Definition 7 (Tree `0-penalty).

FT,0(S) := dT1S + ιT1S≥0(S)

where d ∈ RM+ are positive group weights, and T is the edge-node incidence matrix of the
directed tree T , i.e., Tli = 1 and Tlj = −1 iff el = (i, j) is an edge in T between parent node i
and its child node j, i.e., Ts ≥ 0 encodes the constraint sparent ≥ schild for s = 1S .

40

2.5. Examples of totally unimodular penalties

Figure 2.2: Valid selection (left), Invalid selection (right)

This is indeed a TU penalty since each row of T contains two non-zero entries that sum up to
zero [NW99, Proposition 2.6].

Corollary 4. The convex envelope of FT,0(supp(x)) over the unit `∞-ball is given by

ΘT,0
∞ (x) =

∑
G∈GH

‖xG‖∞,

for x ∈ [−1, 1]d and ΘT,0
∞ (x) = ∞ otherwise, where the groups G ∈ GH are defined as each

node and all its descendants in T .

Proof. Since FT,0(supp(x)) is a TU-penalty, its convex envelope is given by Proposition 4.

ΘT,0
∞ (x) = min

s∈[0,1]d
{d>s : Ts ≥ 0, |x| ≤ s}

=
∑

Gi∈GH

di‖xGi‖∞

The second equality holds since any feasible s satisfies s ≥ |x| and sparent ≥ schild. Hence,
starting from the leaves, each leaf satisfies si ≥ |xi|, and to minimize dTs, we simply set si = xi.
For a node i with two children j, k as leaves, it should satisfy si ≥ max{|xi|, |sj |, |sk|}, thus
si = max{|xi|, |xj |, |xk|}, and so on. Thus, si = max{j∈Gj} |xj | where the group Gj consists
of j and all its descendants in T .

Note that the resulting convex norm ΘT,0
∞ is the `∞-hierarchical group Lasso norm [JMOB11],

which is commonly used as a convex surrogate for the hierarchical sparsity model. As a special
case of the `∞-group Lasso norm, with G = GH , ΘT,0

∞ is known to be the convex envelope
of the corresponding F∩, which we denote by F∩,GH (see Section 2.5.1). Note though the
subtle difference between F∩,GH and FT,0; F∩,GH only encourages the tree structure, while FT,0
enforces it. Indeed, the two penalties are only equal for sets that satisfy the tree structure, i.e.,
F∩,GH (S) = FT,0(S),∀S ⊆ V,T1S ≥ 0. Note also that unlike F∩,GH , FT,0 is not submodular.
This difference is lost though in the convex domain, since FT,0 and F∩,GH have the same convex
envelope. We explain this artifact in Chapter 3.

41

Chapter 2. Convex Relaxations via Linear Programming

2.5.3 Dispersive sparsity

The sparsity models we considered thus far encourage clustering. The implicit structure in these
models is that coefficients within a group exhibit a positive, reinforcing correlation. Loosely
speaking, if a coefficient within a group is important, so are the others. However, in many
applications, the opposite behavior may be true. That is, sparse coefficients within a group
compete against each other [ZJH10, HDC09, GK02].

Hence, we describe models that encourage the dispersion of sparse coefficients. Here, dispersive
models still inherit a known group structure G, which underlie their interactions in the opposite
manner to the group models in Section 2.5.1.

Group dispersive model

One natural model for dispersiveness is to allow only a certain budget of coefficients, e.g., only
one, to be selected in each group. This model can be expressed by the following two set functions:

FD(S) :=


0 if S = ∅
1 if maxG∈G |S ∩G| ≤ 1

∞ otherwise

, F̃D(S) := max
G∈G
|S ∩G|,

where FD enforces the dispersive structure, while F̃D only encourages it. Both functions are
not submodular. Whenever the groups in G form a partition of V , [OB12] showed that the
homogeneous convex envelope of both FD and F̃D is the exclusive Lasso norm in [ZJH10] (see
Section 1.3.1). Is this the tightest convex relaxation for both penalties, for other group structures,
and without imposing homogeneity?

In what follows, we show that the `∞-exclusive Lasso norm is the convex envelope of F̃D,
whenever it is an ILP penalty, which holds in particular for TU group structures, including
partition groups. But it is not the convex envelope of FD. First, we express FD and F̃D as IPs.

Definition 8 (Dispersive penalties). We can rewrite FD and F̃D as

FD(S) = inf
ω∈{0,1}

{ω : BT1S ≤ ω1}, and F̃D(S) = inf
ω∈Z+

{ω : BT1S ≤ ω1},

whereB is the biadjacency matrix of the bipartite graph representation of G.

Both FD and F̃D are TU penalties whenever B is TU, since BT is then also TU [NW99,
Proposition 2.1]. Recall from Example 1 that partition groups lead to a TU matrixB. Another
important example of a TU group structure arises from the simple one-dimensional model of
neuronal signals suggested by [HDC09]. In this model, neuronal signals are modeled as a train
of spike signals with some refractory period ∆ ≥ 0, where the minimum distance between two
non-zeros is ∆ (see Figure 1.8). This structure can be enforced via an interval matrixBT = D,

42

2.5. Examples of totally unimodular penalties

where each row (corresponding to a group) consists of ∆ consecutive ones, which is TU (see
Example 2).

D =


1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 1 0 · · · 0

. . .

0 · · · 0 0 1 1 · · · 1 1


(d−∆+1)×d

Corollary 5. If FD(supp(x)) is an ILP penalty, its convex envelope over the unit `∞-ball is

ΘD∞(x) = max
G∈G
‖xG‖1 + ιBT |x|≤1(x),

for x ∈ [−1, 1]d and ΘD∞ = ∞ otherwise. Similarly, if F̃D(supp(x)) is an ILP penalty, its
convex envelope over the unit `∞-ball is Θ̃D∞(x) = maxG∈G ‖xG‖1 for x ∈ [−1, 1]d and
Θ̃D∞ =∞ otherwise.

Notice that unlike the homogeneous convex envelope of FD, ΘD∞ is not exactly the exclusive
Lasso norm; it has an additional budget constraint BT |x| ≤ 1. Thus in this case, imposing
homogeneity leads to the loss of part of the structure.

Sparse group dispersive model

In some applications, it may be desirable to seek the sparsest signal satisfying the dispersive
structure. This can be achieved by incorporating sparsity into the dispersive penalty FD.

Definition 9 (Dispersive `0-penalty).

FD,0(S) := |S|+ ιBT1S≤1(S),

whereB is the biadjacency matrix of the bipartite graph representation of G.

FD,0 is again a TU penalty whenB is TU, and its convex envelope follows from proposition 4.

Corollary 6. If FD,0(supp(x)) is an ILP penalty, its convex envelope over the unit `∞-ball is

ΘD,0∞ (x) = ‖x‖1 + ιBT |x|≤1(x),

for x ∈ [−1, 1]d and ΘD,0∞ =∞ otherwise.

We observe in this case too that the convex envelope ΘD,0∞ is not a norm (see Figure 2.3), and if
we were to impose homogeneity on it, we would have completely lost the dispersive structure.
Indeed, similar to the sparse g-group cover penalty F∪,g, the homogeneous convex envelope of
FD,0 is the `1-norm. We illustrate the performance of the dispersive `0-penalty and effect of this
loss of structure via a numerical example in Section 2.6.2.

43

Chapter 2. Convex Relaxations via Linear Programming

Figure 2.3: ΘD,0∞ (x) ≤ 1 (left) ΘD,0∞ (x) ≤ 1.5 (middle) ΘD,0∞ (x) ≤ 2 (right) for G = {{1, 2}, {2, 3}}

2.6 Experiments

In this section, we assess the performance of two novel penalties we have proposed in section
2.5.1, the sparse g-group cover and the dispersive `0-penalty, in estimating a sparse signal
x\ ∈ Rd, whose support satisfy the structure assumed under these two models. In particular, we
consider the problem of recovering x\ from compressive measurements y = Ax\ + ε, where
A ∈ Rn×d is a measurement matrix, and ε ∈ Rn is a noise vector. We compare the performance
of the estimated solutions obtained by solving

x? ∈ arg min
x∈[−1,1]d

{Θ(x) : ‖y −Ax‖ ≤ ‖ε‖}, (2.4)

using either the classical `1-norm, Θ(x) = ‖x‖1, or the convex envelope ΘILP
∞ , with the ILP

penalty tailored to the structure. This comparison also serves to illustrate the impact of imposing
homogeneity, since as discussed in section 2.5.1, the homogeneous convex envelope of both
penalties we are considering here is the `1-norm.

2.6.1 Sparse g-group cover model

����

n/d

Figure 2.4: Recovery error of SLGL, SGL, SGL∞, and BP

We consider the problem of estimating x\, when its support is sparse and can be covered with few

44

2.6. Experiments

x\ x̂BP x̂SGL x̂SGL∞ x̂SLGL

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Error 0.128 Error 0.181 Error 0 .085 Error 0.058

Figure 2.5: Example of a generated sparse signal with g = 5 group cover (blue), and the
corresponding estimated signals (red) with BP, SGL, SGL∞, and SLGL, for n = 0.25d. Each
plot represents the value of xi as a function of i.

groups. In this setting, sparse group Lasso defined as (1 − α)
∑

G∈G
√
|G|‖xG‖p + α‖xG‖1,

where p = 2 and α ∈ [0, 1], was proposed in [SFHT13] to induce the desired effect of sparsity
on both the individual and the group level. In our framework, the proposed sparse g-group cover
F∪,g is a natural penalty to consider in this case.

We generate an s-sparse signal x\, with s = 15, in dimensions d = 200, covered by g = 5

groups, randomly chosen from the M = 29 groups. The groups generated are interval groups, of
equal size of 10 coefficients, and with an overlap of 3 coefficients between each two consecutive
groups. The true signal x\ has 3 non-zero coefficients, with equal value set to one, in each
of its 5 active groups (see Figure 2.5). As discussed in example 2, interval groups are a TU
group structure, hence Θ∪,g∞ is the tightest convex relaxation of F∪,g in this case. We draw a
noise vector ε with i.i.d Gaussian entries of variance σ = 0.01 and a measurement matrix A
with normalized columns of standard i.i.d. Gaussian entries. We solve problem (2.4) with the
data-fidelity constraint ‖y −Ax‖2 ≤ ‖ε‖2, using the true `2-norm of the noise, and with the
regularizer Θ chosen to be either the `1-norm (BP), or the convex envelope Θ∪,g∞ , which we call
sparse latent group Lasso (SLGL), or the sparse group Lasso norm (SGL). We also compare
against SGL∞ where we set p =∞ in SGL, which is better suited for signals with equal valued
non-zero coefficients.

We use the convex solver CVX [GB14] to obtain high accuracy solutions x̂ to each formulation.
We generate the data randomly 10 times and report the averaged results. Figure 2.4 plots the
relative recovery error ‖x

\−x̂‖2
‖x\‖2

achieved with the different regularizers, as we vary the number
of measurements n. Figure 2.5 shows the estimated solutions obtained with each regularizer, and
their corresponding relative recovery error, for n = 0.25d measurements. Since the true signal
exhibit strong overall sparsity we use α = 0.95 in SGL as suggested in [SFHT13] (we tried
several values of α, and this seemed to give the best results for SGL). SLGL clearly outperforms
the other regularizers. Indeed, SLGL is able to capture the correct underlying structure leading
to better reconstruction. We can observe from Figure 2.5 that the solution returned by SLGL have
almost no non-zeros outside the correct support, while solutions returned by `1-norm and SGL
violate the assumed model.

45

Chapter 2. Convex Relaxations via Linear Programming

2.6.2 Sparse dispersive model

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

n/p

E
rr
o
r:

‖
x̂
−
x
?
‖
2

‖
x
?
‖
2

BP
DBP

n/d

Figure 2.6: Recovery error of BP and DBP

x\ x̂BP x̂DBP

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Error 0.200 Error 0.067

Figure 2.7: Example of a generated spike train (blue), and the corresponding estimated signals
(red) with BP and DBP, for n = 0.18d. Each plot represents the value of xi as a function of i.

We consider the problem of estimating a spike train signal x\, i.e., a signal with a minimum
distance ∆ > 0 between any two non-zero coefficients. As discussed in section 2.5.3, a natural
penalty to consider in this setting is the dispersive `0-penalty FD,0 withBT = D, which is a TU
penalty in this case, and hence ΘD,0∞ is its tightest convex relaxation.

We generate a spike train x\ in dimensions d = 200 with a refractory period of ∆ = 25 and
with all non-zero coefficients set to one (see Figure 2.7). We draw a sparse noise vector ε
with 15 i.i.d non-zero Gaussian entries of variance σ = 0.01 and a measurement matrix A
with normalized columns of standard i.i.d. Gaussian entries. We solve problem (2.4) with the
data-fidelity constraint ‖y −Ax‖1 ≤ ‖ε‖1 (since the noise is sparse), using the true `1-norm of
the noise, and with the regularizer Θ chosen to be either the `1-norm (BP) or the convex envelope
ΘD,0∞ (DBP).

We use the convex solver CVX [GB14] to obtain high accuracy solutions x̂ to each formulation.
We generate the data randomly 20 times and report the averaged results. Figure 2.6 plots the
relative recovery error ‖x

\−x̂‖2
‖x\‖2

, achieved with the two regularizers, as we vary the number

46

2.7. Discussion

of measurements n. Figure 2.7 shows the estimated solutions obtained with each regularizer,
and their corresponding relative recovery error, for n = 0.18d measurements. DBP clearly
outperforms BP. Indeed, we can see from Figure 2.6 that DBP requires less measurements than
BP to achieve a given error, which confirms the theoretical characterization in [HDC09]. We can
also observe from Figure 2.7 that the solution returned by DBP have almost no non-zeros within
the ∆ intervals, while the solution returned by `1-norm violate this model.

Finally, both numerical illustrations in Section 2.6.1 and 2.6.2 reinforces the message that certain
structures cannot be captured by homogeneous convex penalties.

2.7 Discussion

We have presented a principled recipe for designing structure-inducing convex penalties, by
exploiting classical tools from linear programming. Given some desired structural constraints on
the support, we express them via an integer program, then check if the linear constraints result in
an integral polytope. Testing this property can be done with the help of two sufficient conditions
of integrality, total unimodularity and total dual integrality, which can be verified by polynomial
time algorithms or by inspection. The resulting convex envelope is easy to evaluate via LP and the
corresponding learning problems can be efficiently solved via standard optimization techniques.

This simple recipe allowed us to rederive several prevalent structure-inducing norms, as well
as define new interesting convex penalties. Several of our proposed penalties are not norms.
Enforcing homogeneity in such cases leads to an unnecessary loss of structure. We provided
simulations on synthetic examples that illustrate the effect of this loss, in comparison with our
proposed non-homogeneous convex penalties, which achieve better recovery performance.

The discussion in this chapter leads to several questions worth investigating, such as: For which
class of set functions the homogeneous convex envelope leads to a loss of structure, not incurred
by its non-homogeneous counterpart? When do the estimators, using either the homogeneous or
non-homogeneous relaxation of non-submodular functions, recover the true parameter vector?
What is the (non-homogeneous) convex envelope of F (supp(x)) when regularized with general
`p-norms. These questions will be addressed in Chapter 3, and the following additional questions
are good directions for future research.

Open question 1. The examples of structures captured by ILP penalties, we provided in Section
2.5, all belong to the subclass of TU penalties. What are examples of structures that can be
captured by ILP penalties that are not TU penalties? Identifying such examples would allow us
to provide tight convex relaxations for more complicated structures (e.g., minimal set covers with
non-TU groups). The TDI sufficient condition can be useful in this respect, but is harder to check
just by inspection.

Open question 2. In Section 2.2, we saw that the convex closure of any set function is the only
convex extension satisfying the assumptions in Lemma 1. An important question to answer then

47

Chapter 2. Convex Relaxations via Linear Programming

is: What are set functions, beyond submodular and ILP penalties, admitting a tractable convex
closure? By Lemma 1, such set functions will then also admit tractable convex envelopes.

Finally, it is our hope that by expanding the class of functions that can be addressed by disciplined
convex approaches, beyond submodular functions, our framework will inspire new applications
of structured sparsity in various fields.

48

2.8. Appendix: Review of total unimodularity

2.8 Appendix: Review of total unimodularity

We list several properties which are helpful to identify totally unimodular (TU) matrices. Recall
that a matrixM ∈ Rl×m is TU iff the determinant of every square submatrix ofM is 0, or ±1.

Theorem 1 (Equivalent characterization, [NW99, Theorem 2.7]). A matrix M ∈ Rl×m is
TU iff for every J ⊆ {1, · · · ,m}, there exits a partition J1, J2 of J such that |∑j∈J1 Mij −∑

j∈J2 Mij | ≤ 1 for i = 1, · · · , l.
Example 3 (Tree matrix). A simple example of a TU matrix, where it is easy to see that the
condition in Theorem 1 holds, is given by the constraint matrix of the tree `0-penalty (see Def. 7):

T =


1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 0 −1



1

2

3 4

5 6

7

8 9

For every J ⊆ {1, · · · ,m}, we can choose J1 = J and J2 = ∅, |∑j∈J1 Tij | ≤ 1.

Proposition 5 (TU preserving operations, [NW99, Proposition 2.1]). M is TU iff the matrices
obtained by the following operations are also TU.

1. Taking the transpose ofM .

2. Appending identity: (M , I).

3. Deleting a row (column) with at most one non-zero entry from M .

4. Interchanging two rows (columns) inM .

5. Multiplying a row (column) fromM by (−1).

6. Duplicating rows (column) ofM .

7. Applying pivot operation (operations in reduced Gaussian elimination) onM .

Proposition 6 (Some sufficient conditions for TU, [NW99]). M is TU if any of the following
conditions hold.

1. M has no more than two non-zero elements in each column, thenM is TU iff its rows can
be partitioned into two subsets such that elements of same sign are in different sets, and
elements of opposite sign are in the same set.

2. M is the edge-node incidence matrix of a bipartite graph (this is a special case of the
previous condition).

3. M is an interval matrix (i.e., whose columns has consecutive ones).

49

3 Homogeneous and Non-Homogeneous
Convex Relaxations

3.1 Introduction

In this chapter, we continue with the convex approach to structured sparse learning. In our discus-
sion so far, we have seen two systematic approaches to relax a combinatorial penalty expressing
the desired structured sparsity model to a convex penalty. The approach adopted in [Bac10a]
and Chapter 2 considers the tightest convex relaxation of the combinatorial penalty over the unit
`∞-ball. While the approach proposed by [OB12] considers the tightest positively homogeneous
convex relaxation of the combinatorial penalty regularized by an `p-norm. Homogeneity is a
natural requirement imposed to ensure the invariance of the regularizer to rescaling of the data.
By going from the discrete to the convex domain, some of the structure is necessarily lost under
both relaxations. However, in Chapter 2 we observed that the homogeneity requirement may cost
further loss of structure in several cases. This observation motivates the following question:

When do the homogeneous and non-homogeneous convex relaxations
differ and which structures can be encoded by each?

In order to answer this question rigorously, we are interested in studying the algebraic and
geometric properties of both relaxations, as well as their statistical properties in the context of
regularized learning problems.

3.1.1 Related work

The algebraic and geometric properties of the homogeneous convex relaxation are well-studied in
[OB12]. The authors show, for instance, that the resulting norm takes the form of a generalized
latent group Lasso norm [OJV11]. They also show that any monotone submodular set function is
preserved, in some sense, by such relaxation. The statistical properties though of these norms were
only investigated so far in special cases, e.g., for norms associated with monotone submodular
functions [OB12], and for the latent group Lasso norm [OJV11].

51

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

3.1.2 Contributions

In this chapter, we study the algebraic and geometric properties of the non-homogeneous re-
laxation and identify which combinatorial structures are preserved by it in a manner similar to
[OB12] for the homogeneous one. We further study the statistical properties of both relaxations.
In particular, this chapter makes the following contributions:

• We derive formulations of the non-homogeneous tightest convex relaxation of general
`p-regularized combinatorial penalties (Section 3.2.1). We show that any monotone set
function is preserved by such relaxation (Section 3.2.2).

• We identify necessary conditions for support recovery in learning problems regularized by
general convex penalties (Section 3.3.1).

• We propose an adaptive weight estimation scheme and provide sufficient conditions for
support recovery under the asymptotic regime (Section 3.3.2). This scheme does not require
any irrepresentability condition and is applicable to general monotone convex regularizers.

• We identify sufficient conditions with respect to combinatorial penalties which ensure
that the sufficient support recovery conditions hold with respect to the associated convex
relaxations (Section 3.4).

• We illustrate numerically the effect on support recovery of the choice of the relaxation as
well as the adaptive weights scheme (Section 3.5).

This chapter is based on the joint work with Francis Bach and Volkan Cevher [EHBC18].

In the sequel, we defer all proofs to the appendix of this chapter.

3.2 Combinatorial penalties and convex relaxations

We consider positive-valued set functions of the form F : 2V → R+, where V = {1, · · · , d},
such that F (∅) = 0, F (A) > 0,∀A ⊆ V , to encode structured sparsity models. For generality,
we do not assume a priori that F is monotone. However, as we argue in the sequel, convex
relaxations of non-monotone set functions is hopeless. Also, unless explicitly stated, we do
not assume that F is submodular. The domain of F is defined as D := {A : F (A) < +∞}.
We assume that it covers V , i.e., ∪A∈DA = V , which is equivalent to assuming F is finite at
singletons if F is monotone.

We consider the same model in [OB12], parametrized by x ∈ Rd, with general `p-regularized
combinatorial penalties:

Fp(x) =
1

q
F (supp(x)) +

1

p
‖x‖pp

for p ≥ 1, where the set function F controls the structure of the model in terms of allowed/favored
non-zero patterns and the `p-norm serves to control the magnitude of the coefficients. Allowing

52

3.2. Combinatorial penalties and convex relaxations

F to take infinite values let us enforce hard constraints. For p = ∞, Fp reduces to F∞(x) =

F (supp(x)) + ι‖x‖∞≤1(x). Considering the case p 6= ∞ is appealing to avoid the clustering
artifacts of the values of the learned vector induced by the `∞-norm.

We study two natural candidates for a convex surrogate of Fp; the homogeneous convex en-
velope Ωp of Fp, i.e., the convex envelope of its positively homogeneous envelope given by
F (supp(x))1/q‖x‖p (see Section 1.3.4), and the direct convex envelope Θp of Fp. Note that
from the definition of convex envelope, it holds that Θp ≥ Ωp.

3.2.1 Homogeneous and non-homogeneous convex envelopes

In [OB12], the homogeneous convex envelope Ωp of Fp was shown to correspond to the latent
group Lasso norm with groups set to all elements of the power set 2V . We recall this form of Ω∞
in Lemma 2 as well as a variational form of Ωp which highlights the relation between the two.
Other variational forms can be found in the Appendix.

Lemma 2 ([OB12]). The homogeneous convex envelope Ωp of Fp is given by

Ωp(x) = inf
η∈Rd

+

1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
Ω∞(η), (3.1)

Ω∞(x) = min
α≥0

{ ∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |x|
}
. (3.2)

The non-homogeneous convex envelope Θp of Fp is only considered thus far in the case where
p =∞. In chapter 2, we showed that Θ∞(x) = infη∈[0,1]d{f−(η) : η ≥ |x|}, where f− is the
convex closure of F , i.e., the largest convex lower bound of F on [0, 1]d (see Appendix A.2).

Lemma 3 presents a variational form of Θ∞ that parallels (3.2). We also derive the non-
homogeneous convex envelope Θp of Fp for any p ≥ 1 and present the variational form relating
it to Θ∞ in Lemma 3. For simplicity, the variational form (3.3) presented below holds only for
monotone functions F ; the general form and other variational forms that parallel the ones known
for the homogeneous envelope are presented in the appendix of this chapter.

Lemma 3. The non-homogeneous convex envelope Θp of Fp, for monotone functions F , is given
by

Θp(x) = inf
η∈[0,1]d

1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
Θ∞(η), (3.3)

Θ∞(x) = min
α≥0

{ ∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |x|,
∑
S⊆V

αS = 1
}
. (3.4)

The infima in (3.1) and (3.3), for x ∈ dom(Θp), can be replaced by a minimization, if we extend
b → a

b by continuity in zero with a
0 = ∞ if a 6= 0 and 0 otherwise, as suggested in [JOB10]

53

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5
1
2kwk0 + 1

2kwk2
2

Homogeneous envelope
Non-homogeneous envelope

Figure 3.1: `2-regularized cardinality example in one dimension (left) and two dimensions
(middle: homogeneous, right: non-homogeneous).

and [BJM+12]. Note that, for p = 1, both relaxations reduce to Ω1 = Θ1 = ‖ · ‖1. Hence, the
`1-relaxations essentially lose the combinatorial structure encoded in F . We thus follow up on
the case p > 1.

In order to decide when to employ Ωp or Θp, it is of interest to study the respective properties
of these two relaxations and to identify when they coincide. We start by recalling in Remark 3
that the homogeneous and non-homogeneous envelopes are identical, for p =∞, for monotone
submodular functions.

Remark 3. If F is a monotone submodular function, then Θ∞(x) = Ω∞(x) = fL(|x|), ∀x ∈
[−1, 1]d, where fL denotes the Lovász extension of F (see [OB12] and [Bac10a]).

The two relaxations do not coincide in general: Note the added constraints η ∈ [0, 1]d in (3.3)
and the sum constraint on α in (3.4). Another clear difference to note is that Ωp are norms that
belong to the broad family of H-norms [MMP13, BJM+12], as shown in [OB12]. On the other
hand, by virtue of being non-homogeneous, Θp are not norms in general. We illustrate below two
interesting examples where Ωp and Θp differ.

Example 4 (Berhu penalty). Since the cardinality function F (S) = |S| is a monotone submodu-
lar function, Θ∞(x) = Ω∞(x) = ‖x‖1. However, this is not the case for p 6=∞. In particular,
we consider the `2-regularized cardinality function F card2 (x) = 1

2‖x‖0 + 1
2‖x‖22. Figure 3.1

shows that the non-homogeneous envelope is tighter than the homogeneous one in this case.
Indeed, Ωcard

2 is simply the `1-norm, while Θcard
2 is given by [Θcard

2 (x)]i = |xi| if |xi| ≤ 1 and
[Θcard

2 (x)]i = 1
2 |xi|2 + 1

2 otherwise. This penalty, called “Berhu,” is introduced in [Owe07] to
produce a robust ridge regression estimator and is shown to be the convex envelope of F card2

in [JSK11].

This kind of behavior, where the non-homogeneous relaxation Θp acts as an `1-norm on the small
coefficients and as 1

p‖x‖
p
p for large ones, is not limited to the Berhu penalty, but holds for general

set functions. However the point where the penalty moves from one mode to the other depends
on the structure of F and is different along each coordinate. This is easier to see via the second
variational form of Θp presented in the Appendix. We further illustrate in the following example.

Example 5 (Range penalty). Consider the range function defined as range(A) = max(A) −
min(A) + 1 where max(A) (min(A)) denotes maximal (minimal) element in A. This penalty

54

3.2. Combinatorial penalties and convex relaxations

Figure 3.2: Balls of different radii of the non-homogeneous `∞-convex envelope of the range
function (top): Θ∞(x) ≤ 1 (left), Θ∞(x) ≤ 2 (middle), Θ∞(x) ≤ 3 (right) and of its `2-convex
envelope (bottom): Θ2(x) ≤ 1 (left), Θ2(x) ≤ 2 (middle), Θ2(x) ≤ 4 (right).

allow us to favor the selection of interval non-zero patterns on a chain or rectangular patterns
on grids. It was shown in [OB12] that Ωp(x) = ‖x‖1 for any p ≥ 1. On the other hand, Θp

has no closed form solution, but is different from the `1-norm. Figure 3.2 illustrates the balls
of different radii of Θ∞ and Θ2. We can see how the penalty morphs from `1-norm to `∞ and
squared `2-norm respectively, with different “speed” along each coordinate. Looking carefully
for example on the ball Θ2(x) ≤ 2, we can see that the penalty acts as an `1-norm along the
(x, z)-plane and as a squared `2-norm along the (y, z)-plane.

We highlight other ways in which the two relaxations differ and their implications in the sequel.

Computational complexity: Note that Ωp and Θp are still intractable to compute and optimize,
in general. However, for certain classes of functions, they are tractable. For example, since for
monotone submodular functions, Ω∞ = Θ∞ is the Lovász extension of F , as stated in Remark
3, then they can be efficiently computed (see Section 1.3.3). Moreover, efficient algorithms to
compute Ωp, and the associated proximal operator, and to solve learning problems regularized
with Ωp are proposed in [OB12] (see also Sections 1.3.4 and 1.4.1). Similarly, if F can be
expressed by an integral linear program as in Chapter 2, then Ω∞ , Θ∞ and their Fenchel
conjugate operators can be computed efficiently by linear programs (see Section 2.4). Hence, we
can use conditional gradient algorithms for numerical solutions. Note also that the formulations
(3.1) and (3.3) are jointly convex in (x,η), since (z, t) → t| zt |p is the perspective function of
z → |z|p (see [BV04, p.89]). It is then possible to compute and optimize Ωp and Θp for general
p, whenever the case p =∞ admit efficient algorithms.

3.2.2 Lower combinatorial envelopes

In this section, we are interested in analyzing which combinatorial structures are preserved
by each relaxation. To that end, we generalize the notion of lower combinatorial envelope
(LCE) [OB12]. The homogeneous LCE F− of F is defined as the set function which agrees
with the `∞-homogeneous convex relaxation of F at the vertices of the unit hypercube, i.e.,
F−(A) = Ω∞(1A),∀A ⊆ V .

55

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

For the non-homogeneous relaxation, we define the non-homogeneous LCE similarly as F̃−(A) =

Θ∞(1A). The `∞-relaxation reflects most directly the combinatorial structure of the function F .
Indeed, `p-relaxations only depend on F through the `∞-relaxation as expressed in the variational
forms (3.1) and (3.3).

We say Ω∞ is a tight relaxation of F if F = F−. Similarly, Θ∞ is a tight relaxation of F if
F̃− = F . Ω∞ and Θ∞ are then extensions of F from {0, 1}d to Rd; in this sense, the relaxation
is tight for all x of the form x = 1A. Moreover, following the definition of convex envelope, the
relaxation Ω∞ (resp. Θ∞) is the same for F and F− (resp. F and F̃−), and hence, the LCE can
be interpreted as the combinatorial structure preserved by each convex relaxation.

The homogeneous relaxation can capture any monotone submodular function [OB12]. Since Ω∞
is the Lovász extension in this case, and hence, F−(A) = Ω∞(1A) = fL(1A) = F (A). Also,
since the two `∞-relaxations are identical for this class of functions (see Remark 3), their LCEs
are also equal, i.e., F̃−(A) = Θ∞(1A) = Ω∞(1A) = F (A).

The LCEs, however, are not equal in general. In fact, the non-homogeneous relaxation is tight for
a larger class of functions. In particular, the following proposition shows that F̃− is equal to the
monotonization of F , that is F̃−(A) = infS⊆V {F (S) : A ⊆ S}, for all set functions F , and is
thus equal to the function itself if F is monotone.

Proposition 7. The non-homogenous lower combinatorial envelope can be written as

F̃−(A) = Θ∞(1A)

= inf
αS∈{0,1}

{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ 1A,
∑
S⊆V

αS = 1}

= inf
S⊆V
{F (S) : A ⊆ S}.

Proof. To see why we can restrict αS to be integral, let E = {S : αS > 0}, then ∀T ⊆ V such
that ∃e ∈ A, e 6∈ T , then

∑
αS>0,S 6=T αS = 1 and hence αT = 0. Hence ∀S ∈ E we have

A ⊆ S and
∑

αS>0 αSF (S) = minαS>0 F (S).

Proposition 7 argues that the non-homogeneous convex envelope is tight if and only if F is
monotone. Two important practical implications follow from this result.

Given a target model that cannot be expressed by a monotone function, it is impossible to obtain
a tight convex relaxation.

Example 6 (Tree `0-penalty). Given a directed tree T , consider the tree `0-penalty presented
in Chapter 2: F (S) := |S| + ιT1S≥0(S), where T is the edge-node incidence matrix of T
(see Section 2.5.2). This penalty enforces the selection of sparse rooted connected subtrees as
supports. FT,0 is not monotone, hence no convex relaxation can preserve it entirely. Indeed,
recall from Section 2.5.2 that Θ∞(x) =

∑
Gi∈GH ‖xGi‖∞ (hierarchical group Lasso), where

GH is the collection of groups consisting of each node and all its descendants in T . Hence,

56

3.2. Combinatorial penalties and convex relaxations

F̃−(A) = Θ∞(1A) = |{i : Gi ∩ A}|, which is a submodular function, implying also that
F−(A) = F̃−(A). Thus, in this case, convex relaxations can capture a more relaxed penalty
encouraging the tree structure, but not the non-monotone hard constraints.

More problematic examples are given by models expressed by symmetric functions, i.e., F (S) =

F (Sc),∀S ⊆ V . In this case, F̃−(A) = F (V) = F (∅) = 0; thus the structure is completely
lost by convex relaxations. For such models, non-convex methods can be potentially better, as
demonstrated in Chapter 5.

On the other hand, if the model can be expressed by a monotone non-submodular set function,
the homogeneous relaxation may not be tight, and hence, the non-homogeneous relaxation can
be more useful. For instance, [OB12] shows that for any set function where F ({e}) = 1 for
all singletons e ∈ V and F (A) ≥ |A|,∀A ⊆ V , the homogeneous LCE F−(A) = |A| and
accordingly Ωp is the `1-norm, thus losing completely the specific structure encoded in F .

We discuss some examples that fall in this class of functions, where the non-homogeneous
relaxation is tight while the homogeneous one is not.

Example 7 (Range penalty). Consider range(A) = max(A) − min(A) + 1. For F (A) =

range(A), we have F−(A) = |A|, while F̃− = F by Prop. 7.

Example 8 (Down-monotone sparse structures). A natural class of structured sparsity penalties
are penalties of the form F (A) = |A|+ ιA∈M(A), which favor sparse non-zero patterns among
a setM of allowed patterns. IfM is down-monotone, i.e., ∀A ∈ M,∀B ⊆ A,B ∈ M, then
the non-homogeneous relaxation preserves its structure, i.e., F̃− = F by Prop. 7, while its
homogeneous relaxation is oblivious to the hard constraints, with F−(A) = |A|. This class
includes for example the following models:

• Sparse set cover: Given a collection of predefined groups G = {G1, · · · , GM}, consider
the sparse g-group cover penalty, introduced in Chapter 2: F (A) = |A|+ιBTω≥1A,1Tω≤g(A),
where the columns ofB correspond to the indicator vectors of the groups, i.e.,BV,i = 1Gi
(see Section 2.5.1). This penalty enforces the selection of sparse supports that can be
covered with g-groups.

• Dispersive `0-penalty: Similarly given G = {G1, · · · , GM}, consider the dispersive `0-
penalty, introduced in Chapter 2: F (A) = |A|+ ιBT1A≤1(A), whereB is defined as in
the previous example (see Section 2.5.3). The dispersive penalty enforces the selection of
sparse supports where no two non-zeros are selected from the same group. Neural sparsity
models induce such structures [HDC09].

• Weighted graph model: Given a graph G = (V,E), consider a relaxed version of the
weighted graph model of [HIS15b]: F (A) = |A| + ιγ(FA)≤g,w(FA)≤b(A), where γ(FA)

is the number of connected components formed by the forest FA corresponding to A and

57

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

w(FA) is the total weight of edges in the forest FA. This model describes a wide range of
structures, including 1D-clustering, tree hierarchies, and the Earth Mover Distance model.

3.3 Sparsity-inducing properties of convex relaxations

The notion of LCE captures the combinatorial structure preserved by convex relaxations in
a geometric sense. In this section, we characterize the preserved structure from a statistical
perspective.

To this end, we consider the linear regression model y = Ax\ + ε, whereA ∈ Rn×d is a fixed
design matrix, y ∈ Rn is the response vector, and ε is a vector of iid random variables with mean
0 and variance σ2. Given λn > 0, we define x? as a minimizer of the regularized least-squares:

min
x∈Rd

1

2
‖y −Ax‖22 + λnΦ(x), (3.5)

We are interested in the sparsity-inducing properties of Ωp and Θp on the solutions of (3.5). In
this section, we consider though the more general setting where Φ is any proper normalized
(Φ(0) = 0) convex function which is absolute, i.e., Φ(x) = Φ(|x|) and monotonic in the absolute
values of x, that is |x| ≥ |x′| ⇒ Φ(x) ≥ Φ(x′). In what follows, monotone functions refer to
this notion of monotonicity.

We determine in Section 3.3.1 necessary conditions for support recovery in (3.5) and in Section
3.3.2 we provide sufficient conditions for support recovery and consistency of a variant of (3.5).
As both Ωp and Θp are normalized absolute monotone convex functions, the results presented in
this section apply directly to them as a corollary.

For simplicity, we assume Q = A>A/n � 0, thus x? is unique. This forbids the high-
dimensional setting. We expect though the insights developed towards the presented results to
contribute to understanding the high-dimensional learning setting, which we defer to a later work.

3.3.1 Continuous stable supports

Existing results on the consistency of special cases of the estimator (3.5) typically rely heavily on
decomposition properties of Φ [NRWY11, Bac10a, OJV11, OB12]. The notions of decompos-
ability assumed in these prior works are either too strong or too specific to be applicable to the
general convex penalties Ωp and Θp we are considering. Instead, we introduce a general weak
notion of decomposability applicable to any absolute monotone convex regularizer.

Definition 10 (Decomposability). Given J ⊆ V and x ∈ Rd, supp(x) ⊆ J , we say that Φ is
decomposable at x w.r.t J if ∃MJ > 0 such that ∀∆ ∈ Rd, supp(∆) ⊆ Jc,

Φ(x+ ∆) ≥ Φ(x) +MJ‖∆‖∞.

58

3.3. Sparsity-inducing properties of convex relaxations

Figure 3.3: Unit balls of `0-pseudo-norm, restricted to the unit `∞-ball (left), `0.5-quasi-norm
(middle), and `1-norm (right).

For example, for the `1-norm, this decomposability property holds for any J ⊆ V and x ∈ Rd,
with MJ = 1.

It is reasonable to expect this property to hold at the solution x? of (3.5) and its support
J? = supp(x?). Theorem 2 shows that this is indeed the case. In Section 3.3.2, we de-
vise an estimation scheme able to recover supports J that satisfy this property at any x ∈ Rd.
This leads then to the following notion of continuous stable supports, which characterizes sup-
ports with respect to the continuous penalty Φ. In Section 3.4, we relate this to the notion of
discrete stable supports, which characterizes supports with respect to the combinatorial penalty F .

Definition 11 (Continuous stability). We say that J ⊆ V is weakly stable w.r.t Φ if there exists
x ∈ Rd, supp(x) = J such that Φ is decomposable at x w.r.t J . Furthermore, we say that
J ⊆ V is strongly stable w.r.t Φ if for all x ∈ Rd s.t. supp(x) ⊆ J , Φ is decomposable at x w.r.t
J .

Theorem 2 considers slightly more general estimators than (3.5) and shows that weak stability is
a necessary condition for a non-zero pattern to be allowed as a solution.

Theorem 2 (Necessary conditions1). The minimizer x? of minx∈Rd L(x)−z>x+λΦ(x), where
L is a strongly-convex and smooth loss function and z ∈ Rd has a continuous density w.r.t to the
Lebesgue measure, has a weakly stable support w.r.t. Φ, with probability one.

This new result extends and simplifies the result in [Bac10a] which considers the special case of
quadratic loss functions and Φ being the `∞-convex relaxation of a submodular function. The
proof we present, in the Appendix, is also shorter and simpler.

Corollary 7. Assume y ∈ Rd has a continuous density w.r.t to the Lebesgue measure, then the
support of the minimizer x? of Eq. (3.5) is weakly stable w.r.t Φ with probability one.

59

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

3.3.2 Adaptive estimation

Restricting the choice of regularizers in (3.5) to convex relaxations as surrogates to combinatorial
penalties is motivated by computational tractability concerns. However, other non-convex
regularizers such as `α-quasi-norms [KF00, FF93] or more generally penalties of the form
Φ(x) =

∑d
i=1 φ(|xi|), where φ is a monotone concave penalty [FL01, DDFG10, GRC09] can

be more advantageous than the convex `1-norm. Such penalties are closer to the `0-pseudo-norm
and penalize more aggressively small coefficients, thus they have a stronger sparsity-inducing
effect than `1-norm (see Figure 3.3).

The authors in [JOB10] extended such concave penalties to the `α/`2- quasi-norm Φ(x) =∑M
i=1 ‖xGi‖α, where α ∈ (0, 1), which enforces sparsity at the group level more aggressively.

We generalize this to Φ(|x|α) where Φ is any structured sparsity-inducing monotone convex
regularizer. These non-convex penalties lead to intractable estimation problems, but approximate
solutions can be obtained by majorization-minimization algorithms, as suggested for e.g., in
[FBDN07, ZL08, CWB08].

Lemma 4. Let Φ be a monotone convex function, Φ(|x|α) admits the following majorizer,
∀x0 ∈ Rd, Φ(|x|α) ≤ (1− α)Φ(|x0|α) + αΦ(|x0|α−1 ◦ |x|), which is tight at x0.

We consider the adaptive weight estimator (3.6) resulting from applying a 1-step majorization-
minimization to (3.5),

min
x∈Rd

1

2
‖y −Ax‖22 + λnΦ(|x0|α−1 ◦ |x|), (3.6)

where x0 is a
√
n-consistent estimator to x\, that is converging to x\ at rate 1/

√
n (typically

obtained from x0 = 1 or ordinary least-squares).

We study sufficient support recovery and estimation consistency conditions for (3.6) for general
convex monotone regularizers Φ. Such consistency results have been established for (3.6), in
the classical asymptotic setting, only in the special case of `1-norm in [Zou06] and for the (non-
adaptive) estimator (3.5) for homogeneous convex envelopes of monotone submodular functions,
for p = ∞ in [Bac10a] and for general p in [OB12], in the high dimensional setting, and for
latent group Lasso norm in [OJV11], in the asymptotic setting.

Compared to prior works, the discussion of support recovery is complicated here by the fact that
Φ is not necessarily a norm (e.g., if Φ = Θp) and only satisfies a weak notion of decomposability.

As in [Zou06], we consider the classical asymptotic regime in which the model generating the
data is of fixed finite dimension d while n → ∞. As before, we assume Q � 0 and thus the
minimizer of (3.6) is unique, we denote it by x?.

The following Theorem extends the results of [Zou06] for the `1-norm to any normalized absolute
1This theorem and its proof are due primarily to F. Bach.

60

3.4. Sparsity-inducing properties of combinatorial penalties

monotone convex regularizer if the true support satisfy the sufficient condition of strong stability
in Definition 11. As we previously remarked this condition is trivially satisfied for the `1-norm.

Theorem 3 (Consistency and Support Recovery). Let Φ : Rd → R+ be a proper normalized
absolute monotone convex function and denote by J the true support J = supp(x\). If |x\|α ∈
int dom Φ, J is strongly stable with respect to Φ and λn satisfies λn√

n
→ 0, λn

nα/2
→∞, then the

estimator (3.6) is consistent and asymptotically normal, i.e., it satisfies

√
n(x?J − x\J)

d−→ N (0, σ2Q−1
JJ), (3.7)

and
P (supp(x?) = J)→ 1. (3.8)

Consistency results in most existing works are established under various necessary conditions
onA, some of which are difficult to verify in practice, such as the irrepresentability condition
(c.f., [Zou06, Bac10a, OJV11, OB12]). Adding data-dependent weights does not require such
conditions and allows recovery even in the correlated measurement matrix setup as illustrated in
our numerical results (c.f., Sect. 3.5).

3.4 Sparsity-inducing properties of combinatorial penalties

In Section 3.3, we derived necessary and sufficient conditions for support recovery defined with
respect to the continuous convex penalties Ωp and Θp. In this Section, we translate these to
conditions with respect to the combinatorial penalties Fp themselves. Hence, the results of this
section allows one to check which supports to expect to recover, without the need to compute the
corresponding convex relaxation. To that end, we introduce in Section 3.4.1 discrete counterparts
of weak and strong stability, and show in Section 3.4.2 that discrete strong stability is a sufficient,
and in some cases necessary, condition for support recovery.

3.4.1 Discrete stable supports

We recall the concept of discrete stable sets [Bac10a], also referred to as flat or closed sets
[KG12]. We refer to such sets as discrete weakly stable sets and introduce a stronger notion of
discrete stability.

Definition 12 (Discrete stability). Given a monotone set function F : 2V → R+, a set J ⊆ V is
said to be weakly stable w.r.t F if ∀i ∈ Jc, F (J ∪ {i}) > F (J).
A set J ⊆ V is said to be strongly stable w.r.t F if ∀A ⊆ J, ∀i ∈ Jc, F (A ∪ {i}) > F (A).

Note that discrete stability imply in particular feasibility, i.e., F (J) < +∞. Also, if F is a
strictly monotone function, such as the cardinality function, then all supports are stable w.r.t
F . It is interesting to note that for monotone submodular functions, weak and strong stability

61

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

are equivalent. In fact, this equivalence holds for a more general class of functions, called
ρ-submodular.

Definition 13. A function F : 2V → R is ρ-submodular iff ∃ρ ∈ (0, 1] s.t., ∀B ⊆ V,A ⊆ B, i ∈
Bc

ρ[F (B ∪ {i})− F (B)] ≤ F (A ∪ {i})− F (A)

The notion of ρ-submodularity was introduced in [LLN06, Definition 15]. It is a special case of
the weakly DR-submodular property defined for continuous functions [HSK17]. It is also related
to the notion of weak submodularity (c.f., [DK11, EKDN16]). We show in the appendix that
ρ-submodularity is a stronger condition than weak submodularity.

Proposition 8. If F is a finite-valued monotone function, F is ρ-submodular iff discrete weak
stability is equivalent to strong stability.

Example 9. The range function range(A) = max(A) − min(A) + 1 is ρ-submodular with
ρ = 1

d−1 .

3.4.2 Relation between discrete and continuous stability

This section provides several technical results relating the discrete and continuous notions of
stability. It thus provides us with the necessary tools to characterize which supports can be
correctly estimated w.r.t the combinatorial penalty itself, without going through its relaxations.

Proposition 9. Given any monotone set function F , all sets J ⊆ V strongly stable w.r.t to F are
also strongly stable w.r.t Ωp and Θp.

It follows then by Theorem 3 that discrete strong stability is a sufficient condition for correct
estimation.

Corollary 8 (Sufficient condition). If Φ is equal to Ωp or Θp for p ∈ (1,∞) and supp(x\) = J

is strongly stable w.r.t F , then Theorem 3 holds, i.e., the adaptive estimator (3.6) is consistent and
correctly recovers the support. This also holds for p =∞ if we further assume that ‖x\‖∞ < 1.

Furthermore, if F is ρ-submodular, then by Proposition 8, it is enough for supp(x\) = J to
be weakly stable w.r.t F for Corollary 8 to hold. Conversely, Proposition 10 below shows that
discrete strong stability is also a necessary condition for continuous strong stability, in the case
where p =∞ and F is equal to its LCE.

Proposition 10. If F = F− and J is strongly stable w.r.t Ω∞, then J is strongly stable w.r.t F .
Similarly, for any monotone F , if J is strongly stable w.r.t Θ∞, then J is strongly stable w.r.t F .

62

3.4. Sparsity-inducing properties of combinatorial penalties

Finally, in the special case of monotone submodular function, the following Corollary 9, along
with Proposition 9 demonstrates that all definitions of stability become equivalent. We thus
recover the result in [Bac10a] showing that discrete weakly stable supports correspond to the set
of allowed non-zero patterns for monotone submodular functions.

Corollary 9. If F is monotone submodular and J is weakly stable w.r.t Ω∞ = Θ∞ then J is
weakly stable w.r.t F .

3.4.3 Examples

We highlight in this section what are the supports recovered by the adaptive estimator (AE) (3.6)
with the homogeneous convex relaxation Ωp and non-homogeneous convex relaxation Θp of
some examples of structure priors. For simplicity, we will focus on the case p =∞. Also in all
the examples we consider below, weak and strong discrete stability are equivalent, so we omit the
weak/strong specification. Note that it is desirable that the regularizer used enforces the recovery
of only the non-zero patterns satisfying the desired structure.

Monotone submodular functions: As discussed above, for this class of functions, all stability
definitions are equivalent and Ω∞ = Θ∞ = fL. As a result, AE recovers any discrete stable
non-zero pattern. This includes the following examples (c.f., [OB12] for further examples).

• Cardinality: F (A) = |A|. As a strictly monotone function, all supports are stable w.r.t to
it. Thus AE recovers all non-zero patterns with Ω∞ and Θ∞, given by the `1-norm.

• Overlap count function: F∩(A) =
∑

G∈G,G∩A6=∅ dG where G is a collection of prede-
fined groups G and dG their associated weights. Ω∞ and Θ∞ are given by the `1/`∞-norm
(see Section 2.5.1), and stable patterns are complements of union of groups. For example,
for hierarchical groups (i.e., groups consisting of each node and its descendants on a tree),
AE recovers rooted connected tree supports.

• Modified range function: The range function can be transformed into a submodular func-
tion, if scaled by a constant as suggested in [Bac10a], yielding the monotone submodular
function Fmr(A) = d − 1 + range(A),∀A 6= ∅ and Fmr(∅) = 0. This can actually be
written as an instance of F∩ with groups defined as G = {[1, k] : 1 ≤ k ≤ d} ∪ {[k, d] :

1 ≤ k ≤ d} (see Figure 1.5, left). This norm was proposed to induce interval patterns by
[JAB11], and indeed its stable patterns are interval supports. We will compare this function
in the experiments with the direct convex relaxations of the range function.

Range function: The range function is 1
d−1 -submodular, thus its discrete strongly and weakly

stable supports are identical and they correspond to interval supports. As a result, AE recovers
interval supports with Θ∞. On the other hand, since the homogeneous LCE of the range function
is the cardinality, AE recovers all supports with Ω∞.

63

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

10-5 100
0

20

40

60

80

100
Support Recovery Error, = 0

10-5 100
10-4

10-2

100

102
Estimation Error, = 0

10-5 100
0

20

40

60

80

100
Support Recovery Error, = 0.5

10-5 100
10-4

10-2

100

102
Estimation Error, = 0.5

Figure 3.4: (Left column) Best Hamming distance and (Right column) best least square error to
the true vector x\, along the regularization path, averaged over 5 runs.

Down monotone sparse structures: Functions of the form F (A) = |A| + ιA∈M(A), where
M is down-monotone, also have their discrete strongly and weakly stable supports identical
and given by the feasible setM (see Example 8). Since their homogeneous LCE is also the
cardinality, then AE recovers all supports with Ω∞, and only feasible supports with Θ∞.

3.5 Experiments

To illustrate the results presented in this chapter, we consider the problem of estimating the
support of a parameter vector x\ ∈ Rd whose support is an interval. It is natural then to choose
as combinatorial penalty the range function whose stable supports are intervals. We aim to
study the effect of adaptive weights, as well as the effect of the choice of homogeneous vs.
non-homogeneous convex relaxation for regularization, on the quality of support recovery.

As discussed in Section 3.4.3, the `∞-homogeneous convex envelope of the range is simply the
`1-norm. Its `∞-non-homogeneous convex envelope Θr

∞ can be computed using the variational
form (3.3), where only interval sets need to be considered in the constraints, leading to a quadratic
number of constraints. We also consider the `1/`∞-norm that corresponds to the convex relaxation
of the modified range function Fmr.

We consider a simple regression setting in which x\ ∈ Rd is a constant s-sparse signal whose
support is an interval. The choice of p =∞ is well suited for constant valued signals. The design
matrix A ∈ Rd×n is either drawn as (1) an i.i.d Gaussian matrix with normalized columns, or
(2) a correlated Gaussian matrix with normalized columns, with the off-diagonal values of the

64

3.6. Discussion

covariance matrix set to a value ρ = 0.5. We observe noisy linear measurements y = Ax\ + ε,
where the noise vector is i.i.d. with variance σ2, where σ is varied between 10−5 and 1. We
solve problem (3.6) with and without adaptive weights |x0|α−1, where x0 is taken to be the least
squares solution and α = 0.3.

We assess the estimators obtained through the different regularizers both in terms of support
recovery and in terms of estimation error. Figure 3.4 plots (in log scale) these two criteria
against the noise level σ. We plot the best achieved error on the regularization path, where
the regularization parameter λ was varied between 10−6 and 103. We set the parameters to
d = 250, s = 100, n = 500.

We observe that the adaptive weight scheme helps in support recovery, especially in the correlated
design setting. Indeed, Lasso is only guaranteed to recover the support under an “irrepresentability
condition" [Zou06]. This is satisfied with high probability only in the non-correlated design case.
On the other hand, adaptive weights allow us to recover any strongly stable support, without any
additional condition, as shown in Theorem 3. The `1/`∞-norm performs poorly in this setup. In
fact, the modified range function Fmr, introduced a gap of d between non-empty sets and the
empty set. This leads to the undesirable behavior, already documented in [Bac10a, JAB11] of
adding all the variables in one step, as opposed to gradually. Adaptive weights seem to correct
for this effect, as seen by the significant improvement in performance. Finally, note that choosing
the “tighter" non-homogeneous convex relaxation leads to better support recovery. Indeed, Θr

∞
performs better than `1-norm in all setups.

3.6 Discussion

We presented an analysis of homogeneous and non-homogeneous convex relaxations of `p-
regularized combinatorial penalties. Our results show that structure encoded by monotone
submodular priors can be equally well expressed by both relaxations, while the non-homogeneous
relaxation is able to express better the structure of more general monotone set functions. We also
identified necessary and sufficient stability conditions on the supports to be correctly recovered.
We proposed an adaptive weight scheme that is guaranteed to recover supports that satisfy the
sufficient stability conditions, in the asymptotic setting, even under correlated design matrix.

We expect the theoretical insights developed in this chapter to help guide the design of convex
structure-inducing penalties in the future. In particular, our hope is that our results will motivate
further applications of the non-homogeneous convex envelope, which was so far relatively less
well-studied, as a tool for structured sparse learning.

The discussion in this chapter raises the following open questions:

Open question 3. In structured sparse learning, we are often interested in the high-dimensional
setting, where n < d. A natural direction for future work is then to extend our statistical analysis
of the adaptive weight estimator (3.6) to the high-dimensional setting, both in terms of necessary

65

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

conditions (Theorem 2) and sufficient conditions (Theorem 3) for support recovery.

Open question 4. In this chapter, we showed that the non-homogeneous convex envelope is
tight for monotone functions, as characterized by the notion of lower combinatorial envelope,
i.e., F̃− = F iff F is monotone (see Prop. 7). A natural question then arises: What are the set
functions for which the homogeneous relaxation is tight?

We already know that a sufficient condition is for F to be monotone submodular, i.e., F− = F if
F is monotone submodular. However, submodularity is not necessary. We can easily see this
from the exclusive Lasso example, where F (A) = maxG∈G |A ∩G| is not submodular, but its
homogeneous relaxation (which result in the exclusive Lasso norm) is tight (see [OB12, p. 14]).
On the other hand, a clear necessary condition is for F to be subadditive, as F− itself is always
subadditive. It remains to close this gap by identifying a necessary and sufficient condition on F
that ensure its homogeneous relaxation is tight. Such characterization would allow us to identify
for which functions, beyond submodular ones, homogeneity can be imposed without sacrificing
the combinatorial structure.

Open question 5. In Theorem 2, we showed that weak continuous stability is a necessary
condition for support recovery using the general estimator (3.5). In the case of monotone
submodular functions, this translates to weak discrete stability being a necessary condition w.r.t
F . Is weak discrete stability also a necessary condition for support recovery in general?

On the other hand, in Theorem 3 and Corollary 8, we showed that strong discrete stability is a
sufficient condition for support recovery using the adaptive estimator (3.6). However, in some
cases this condition is too restrictive. For example, for the penalty F (A) = maxG∈G |A ∩G|,
which is used to encourage dispersive supports (see Section 2.5.3), discrete weakly stable supports
are supports that have equal number of non-zeros in each group, while discrete strongly stable
supports are the trivial empty and ground set. Is it possible to guarantee consistency and support
recovery, with the adaptive estimator or another estimator, under a weaker sufficient condition?

66

3.7. Appendix: Proofs

3.7 Appendix: Proofs

3.7.1 Variational forms of convex envelopes (Proof of Lemma 3)

In this section, we recall the different variational forms of the homogeneous convex envelope
derived in [OB12] and derive similar variational forms for the non-homogeneous convex envelope,
which includes the ones stated in Lemma 3. These variational forms will be needed in some of
our proofs below.

Lemma 5. The homogeneous convex envelope Ωp of Fp admits the following variational forms.

Ω∞(x) = min
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |x|, αS ≥ 0}. (3.9)

Ωp(x) = min
v
{
∑
S⊆V

F (S)1/q‖vS‖p :
∑
S⊆V

vS = |x|, supp(vS) ⊆ S}. (3.10)

= max
κ∈Rd+

d∑
i=1

κ
1/q
i |xi| s.t. κ(A) ≤ F (A), ∀A ⊆ V. (3.11)

= inf
η∈Rd+

1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
Ω∞(η). (3.12)

Lemma 6. The non-homogeneous convex envelope Θp of Fp admits the following variational
forms.

Θ∞(x) = inf
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |x|,
∑
S⊆V

αS = 1, αS ≥ 0}. (3.13)

= inf
v
{
∑
S⊆V

F (S)‖vS‖∞ :
∑
S⊆V

vS = |x|,
∑
S⊆V
‖vS‖∞ = 1, supp(vS) ⊆ S}. (3.14)

Θp(x) = max
κ∈Rd

d∑
j=1

ψj(κj , xj) + min
S⊆V

F (S)− κ(S), ∀x ∈ dom(Θp(x)). (3.15)

= inf
η∈[0,1]d

1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
f−(η), (3.16)

where f− is the convex closure ofF , and dom(Θp) = {x|∃η ∈ [0, 1]d s.t supp(x) ⊆ supp(η),η ∈
dom(f−)}, and where we define

ψj(κj , xj) :=

{
κ

1/q
j |xj | if |xj | ≤ κ1/p

j , κj ≥ 0
1
p |xj |p + 1

qκj otherwise.

If F is monotone, Θ∞(x) = f−(|x|), then we can replace f− by Θ∞ in (3.16) and we can
restrict κ ∈ Rd+ in (3.15).

In what follows, we present the proof of each variational form in Lemma 6.

67

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

Recall first that in Proposition 1 of Chapter 2, we showed that Θ∞(x) = infη∈[0,1]d{f−(η) :

η ≥ |x|}. Note then that Θ∞ is monotone even if F is not. On the other hand, if F is monotone,
then f− is monotone on [0, 1]d and Θ∞(x) = f−(|x|).

The variational form (3.13) follows directly from Proposition 1 and the properties of the convex
closure f−, as shown in the following corollary.

Corollary 10. Given any set function F : 2V → R+ and its corresponding convex closure f−,
the convex envelope of F (supp(x)) over the unit `∞-ball is given by

Θ∞(x) = inf
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |x|,
∑
S⊆V

αS = 1, αS ≥ 0}.

Note that dom(Θ∞) = {x : ∃η ∈ [0, 1]d ∩ dom(f−),η ≥ |x|}.

Proof. This follows directly by plugging in Θ∞(x) = infη∈[0,1]d{f−(η) : η ≥ |x|} the
variational form of the convex closure from Definition 19;

f−(η) = inf
α
{
∑
S⊆V

αSF (S) : η =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0}.

Next, we derive the convex envelope of Fp for a general p ≥ 1.

Proposition 11. Given any set function F : 2V → R+ and its corresponding convex closure f−,
the convex envelope of Fµλ(x) = µF (supp(x)) + λ‖x‖pp is given by

Θp(x) = inf
η∈[0,1]d

λ

d∑
j=1

|xj |p
ηp−1
j

+ µf−(η).

Note that dom(Θp) = {x|∃η ∈ [0, 1]d s.t supp(x) ⊆ supp(η),η ∈ dom(f−)}.

Proof. Like in Lemma 1, we assume we are given a proper l.s.c. convex extension f̂ of F , which
satisfies maxη∈{0,1}d |z|Tη − f̂(η) = maxη∈[0,1]d |z|Tη − f̂(η),∀z ∈ Rd, which is true for
f̂ = f−. Then, we have first for the case where p = 1:

F ∗µλ(s) = sup
x∈Rd

xT s− µF (supp(x))− λ‖x‖1

= sup
η∈{0,1}d

sup
1supp(x)=η

sign(x)=sign(s)

|x|T (|s| − λ1)− µF (η)

= ι{|s|≤λ1}(s)− inf
η∈{0,1}d

µF (η).

68

3.7. Appendix: Proofs

Hence, F ∗∗µλ(x) = λ‖x‖1 + infη∈{0,1}d λF (η). For the case p ∈ (1,∞), we have:

F ∗µλ(s) = sup
x∈Rd

xTs− µF (supp(x))− λ‖x‖pp

= sup
η∈{0,1}d

sup
1supp(x)=η

sign(x)=sign(s)

|x|T |s| − λ‖x‖pp − µF (η)

= sup
η∈{0,1}d

λ(p− 1)

(λp)q
ηT |s|q − µF (η) (|si| = λp|x?i |p−1, ∀ηi 6= 0)

= sup
η∈[0,1]d

λ(p− 1)

(λp)q
ηT |s|q − µf̂(η).

We denote λ̂ = λ(p−1)
(λp)q .

F ∗∗µλ(x) = sup
s∈Rd

xTs− F ∗µλ(s)

= sup
s∈Rd

min
η∈[0,1]d

sTx− λ̂ηT |s|q + µf̂(η)

?
= inf
η∈[0,1]d

sup
s∈Rp

sign(s)=sign(x)

|s|T |x| − λ̂ηT |s|q + µf̂(η)

= inf
η∈[0,1]d

λ(|x|p)Tη1−p + µf̂(η),

where the last equality holds since |xi| = λ̂ηiq|s?i |q−1, ∀ηi 6= 0, otherwise s?i = 0 if xi = 0 and
∞ otherwise. (?) holds by Sion’s minimax theorem [S+58, Corollary 3.3]. Note then that the
minimizer η∗ (if it exists) satisfies supp(x) ⊆ supp(η?). Finally, note that if we take the limit
as p→∞, we recover Θ∞(x) = infη∈[0,1]d{f−(η) : η ≥ |x|}.

The variational form (3.16) in lemma 6 follows from proposition 11 for the choice µ = 1
q , λ = 1

p .

The following proposition derives the variational form (3.15) for p =∞.

Proposition 12. Given any set function F : 2V → R ∪ {+∞}, and its corresponding convex
closure f−, Θ∞ can be written ∀x ∈ dom(Θ∞) as

Θ∞(x) = max
κ∈Rd+

{κT |x|+ min
S⊆V

F (S)− κ(S)}

= max
κ∈Rd+

{κT |x|+ min
S⊆supp(x)

F (S)− κ(S)} (if F is monotone)

Similarly ∀x ∈ dom(f−) ∩ [0, 1]d we can write

f−(x) = max
κ∈Rd
{κTx+ min

S⊆V
F (S)− κ(S)}

= Θ∞(x) = max
κ∈Rd+

{κTx+ min
S⊆supp(x)

F (S)− κ(S)} (if F is monotone)

69

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

Proof. ∀x ∈ dom(Θ∞), strong duality holds by Slater’s condition, hence

Θ∞(x) = min
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |x|,
∑
S⊆V

αS = 1, αS ≥ 0}.

= min
α≥0

max
ρ∈R,κ∈Rd+

{
∑
S⊆V

αSF (S) + κT (|x| −
∑
S⊆V

αS1S) + ρ(1−
∑
S⊆V

αS)}.

= max
ρ∈R,κ∈Rd+

min
α≥0
{κT |x|+

∑
S⊆V

αS(F (S)− κT1S − ρ) + ρ}.

= max
ρ∈R,κ∈Rd+

{κT |x|+ ρ : F (S) ≥ κT1S + ρ)}.

= max
κ∈Rd+

{κT |x|+ min
S⊆V

F (S)− κ(S)}.

Let J = supp(|x|) then κ?Jc = 0. Then for monotone functions F (S) − κ?(S) ≥ F (S ∩
J)− κ?(S), so we can restrict the minimum to S ⊆ J . The same proof holds for f−, with the
Lagrange multiplier κ ∈ Rd not constrained to be positive.

The following Corollary derives the variational form (3.15) for p ∈ [1,∞].

Corollary 11. Given any set function F : 2V → R ∪ {+∞}, Θp can be written ∀x ∈ dom(Θp)

as

Θp(x) = max
κ∈Rd

d∑
j=1

ψj(κj , xj) + min
S⊆V

F (S)− κ(S).

= max
κ∈Rd+

d∑
j=1

ψj(κj , xj) + min
S⊆V

F (S)− κ(S). (if F is monotone)

where

ψj(κj , xj) :=

{
κ

1/q
j |xj | if |xj | ≤ κ1/p

j , κj ≥ 0
1
p |xj |p + 1

qκj otherwise

Proof. By Propositions 11 and 12, we have ∀x ∈ dom(Θp), i.e., ∃η ∈ [0, 1]d, s.t supp(x) ⊆
supp(η),η ∈ dom(f−),

Θp(x) = inf
η∈[0,1]d

1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
f−(η)

= inf
η∈[0,1]d

1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
max

ρ∈R,κ∈Rd
{κTη + ρ : F (S) ≥ κT1S + ρ}.

?
= max

ρ∈R,κ∈Rd
inf

η∈[0,1]d
{1

p

d∑
j=1

|xj |p
ηp−1
j

+
1

q
κTη + ρ : F (S) ≥ κT1S + ρ}.

70

3.7. Appendix: Proofs

(?) holds by Sion’s minimax theorem [S+58, Corollary 3.3]. Note also that

inf
ηj∈[0,1]

1

p

|xj |p
ηp−1
j

+
1

q
κjηj =

{
κ

1/q
j |xj | if |xj | ≤ κ1/p

j , κj ≥ 0
1
p |xj |p + 1

qκj otherwise
:= ψj(κj , xj)

where the minimum is η?j = 1 if κj ≤ 0. If κj ≥ 0, the infimum is zero if xj = 0. Otherwise, the

minimum is achieved at η?j = min{ |xj |
κ
1/p
j

, 1} (if κj = 0, η?j = 1). Hence,

Θp(x) = max
κ∈Rd

d∑
j=1

ψj(κj , xj) + min
S⊆V

F (S)− κ(S).

3.7.2 Proof of Theorem 2

Before proving Theorem 2, we need the following technical Lemma.

Lemma 7. Given J ⊂ V and a vector x s.t supp(x) ⊆ J , if Φ is not decomposable at x w.r.t J ,
then ∃i ∈ Jc such that the i-th component of all subgradients at x is zero; 0 = [∂Φ(x)]i.

Proof. If Φ is not decomposable at x and 0 6= [∂Φ(x)]i, ∀i ∈ Jc, then ∀MJ > 0,∃∆ 6=
0, supp(∆) ⊆ Jc s.t., Φ(x + ∆) < Φ(x) + MJ‖∆‖∞. In particular, we can choose MJ =

infi∈Jc,v∈∂Φ(xJ),vi 6=0 |vi| > 0, if the inequality holds for some ∆ 6= 0, then let imax denote the
index where |∆imax | = ‖∆‖∞. Then given any v ∈ ∂Φ(x) s.t., vimax 6= 0, we have

Φ(x+ ‖∆‖∞1imax) ≤ Φ(x+ ∆) < Φ(x) +MJ‖∆‖∞
≤ Φ(x) + 〈v, ‖∆‖∞1imax sign(vimax)〉
≤ Φ(x+ ‖∆‖∞1imax)

which leads to a contradiction.

Theorem 2 (Necessary conditions2). The minimizer x? of minx∈Rd L(x)−z>x+λΦ(x), where
L is a strongly-convex and smooth loss function and z ∈ Rd has a continuous density w.r.t to the
Lebesgue measure, has a weakly stable support w.r.t. Φ, with probability one.

Proof. We will show in particular that Φ is decomposable at x? w.r.t supp(x?). Since L is
strongly-convex, given z the corresponding minimizer x? is unique, then the function h(z) :=

2This theorem and its proof are due primarily to F. Bach.

71

3.7. Appendix: Proofs

Theorem 3 (Consistency and Support Recovery). Let Φ : Rd → R+ be a proper normalized
absolute monotone convex function and denote by J the true support J = supp(x\). If |x\|α ∈
int dom Φ, J is strongly stable with respect to Φ and λn satisfies λn√

n
→ 0, λn

nα/2
→∞, then the

estimator (3.6) is consistent and asymptotically normal, i.e., it satisfies

√
n(x?J − x\J)

d−→ N (0, σ2Q−1
JJ), (3.7)

and
P (supp(x?) = J)→ 1. (3.8)

Proof. We will follow the proof in [Zou06]. We write x? = x\ + u?√
n

and Ψn(u) = 1
2‖y −

A(x\ + u√
n

)‖22 + λnΦ(c ◦ |x\ + u√
n
|), where c = |x0|α−1. Then u? = arg minu∈Rd Ψn(u).

Let Vn(u) = Ψn(u)−Ψn(0), then

Vn(u) =
1

2
uTQu− εT Au√

n
+ λn

(
Φ(c ◦ |x\ +

u√
n
|)− Φ(c ◦ |x\|)

)

Since x0 is a
√
n-consistent estimator to x\, then

√
nx0

Jc = Op(1) and n
1−α
2 c−1

Jc = Op(1). Since
λn
nα/2

→∞, by stability of J , we have

λn
(
Φ(c ◦ |x\ +

u√
n
|)− Φ(c ◦ |x\|)

)
= λn

(
Φ(cJ ◦ |x\J +

uJ√
n
|+ cJc ◦

|uJc |√
n

)− Φ(cJ ◦ |x\J |)
)

≥ λn
(
Φ(cJ ◦ |x\J +

uJ√
n
|) +MJ‖cJc ◦

|uJc |√
n
‖∞ − Φ(cJ ◦ |x\J |)

)
= λn

(
Φ(cJ ◦ |x\J +

uJ√
n
|)− Φ(cJ ◦ |x\J |)

)
+MJ‖λnn−α/2n

α−1
2 cJc ◦ |uJc |‖∞

p−→∞ if uJc 6= 0 (3.17)

Otherwise, if uJc = 0, we argue that

λn
(
Φ(c ◦ |x\ +

u√
n
|)−Φ(c ◦ |x\|)

)
= λn(Φ(cJ ◦ |x\J +

uJ√
n
|)−Φ(cJ ◦ |x\J |))

p−→ 0. (3.18)

To see this note first that since x0 is a
√
n-consistent estimator to x\, then cJ = |x0

J |α−1 p−→
|x\J |α−1, cJ ◦ |x\J |

p−→ |x\J |α and cJ ◦ |x\J + uJ√
n
| p−→ |x?J |α. Then by the assumption |x\|α ∈

int dom Φ, we have that both cJ ◦ |x\J |, cJ ◦ |x
\
J + uJ√

n
| ∈ int dom Φ with probability going to

one. By convexity, we then have:

λn(Φ(cJ ◦ |x\J +
uJ√
n
|)− Φ(cJ ◦ |x\J |)) ≥ 〈∇Φ(cJ ◦ |x\J |), λn

uJ√
n
〉

λn(Φ(cJ ◦ |x\J +
uJ√
n
|)− Φ(cJ ◦ |x\J |)) ≤ 〈∇Φ(cJ ◦ |x\J +

uJ√
n
|), λn

uJ√
n
〉

73

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

where ∇Φ(x) denotes a subgradient of Φ at x.

For all x ∈ int dom Φ where Φ is convex, monotone and normalized, we have that ‖z‖∞ <

∞,∀z ∈ ∂Φ(x). To see this, note that since x ∈ int dom Φ, ∃δ > 0 s.t., ∀x′ ∈ Bδ(x),Φ(x′) <

+∞. Let x′ = x+ sign(z)1imaxδ, where imax denotes the index where |zimax | = ‖z‖∞ then by
convexity we have

Φ(x′) ≥ Φ(x) + 〈z,x′ − x〉, ∀z ∈ ∂Φ(x)

+∞ > Φ(x′) ≥ ‖z‖∞δ, ∀z ∈ ∂Φ(x), (since Φ(x) ≥ 0)

Since λn√
n
→ 0, we can then conclude by Slutsky’s theorem that (3.18) holds.

Hence by (3.17) and (3.18),

λn
(
Φ(c ◦ |x\ +

u√
n
|)− Φ(c ◦ |x\|)

) p−→
{

0 if uJc = 0

∞ Otherwise
. (3.19)

By CLT, A
>ε√
n

d−→W ∼ N (0, σ2Q), it follows then that Vn(u)
d−→ V (u), where

V (u) =

{
1
2u

T
JQJJuJ −W T

JuJ if uJc = 0

∞ Otherwise
.

Vn is convex and the unique minimum of V is uJ = Q−1
JJW J ,uJc = 0, hence by epi-

convergence results (see [Zou06])

u?J
d−→ Q−1

JJW J ∼ N (0, σ2Q−1
JJ), u?Jc

d−→ 0. (3.20)

Since u? =
√
n(x? − x\), then it follows from (3.20) that

x?J
p−→ x\J , x?Jc

p−→ 0 (3.21)

Hence, P (supp(x?) ⊇ J) → 1 and it is sufficient to show that P (supp(x?) ⊆ J) → 1 to
complete the proof.

For that denote J? = supp(x?) and let’s consider the event J? \J 6= ∅. By optimality conditions,
we know that

−AT
J?\J(Ax? − y) ∈ λn[∂Φ(c ◦ ·)(x?)]J?\J

Note, that−A
T
J?\J (Ax?−y)

√
n

=
ATJ?\JA(x?−x\)

√
n

−A
T
J?\Jε√
n

. By CLT,
ATJ?\Jε√

n

d−→W ∼ N (0, σ2QJ?\J,J?\J)

74

3.7. Appendix: Proofs

and by (3.21) x? − x\ p−→ 0 then −A
T
J?\J (Ax?−y)

√
n

= Op(1).

On the other hand,
λncJ?\J√

n
= λnn

1−α
2 n

α−1
2 cJ?\J → ∞, hence

λncJ?\J√
n
c−1
J?\JvJ?\J → ∞,

∀v ∈ ∂Φ(c ◦ ·)(x?), since c−1
J?\JvJ?\J = Op(1)−1. To see this, let x′J = x?J and 0 elsewhere.

Note that by definition of the subdifferential and the stability assumption on J , there must exists
MJ > 0 s.t

Φ(c ◦ x′) ≥ Φ(c ◦ x?) + 〈vJ?\J ,−x?J?\J〉
≥ Φ(c ◦ x′) +MJ‖cJ?\J ◦ x?J?\J‖∞ − ‖c−1

J?\J ◦ vJ?\J‖1‖cJ?\J ◦ x
?
J?\J‖∞

‖c−1
J?\J ◦ vJ?\J‖1 ≥MJ

We deduce then that P (supp(x?) ⊆ J) = 1− P (J? \ J 6= ∅)→ 1.

3.7.4 Proof of Proposition 8 and relation to weak submodularity

Proposition 8. If F is a finite-valued monotone function, F is ρ-submodular iff discrete weak
stability is equivalent to strong stability.

Proof. If F is ρ-submodular and J is weakly stable, then ∀A ⊆ J, ∀i ∈ Jc, 0 < ρ[F (J ∪
{i}) − F (J)] ≤ F (J ∪ {i}) − F (J), i.e., J is strongly stable w.r.t. F . If F is such that any
weakly stable set is also strongly stable, then if F is not ρ-submodular, then ∀ρ ∈ (0, 1]

there must exists a set B ⊆ V , s.t., ∃A ⊆ B, i ∈ Bc, s.t., ρ[F (B ∪ {i}) − F (B)] >

F (A ∪ {i}) − F (A) ≥ 0. Hence, F (B ∪ {i}) − F (B) > 0, i.e., B is weakly stable and
thus it is also strongly stable and we must have F (A ∪ {i}) − F (A) > 0. Choosing then
in particular, ρ = minB⊆V minA⊆B,i∈Bc

F (A∪{i})−F (A)
F (B∪{i})−F (B) ∈ (0, 1], leads to a contradiction;

minA⊆B,i∈Bc F (A ∪ {i})− F (A) ≥ ρ[F (B ∪ {i})− F (B)] > F (A ∪ {i})− F (A).

We show that ρ-submodularity is a stronger condition than weak submodularity. First, we recall
the definition of weak submodular functions.

Definition 14 (Weak Submodularity (see [DK11, EKDN16])). A function F is weakly submodu-
lar if ∀S,L, S ∩ L = ∅, F (L ∪ S)− F (L) > 0,

γS,L =

∑
i∈S F (L ∪ {i})− F (L)

F (L ∪ S)− F (L)
> 0

Proposition 13. If F is ρ-submodular then F is weakly submodular. But the converse is not true.

75

Chapter 3. Homogeneous and Non-Homogeneous Convex Relaxations

Proof. IfF is ρ-submodular then ∀S,L, S∩L = ∅, F (L∪S)−F (L) > 0, let S = {i1, i2, · · · , ir}

F (L ∪ S)− F (L) =
r∑

k=1

F (L ∪ {i1, · · · , ik})− F (L ∪ {i1, · · · , ik−1})

≤
r∑

k=1

1

ρ
(F (L ∪ {ik})− F (L))

⇒ γS,T = ρ > 0.

We show that the converse is not true by giving a counter-example: Consider the function
defined on V = {1, 2, 3}, where F ({i}) = 1,∀i, F ({1, 2}) = 1, F ({2, 3}) = 2, F ({1, 3}) =

2, F ({1, 2, 3}) = 3. Then note that this function is weakly submodular. We only need to consider
sets |S| ≥ 2, since otherwise γS,T > 0 holds trivially. Accordingly, we also only need to
consider L which is the empty set or a singleton. In both cases γS,T > 0. However, this F is not
ρ-submodular, since F (1, 2)− F (1) = 0 < ρ(F (1, 2, 3)− F (1, 3)) = ρ for any ρ > 0.

3.7.5 Proof of Propositions 9 and 10, and Corollary 9

First, we present a useful simple lemma, which provides an equivalent definition of decompos-
ability for monotone function.

Lemma 8. Given x ∈ Rd, J ⊆ J, supp(x) = J , if Φ is a monotone function, then Φ is
decomposable at x w.r.t J iff ∃MJ > 0,∀δ > 0, i ∈ Jc, s.t,

Φ(x+ δ1i) ≥ Φ(x) +MJδ.

Proof. By definition 11, ∃MJ > 0,∀∆ ∈ Rd, supp(∆) ⊆ Jc,

Φ(x+ ∆) ≥ Φ(x) +MJ‖∆‖∞.

in particular this must hold for ∆ = δ1i. On the other hand, if the inequality hold for all δ1i, then
given any ∆ s.t. supp(∆) ⊆ Jc let imax be the index where ∆imax = ‖∆‖∞ and let δ = ‖∆‖∞,
then

Φ(x+ ∆) ≥ Φ(x+ δimax) ≥ Φ(x) +MJδ = Φ(x) +MJ‖∆‖∞.

Proposition 9. Given any monotone set function F , all sets J ⊆ V strongly stable w.r.t to F are
also strongly stable w.r.t Ωp and Θp.

Proof. We make use of the variational form (3.11). Given a set J stable w.r.t to F and
supp(x) ⊆ J , let κ? ∈ arg maxκ∈Rd+

{∑i∈J κ
1/q
i |xi| : κ(A) ≤ F (A),∀A ⊆ V }, then Ω(x) =

76

3.7. Appendix: Proofs

|xJ |T (κ?J)1/q. Note that ∀A ⊆ J, F (A∪i) > F (A), by definition 12. Hence, ∀i ∈ Jc, we can de-
fine κ′ ∈ Rd+ s.t., κ′J = κ?J , κ′(J∪i)c = 0 and κ′i = minA⊆J F (A∪i)−F (A) > 0. Note that κ′ is
feasible, since ∀A ⊆ J,κ′(A) = κ?(A) ≤ F (A) and κ′(A+i) = κ?(A)+κ′i ≤ F (A)+F (A∪
i)−F (A) = F (A∪ i). For any other set κ′(A) = κ′(A∩ (J + i)) ≤ F (A∩ (J + i)) ≤ F (A),
by monotonicity. It follows then that Ω(x + δ1i) = maxκ∈Rd+

{∑d
i∈J∪i κ

1/q
i |xi| : κ(A) ≤

F (A),∀A ⊆ V } ≥ |xJ |T (κ?J)1/q + δ(κ′i)
1/q ≥ Ω(x) + δM , with M = (κ′i)

1/q > 0. The
proposition then follows by lemma 8.

The proof for Θp follows in a similar fashion. We make use of the variational form (3.15). Given
a set J stable w.r.t to F and supp(x) ⊆ J , first note that this implicitly implies that F (J) < +∞
and hence Θp(x) < +∞. Let κ? ∈ arg maxκ∈Rd+

∑d
j=1 ψj(κj , xj) + minS⊆V F (S) − κ(S)

and S? ∈ arg minS⊆J F (S) − κ?(S). Note that ∀S ⊆ J, ∀i ∈ Jc, F (S ∪ i) > F (S), by
definition 12. Hence, ∀i ∈ Jc, we can define κ′ ∈ Rd+ s.t., κ′J = κ?J , κ′(J∪i)c = 0 and
κ′i = minS⊆J F (S ∪ i) − F (S) > 0. Note that ∀S ⊆ J, F (S) − κ′(S) = F (S) − κ?(S) ≥
F (S?)−κ?(S?) and F (S + i)−κ′(S + i) = F (S + i)−κ?(S)− κ′i ≥ F (S + i)−κ?(S)−
F (S + i) + F (S) ≥ F (S?) − κ?(S?). Note also that ψi(κ′i, δ) = (κ′i)

1/qδ if δ ≤ (κ′i)
1/p,

and ψi(κ′i, δ) = 1
pδ
p + 1

qκ
′
i = δ(1

pδ
p−1 + 1

qκ
′
iδ
−1) ≥ δ(κ′i)

1/q otherwise. It follows then that
Θp(x+ δ1i) ≥

∑
j∈J ψj(κj , xj) + (κ′i)

1/qδ + minS⊆J∪i F (S)− κ′(S) ≥∑j∈J ψj(κj , xj) +

(κ′i)
1/qδ + minS⊆J F (S) − κ?(S) = Θp(x) + δM with M = (κ′i)

1/q > 0. The proposition
then follows by lemma 8.

Proposition 10. If F = F− and J is strongly stable w.r.t Ω∞, then J is strongly stable w.r.t F .
Similarly, for any monotone F , if J is strongly stable w.r.t Θ∞, then J is strongly stable w.r.t F .

Proof. F (A + i) = Ω∞(1A + 1i) = Θ∞(1A + 1i) > Ω∞(1A) = Θ∞(1A) = F (A),∀A ⊆
J.

Corollary 9. If F is monotone submodular and J is weakly stable w.r.t Ω∞ = Θ∞ then J is
weakly stable w.r.t F .

Proof. If F is a monotone submodular function, then Ω∞(x) = Θ∞(x) = fL(|x|). If J is not
weakly stable w.r.t F , then ∃i ∈ Jc s.t., F (J ∪ {i}) = F (J). Thus, given any x, supp(x) = J ,
choosing 0 < δ < mini∈J |xi|, result in fL(|x|+ δ1i) = fL(|x|), which contradicts the weak
stability of J w.r.t to Ω∞ = Θ∞.

77

4 Non-Euclidean Convex Composite
Optimization

4.1 Introduction

In the previous two chapters, we studied how to relax discrete descriptions of structured sparsity
models to convex ones. The obtained convex penalties are naturally non-smooth. In this chapter,
we are interested in optimizing the resulting convex composite minimization problem:

F ? = min
x∈Rd

{
F (x) := f(x) + g(x)

}
, (4.1)

where f is a smooth convex loss function, and g is a non-smooth convex regularizer, which acts
as a structure prior. Such problems are prevalent in machine learning and signal processing,
beyond structured sparsity problems.

The proximal gradient method and its accelerated variant (see Section 1.4) are the methods of
choice for solving (4.1), whenever the proximal operator of g can be computed efficiently:

prox`2g (u, z, L2) := arg min
x∈Rd

zTx+
L2

2
‖x− u‖22 + g(x), (4.2)

where the constant L2 is the Lipschitz constant of ∇f with respect to the `2-norm, and z is the
gradient of f at the current iterate u within the proximal gradient method.

The accelerated variant is known to converge with a rate of O(1/k2), which is optimal in terms
of dependence on k, for first-order methods in [NYD83]. However, the choice of the `2-norm
in these methods, may lead to suboptimal convergence, in terms of dimension dependence, for
problems which are not “well-behaved” in the `2-norm. We thus consider here their extension to
a General Proximal gradient Method (GPM), using the following operator:

proxg(u, z, L) ∈ arg min
x∈Rd

zTx+
L

2
‖x− u‖2 + g(x), (4.3)

where ‖ · ‖ is any norm and L is the Lipschitz constant of ∇f with respect to the chosen norm.

79

Chapter 4. Non-Euclidean Convex Composite Optimization

Note that, unlike (4.2) where the solution is unique, (4.3) can be set valued.

The interest in this generalization stems from the benefit it can entail on the convergence, in terms
of dimension dependence, as observed in the context of (projected) gradient descent method, for
e.g, in [KLOS14, Nes05, BWB14, dGJ13]. In this chapter, we further identify two additional
benefits; an appropriate choice of the norm can also lead, in some cases, to cheaper and sparse
updates.

4.1.1 Related work

The convergence rate of GPM with general norms was studied in [RT14]. However, the general
proximal operator (4.3), to be solved at each iteration in GPM, is not well-studied outside the
Euclidean setting. Indeed, for non-Euclidean norms, it was only shown to be tractable in the
special case where ‖ · ‖ is the `1-norm, and g is the `1-norm [SCJX17], or the indicator function
of the simplex [Nes05].

Other extensions of proximal gradient methods to non-Euclidean settings, where the `2-norm
in (4.2) is replaced by a Bregman divergence, were considered for example in [Tse08, Lan12].
However, as Bregman divergences are required to be strongly convex in the underlying norm,
they also can introduce unnecessary dimension dependence terms in the convergence rate.

On the other hand, generalized conditional gradient (GCG) method provides an attractive alterna-
tive to solve (4.1), with cheaper and sparse updates, and a performance invariant to the choice
of the norm used to measure properties of f , but at a slower convergence rate in general (see
Section 1.4.2). Moreover, this method is only applicable when g has bounded domain. Variants
of GCG able to handle the special case where g is a norm or a gauge, where proposed in [HJN15]
and [YZS17], respectively. These variants require an additional exact line search step at each
iteration, which can be expensive in general, and converge at the slower rate of O(1/k).

4.1.2 Contributions

In this chapter, we establish the tractability of GPM for a broad class of regularizers and norms,
including examples where the Euclidean proximal operator is not known to be efficently com-
putable, such as latent group Lasso, exclusive Lasso, and general overlapping group Lasso. In
addition, we propose the first—to our knowledge—accelerated variant of GPM for the general
composite problem (4.1). Our specific contributions can be summarized as follows:

• We introduce a polynomial-time method, which performs a logarithmic number of linear
optimization steps, to approximately compute the non-Euclidean proximal operator (4.3),
for any polyhedral norm and regularizer (Section 4.3.1).

• For a special class of regularizers, namely for atomic norms with linearly independent
atoms, and a matching choice of the norm, we design an efficient greedy algorithm to

80

4.2. Generalized proximal gradient method: Warm-up

compute (4.3) exactly (Section 4.3.2). The resulting iterates, in this approach, form a
sparse convex combination of only few “atoms”, which is a desirable property in several
applications, and particularly in structured sparsity problems.

• We propose an accelerated variant of GPM (accGPM), with a small extra computational
cost. Existing acceleration schemes in the non-Euclidean setting require an additional
proximal/projection operation with respect a strongly convex prox function. We introduce
a new type of estimate sequences which allow us to avoid such computation (Section 4.4).

• We illustrate our results on the Lasso and latent group Lasso problems (Section 4.5).

This chapter is based on the joint work with Ya-Ping Hsieh, Bang Vu, Quang Nguyen, and Volkan
Cevher [EHHV+17].

In the sequel, we defer all proofs to the appendix of this chapter.

4.1.3 Preliminaries

We use the set Γ0 to denote all proper lower semi-continuous convex functions on Rd. We
consider problems of the form (4.1), whose set of minimizers X ? is assumed to be non-empty
with f, g ∈ Γ0.

We further assume that the gradient of f is L-Lipschitz continuous with respect to ‖ · ‖, i.e.,
‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, where ‖ · ‖∗ is the dual norm of ‖ · ‖. This property implies
the following majorizer for any γ ∈ (0, 1/L]:

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+
1

2γ
‖x− y‖2. (4.4)

A function f is µ-strongly convex with respect to ‖ · ‖ if, ∀x,y ∈ Rd, ∀p ∈ ∂f(y), it holds that

f(x) ≥ f(y) + 〈x− y,p〉+
µ

2
‖x− y‖2. (4.5)

4.2 Generalized proximal gradient method: Warm-up

The general proximal gradient method (GPM) is the iterative scheme wherexk+1 ∈ proxg(xk,∇f(xk), L).
For completeness, we state below its basic convergence result.

Theorem 4. The iterates xk of GPM satisfy ∀k ∈ N:

F (xk)− F ? ≤ 2 max{LR(x0), F (x0)− F ?}
k

where R(x0) = max{x:F (x)≤F (x0)}minx?∈X ? ‖x − x?‖2. If, in addition, f(x) is µ-strongly

81

Chapter 4. Non-Euclidean Convex Composite Optimization

convex w.r.t. norm ‖ · ‖, then GPM satisfies

F (xk)− F ? ≤ (1− µ

L
)k
(
F (x0)− F ?

)
.

It is easy to see that the convergence rate of GPM depends on the choice of norm. Choosing
a non-Euclidean norm can lead in some cases to smaller Lipschitz constant L and level set
radius R(x0), as well as larger (restricted) strong convexity constant µ (see Section 4.5.1 and
[KLOS14, Nes05, BWB14]), thus yielding faster convergence.

Theorem 4 is not new; GPM has been analyzed in the context of randomized coordinate descent
[RT14]. However, the primary interest of [RT14] is the weighted `2-norm, and the broader
tractability question of the non-Euclidean norm choices is not addressed. We fill this gap in
Section 4.3.

4.3 Tractability of the generalized proximal operator

To our knowledge, the computation of the proximal operator (4.3) for non-Euclidean norms is
not addressed so far, except for the special case where ‖ · ‖ is the `1-norm, and g is the `1-norm
[SCJX17], or the indicator function of the simplex [Nes05].

Section 4.3.1 shows that proxg can be approximated in polynomial time, for the class of polyhe-
dral functions g, if the norm is chosen to be an atomic norm ‖ · ‖A, with finitely many atoms
(see Section 1.3.2 and [CRPW12]). In Section 4.3.1, we propose an efficient greedy algorithm
to compute proxg exactly, in the special case where g corresponds to an atomic norm, with
linear independent atoms, and the norm in proxg is chosen to be the same. In the simultaneous
independent work of [SCJX17], another greedy algorithm, with the same cost as ours, was
proposed to compute proxg, in the special case where g and ‖ · ‖ are both the `1-norm.

We start by introducing a Moreau-like decomposition which relates, as in the Euclidean case (see
Section 1.4.1), proxg to the proximal operator of the Fenchel conjugate g∗, with respect to the
dual norm ‖ · ‖∗, denoted by prox∗g∗ .

Proposition 14. Generalized Moreau’s decomposition Given g ∈ Γ0 and its Fenchel g∗, we have

p− z ∈ prox∗g∗(−z,−u, 1/L) and x? − u ∈ −∂
(L
2
‖ · ‖2∗

)
(p) ∩

(
− u+ ∂g(p− z)

)
(4.6)

where p ∈ −∂
(
L
2 ‖ · ‖2

)
(x? − u) ∩

(
z + ∂g(x?)

)
and x? ∈ proxg(u, z, L).

This relation allow us to efficiently compute both proximal operators, whenever one of them is
efficiently computable, and finding an element in the intersection of the two subdifferential sets
(4.6) is easy. Such operation is also required in the acceleration of GPM. Section 4.4 describes
how to find such an element for some examples of interest.

82

4.3. Tractability of the generalized proximal operator

A simple but key observation to our proposed framework is given below:

Lemma 9. Let h(t) = min‖x−u‖≤t z
Tx+ g(x) and t? ∈ ∂h(t?)

L then

x? ∈ proxg(u, z, L)⇔ x? ∈ arg min
‖x−u‖≤t?

zTx+ g(x). (4.7)

Computing proxg can be seen then as computing the Fenchel conjugate operator1 of g locally, by
restricting x in the norm ball of radius t? around u. Hence, we denote this operator by

lconjg(u, z, t) := arg min
‖x−u‖≤t

zTx+ g(x).

Here, we note a close connection between our local Fenchel conjugate operator and the local
linear minimization oracle proposed by [GH16]. The latter is a special case of lconjg, with
g = ιP for a polytope P .

4.3.1 Atomic proximal operator of polyhedral functions

In this section, we propose a polynomial time approach to approximately compute proxg for
any polyhedral function g, i.e., Pg := epi(g) is a polytope. Examples where g is a polyhedral
function are abundant, including structured sparsity-inducing penalties (see Sections 1.3.1 and
2.5)2 and general atomic norms [CRPW12]. For further examples, see [Jag13, GH16, LJJ15].

We choose the norm in proxg to be any atomic norm, i.e., ‖x‖A = inft>0{t : x ∈ t conv(A)},
where the atomic set A is centrally symmetric with finitely many atoms. We denote the polytope
PA := conv(A) and the resulting proximal operator by proxAg .

Our choice of the atomic norm is motivated by the following observation.

h(t) = min
‖x−u‖A≤t

zTx+ g(x) = min
x−u∈tPA
(x,y)∈Pg

zTx+ y. (4.8)

Hence, h is a non-increasing piecewise linear function and h(t) can be computed, for any t, by a
linear program (LP). We will assume Pg and PA are solvable polytopes, i.e., they have efficient
linear minimization oracles. Hence, the LP (4.8) can be solved in polynomial time.

Since h(t) is a non-increasing piecewise-linear function, its subdifferential can be approximated
by ∂h(t) ' [h(t)−h(t+ε)

ε , h(t−ε)−h(t)
ε] for a small enough ε > 0. If t is a differentiable point

of h(t), the interval would correspond to a unique value. The optimal t? can then be obtained
via binary search over the interval t? ∈ [tmin, tmax] where tmin = min(x,y)∈Pg ‖x − u‖A and

1Recall from section 1.4.2, that the Fenchel conjugate operator is the operator used in GCG.
2In fact, we can see from the variational forms presented in Chapter 3 (Section 3.7.1), that any homogeneous or

non-homogeneous convex envelope of a combinatorial function, over the unit `∞-ball, is polyhedral.

83

Chapter 4. Non-Euclidean Convex Composite Optimization

tmax = ‖xmin − u‖A where xmin ∈ arg minx z
Tx+ g(x). By Lemma 9, we reach the optimal

t? when t? ∈ ∂h(t)
L . Algorithm 1 provides a pseudocode for this approach.

Algorithm 1 Atomic prox of polyhedral functions

Input: tmin > 0, tmax > 0, δ > 0, ε > 0
while |tmax − tmin| > δ do
t = (tmin + tmax)/2;
slope1 = h(t)−h(t+ε)

ε

slope2 = h(t−ε)−h(t)
ε

if slope1 ≤ Lt ≤ slope2 then
break

else if t− slope1/L > 0 then
tmax = t

else
tmin = t

end if
end while
Return: xk+1 ∈ arg min‖x−u‖A≤t z

Tx+ g(x)

The binary search approach provides a simple strategy to compute proxAg approximately by a
logarithmic number of LPs, for any polyhedral function g, including examples where the standard
prox`2g is costly. Prominent examples include the `∞-latent group Lasso, `∞-exclusive Lasso,
and general overlapping `∞-group Lasso, for which existing approaches to compute prox`2g are
inefficient (see Section 1.4.1).

Note that the convergence analysis we provide in Sections 4.2 and 4.4 holds only for exact
proximal operators. While the study of inexact GPM is straightforward (the gradient method is
known to forgive inexact proximal operator calculations), the inexactness must be controlled for
its acceleration, which is already a well-studied topic. We will ignore these issues in the sequel.

4.3.2 Proximal operator of atomic norms with linearly independent atoms

In this section, we consider the special case of polyhedral functions where g is the indica-
tor function of an atomic norm with linearly independent atoms, i.e., g = ι‖·‖A≤λ, where
A := {a1, · · · ,a2m}, (ai)

m
1 ’s are linearly independent and ai = −am+i,∀i = 1, · · · ,m. To

simplify the notation, we use cyclic indexing, i.e., a2m+i = ai. For example, for the `1-norm,
(ai)

m
1 are the standard basis vectors.

We choose the matching norm in proxg, i.e., ‖ · ‖ = ‖ · ‖A. In this case, computing h(t)

corresponds to solving an LP over the intersection of the polytope PA = conv(A) and its (scaled)

84

4.3. Tractability of the generalized proximal operator

Figure 4.1: Illustration of the greedy Algorithm 2

translation by u:

h(t) = min
‖x−u‖A≤t

zTx+ g(x) = min
x−u∈tPA
x∈λPA

zTx. (4.9)

By the definition, we can represent x =
∑2m

i=1 c
x
i ai, where cx ≥ 0 such that

∑2m
i=1 c

x
i = ‖x‖A.

Lemma 10 shows that only linearly independent atoms are active in such a unique decomposition.
We call this then a “minimal representation" decomposition and denote it by cx = MR(x).

Lemma 10. Given x =
∑2m

i=1 c
x
i ai, c

x ≥ 0, then
∑2m

i=1 c
x
i = ‖x‖A ⇔ ∀i, cxi = 0 or cxi+m = 0.

Representing vectors in this fashion allows us to make the following simple observation.

Lemma 11. Given x,y ∈ Rd, s.t cx = MR(x), cy = MR(y), we have ‖x−y‖A = ‖cx−cy‖1.

Based on these observations, computing proxAg (u, z, L) reduces to the case where ‖ · ‖A = ‖ · ‖1.
We present in Algorithm 2 a fast greedy method that computes proxAg (u, z, L) exactly and which
only requires access to a linear minimization oracle LMOA(z) ∈ arg mina∈A z

Ta.

Note first that computing tmin and tmax is easy in this case: tmin = minx∈λPA ‖x − u‖A =

min‖cx‖1≤λ ‖cx−cu‖1 = max{‖u‖A−λ, 0} (by lemma 11) and tmax = max{−zTaimin/L, tmin}
where aimin := LMOA(z) and −zTaimin/L corresponds to the largest slope of h(t). For sim-
plicity, Algorithm 2 presented here assumes the input is feasible, i.e., u ∈ λPA and tmin = 0.
This is true for the iterates of GPM, but not for accGPM. The general algorithm is presented in
the Appendix.

At a high level, Algorithm 2 acts the following way (see Figure 4.1 for an illustration): Assuming
the optimal t? is known, the algorithm starts at u and moves in the direction of the best atom

85

Chapter 4. Non-Euclidean Convex Composite Optimization

Algorithm 2 Prox of linearly independent atomic norms: proxAg (u, z, L)

1: Input: cu = MR(u).
2: Initialize: x0 = u, cx = cu, t0u = 0.
3: Let aimin := LMOA(z)
4: Guess t0l = max{−zTaimin/L, 0}.
5: Sort zTai for active atoms: zTaj1 ≥ zTaj2 ≥ · · · , ∀cuj > 0.
6: Let δ0 = maxδ>0{δ: u+ δajmin∈ λPA ∩ (t0l PA +u)} = min{t0l , λ−‖u‖A + 2cuimin+m}
7: Update x0 = u+ δ0aimin .
8: Update weights: cximin

= max{δ0 + cuimin
− cuimin+m, 0}, cximin+m= −min{δ0 + cuimin

−
cuimin+m, 0}

9: Update t0u = δ0, t
r
l = t0l − t0u.

10: while k = 1, · · · , d and tkl ≥ 0 do
11: Update guess tkl = max{−0.5zT (aimin − ajk)/L− tku, 0}.
12: Let δk = maxδ>0{δ: xk−1 + δ(aimin − ajk)∈ λPA ∩ (tkl PA + u)} = min{cxjk , tkl /2}
13: Update xk = xk−1 + δk(aimin − ajk)
14: Update tk+1

l = tkl − 2δk
15: end while
16: Return: xk

aimin , i.e., the one with the smallest product zTa (line 3), until it hits the boundary of one the
two polytopes (lines 6 - 7). If the boundary reached is of t?PA + u, we are done. Otherwise, we
are at the boundary of λPA.

The algorithm then improves on the solution by moving the largest amount of weight, which will
not violate the constraints, from other active atoms to aimin , starting from the least beneficial
active atom in terms of their product with z. The algorithm stops when it runs out of active atoms
or it reaches ‖x − u‖A = t? (lines 10 -15). Note the similarity with Away step FW [LJJ15],
which only reduces the weight of the worst active atom.

Note that Algorithm 2 actually minimizes the objective along the path of possible values of
t? = ‖x? − u‖A from t = 0 to t = tmax. Indeed, the iterates satisfy xk ∈ lconjg(u, z, tku),∀k,
where tku (budget used) and tkl (budget left) keep track, respectively, of how far we are from
u, ‖xk − u‖A = tku and how far we “guess" we are from the boundary of t?PA + u, where
the guess of Lt? corresponds to the current slope of h(tku). Unlike the general case where
we are computing h(t) using a black box optimizer, we actually can compute explicitly the
slopes of the different pieces of h(t), given by zTaimin , 0.5(zTaimin − zTaj1), 0.5(zTaimin −
zTaj2), · · · , 0.5(zTaimin − zTajd).

Proposition 15. Algorithm 2 returns x ∈ proxAg (u, z, L) in O(dT + d log d) time, where T is
the time to compute zTa for any atom a ∈ A.

Sketch of Proof Assuming t? is guessed correctly, then if the maximal feasible step δ0 = t?,
x0 is optimal. Otherwise ‖x0‖A = λ and there exists an optimal solution x? s.t. ‖x?‖A = λ

86

4.4. Accelerated generalized proximal gradient method

and ‖x? − x0‖A ≤ t? − δ0. Then by Lemma 11, we can now solve instead: mincx≥0{z̃Tcx :

1Tcx = λ, ‖cx − cx0‖1 ≤ t} where z̃i = zTai. This has been considered by [GH16], to obtain
a local linear minimization oracle. The rest of our algorithm, i.e., after entering the for loop on
line 10, reduces to theirs. We refer the reader to their proof of correctness [GH16, Lemma 5.2].
The correctness of the search for t? follows from the correctness of this greedy approach. Finally,
it is clear that the most expensive step in Algorithm 2 is the sorting operation on line 5, and hence
its time complexity is O(dT + d log d).

Remark 4. If g(x) = λ‖x‖A where A := {a1, · · · ,a2m}, (ai)
m
1 ’s are linearly independent.

Its Fenchel conjugate is given by g∗(x) = ι{‖·‖A∗≤λ}(x), where ‖ · ‖A∗ is the dual norm of ‖ · ‖A,
then proxAg can be obtained by computing proxA

∗
g∗ via Algorithm 2 and applying Proposition 14.

Note that Algorithm 2 only adds one atom to the set of active atoms of u and possibly remove
others, hence the corresponding iterates in GPM retain “sparsity”.

4.4 Accelerated generalized proximal gradient method

In this section, we present an accelerated variant of GPM in Algorithm 3 and show that it has the
same convergence rate as fast Euclidean proximal gradient methods, such as FISTA [BT09a].

The literature is vast on how to accelerate first order methods in non-Euclidean setting [Nes05,
Tse08, Lan12, Aho16, AZO14, WWJ16]. However, unlike accGPM, these schemes require the
computation of an additional proximal/projection operation with respect to a strongly convex
prox-function D in each iteration. Similar to the classical fast methods, accGPM introduces a
momentum term. However, a novel term pk in line 10 of accGPM is essential in our analysis.

Algorithm 3 Accelerated proximal gradient method

1: Input: L > 0, µ > 0, x0 ∈ Rd, β0 > 0.
2: Initialization: w0 = x0, y0 = x0.
3: for k = 0, 1, . . . do
4: γk ∈ (0, 1/L], αk = 1

2

(√
β2
kγ

2
k + 4βkγk − βkγk

)
, βk+1 = (1− αk)βk + αkτkµ

5: yk+1 = (1− αk)xk + αkw
k

6: xk+1 ∈ prox(yk+1,∇f(yk+1), 1/γk)
7: if xk+1 = yk+1 then
8: stop
9: end if

10: pk ∈ −∂
(

1
2γk
‖ · ‖2

)
(xk+1 − yk+1) ∩

(
∇f(yk+1) + ∂g(xk+1)

)
11: wk+1 = arg minx∈Rd ek+1(x)
12: end for
13: Return: xk+1

87

Chapter 4. Non-Euclidean Convex Composite Optimization

Computation of pk: When g = 0, this term reduces to the gradient of f ; pk = ∇f(yk+1).
When ‖ · ‖2 or g(x) is differentiable, pk is unique. In general, since the subdifferential of any
norm can be described by ∂‖x‖ = {z : zTx = ‖x‖, ‖z‖∗ ≤ 1}, then if g and ‖ · ‖ are atomic
norms, pk can be computed via a linear feasibility problem. In Sections 4.7.5 and 4.7.6, we show
specifically how to compute pk for the examples used in the numerical experiments; i.e, for the
`1-norm and `∞-latent group Lasso norm.

A non-Euclidean projected gradient algorithm solving the special case of Problem (4.1), where
g = ιX for a convex set X , was proposed in [Nes05]. The analysis of this scheme is based on the
concept of estimate sequences (cf., [Bae09, Nes04]). Algorithm 3 solves Problem (4.1) in the
general setting, by constructing a novel estimate sequence ek defined as follows.

Definition 15. Let (αk)k∈N, (τk)k∈N and (γk)k∈N be sequences in (0,+∞) and let (xk)k∈N,
(yk)k∈N and (pk)k∈N be sequences in Rd. We define the estimate sequence ek recursively, with

e0 :=
β0

σ
D + F (x0) and ek+1 := (1− αk)ek + αk

(
(1− τk)ψk + τkφk

)
, where

ψk := F (xk+1) +
〈
· − xk+1,pk

〉
− 1

2γk
‖xk+1 − yk+1‖2

and
φk := f(yk+1) +

〈
· − yk+1,∇f(yk+1)

〉
+ g.

The prox-function D is σ-strongly convex with respect to ‖ · ‖ and x0 = arg minx∈Rd D(x),
assuming without loss of generality that D(x0) = 0.

Note that the parameter τk allows us to choose between ψk and φk, depending on which is
more suitable to the problem at hand. The estimate sequence resulting from φk (τk = 1) is a
direct extension of the one considered in [Nes05]. If g is strongly convex, this type of estimate
sequence is preferable as it can exploit strong convexity, leading to a linear rate (see Theorem 5).
However, this approach requires the minimization of a proximal-type subproblem involving the
strongly-convex function D (line 11 in Algorithm 3). In fact, if D = 1

2‖ · ‖22, this subproblem
reduces to the Euclidean proximal operator of g.

On the other hand, choosing instead the novel estimate sequence resulting from ψk (τk = 0)
avoids such expensive subroutine. In this case, the minimization problem at line 11 is an instance
of the Fenchel conjugate operator of D, which is usually easy to compute. For example, if
D = 1

2‖ · ‖2q , 1 < q ≤ 2, wk+1 can be computed in closed-form solution.

Theorem 5 (Convergence3). Given g which is µ-strongly convex w.r.t. ‖·‖. If accGPM terminates
at iteration k, i.e., xk+1 = yk+1, then xk+1 is a solution to (4.1). Otherwise, let x? ∈X ?, the
iterates of accGPM satisfy the following.

3This theorem and its proof are due primarily to B. Vu.

88

4.5. Experiments

1. If µ = 0. Then ∀k ∈ N, we have F (xk+1)− F ? ≤ 4
(
σ(F (x0)− F ?) + β0D(x?)

)
σ{2 +

√
β0
∑k

i=0

√
γi}2

.

Consequently, if ∀k ∈ N, γk = 1/L, thenF (xk+1)−F ? ≤ 4L
(
σ(F (x0)− F ?) + β0D(x?)

)
σ{2
√
L+
√
β0(k + 1)}2

.

2. If µ > 0. Set τ = infk∈N τk, and ρ = τµ
2L

{√
1 + 4L

β0+µ − 1

}
. If β0 ≥ τµ and

∀k ∈ N, γk = 1/L, then we have F (xk+1)−F ? ≤ (1−ρ)k+1{F (x0)−F ?+ β0
σ D(x?)}.

Note that the choice of the norm in accGPM affects the Lipschitz constant L, and the strong
convexity constant µ as in GPM, but also affects implicitly the term D(x?)/σ.

4.5 Experiments

The purpose of this numerical section is to demonstrate how choosing a non-Euclidean norm
in GPM leads in some cases to faster convergence, and in others to easier-to-solve proximal
operators. To that end, we consider in Section 4.5.1, the classical Lasso problem [Tib96] and
illustrate how `1-GPM improves the convergence rate, in a sparse setting. Then, in Section 4.5.2,
we consider the latent group Lasso problem [OJV11] and illustrate how our results allow us to
compute the non-Euclidean proximal operator of the `∞-latent group Lasso norm, significantly
faster than state-of-the-art methods computing the corresponding Euclidean proximal operator.

4.5.1 Lasso

In this section, we consider the classical Lasso problem [Tib96]:

min
x∈Rd

1

2n
‖y −Ax‖22 + λ‖x‖1.

We propose to solve it with `1-GPM, i.e., with prox`1`1 . The motivation for this choice is two folds.
The resulting iterates from prox`1`1 are sparse (see Section 4.3.2) which is naturally preferred
in this set-up. Also, the convergence rate of GPM is better when the `1-norm is chosen, as
opposed to the `2-norm, in the sparse settings. Indeed, recall from Theorem 4, that GPM
converges in O(

L1‖x?‖21
k) with the `1-norm, and in O(

L2‖x?‖22
k) with the `2-norm. In this case,

L1 = maxi,j |[ATA]ij | and L2 = σmax(A)2, where σmax(A) is the largest singular value ofA.
Hence, ifA is a dense matrix, we can have L1 � L2, while ‖x?‖1 ' ‖x?‖2 when x? is sparse.
Moreover, the restricted strong convexity parameter, which governs the learning quality of Lasso
problems is also known to be better w.r.t. the `1-norm vs the `2-norm [VDGB09], implying faster
convergence also in the estimation error. Our experiments verify these observations.

Unfortunately, some of these benefits are lost in the accelerated variant `1-accGPM, where
the iterates are no longer sparse, and the strong convexity requirement on the prox-function

89

Chapter 4. Non-Euclidean Convex Composite Optimization

100 102

10-10

100

F (xk)! F $

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-10

100

F (xk)! F $

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-5

100

F (xk)! F $

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-4

10-2

100

kxk ! x\k2

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-4

10-2

100

kxk ! x\k2

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-2

10-1

100

101
kxk ! x\k2

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

Figure 4.2: (1st row) Objective error and (2nd row) estimation error, with d = 1000, n = 400:
(Left) s = 10, (Middle) s = 50, (Right) s = 100.

D in Definition 15, introduces a dimension-dependent term in the convergence rate. We use
D(x) = 1

2‖x‖21+ε as the prox-function. This function is strongly convex in the `1-norm, when

ε > 0, with σ = ε/d
2ε
1+ε . We choose ε = log d − 1 −

√
(log d− 1)2 − 1, to maximize σ. The

convergence rate of `1-accGPM in this case is O(
L1 log2(d)‖x?‖21+ε

k2
) by Theorem 5.

The standard prox`2`1 can be computed in O(d) using the soft thresholding operator [DJ95]. By
Remark 4, the decomposition in Proposition 14 can be exploited to compute prox`1`1 in O(d log d)

time with the greedy Algorithm 2. We choose instead to solve it directly via another greedy
algorithm, of the same “flavor" as Algorithm 2, presented in the Appendix. The momentum pk

for accGPM has a closed form solution in this case, also given in the Appendix.

We synthetically set up a linear model y = Ax\ + ε, where x\ is an s-sparse vector with
normalized `1-norm. A ∈ Rn×d is an i.i.d Gaussian matrix and ε an i.i.d. Gaussian noise vector
of variance σ2 where σ = 10−4. We fix d = 1000, n = 400, and vary the sparsity level s from
10 to 100. The number of samples is chosen to exceed the sample complexity [NRW+12], while
approaching to the statistical phase transition as sparsity increases. The regularization parameter

is set to λ = σ
√

log d
n according to the theory of [NRW+12].

We compare ISTA and FISTA to `1-GPM and `1-accGPM (with τ = 0). Figure 4.2 plots (in log
scale) the objective error and estimation error, in the different sparsity setups. We use an accuracy
based stopping condition with tol= 10−9 where the optimal objective value is obtained by
the convex solver CVX [GB14]. We also use a 3000 iteration limit. We equip both ISTA and

90

4.5. Experiments

Figure 4.3: Objective error on the LEUKEMIA dataset.

Table 4.1: Running time (in sec) of prox`2G (LHS) and prox`∞G + pk (RHS), averaged over 10
runs.

d = 64 d = 128 d = 256 d = 512
tol= 10−2 0.055 0.055 + 0.003 0.103 0.137+ 0.005 0.192 0.247 + 0.009 0.461 0.714 + 0.016
tol= 10−3 0.502 0.101 + 0.003 0.944 0.149 + 0.004 2.038 0.360 + 0.008 4.213 1.276 + 0.013
tol= 10−4 5.234 0.252 + 0.006 9.422 0.203 + 0.004 18.92 0.460 + 0.006 41.21 1.857 + 0.016
tol= 10−5 42.62 0.214 + 0.005 98.13 0.428 + 0.009 170.6 0.614 + 0.006 377.5 1.487 + 0.015

`1-GPM with line-search.

`1-accGPM has a similar performance to FISTA, and is slower than its non-accelerated variant
in this setting, due to the dimension-dependence of σ. Otherwise, a clear advantage of sparse
updates in the sparse regime can be inferred from the leftmost pair, where `1-GPM significantly
outperforms ISTA/FISTA. As the sparsity level increases, the benefits of sparse updates vanish
(mid pair), and around the phase transition classical gradient methods perform better.

In the above setting, the reduction in the Lipschitz constant seems to be offset by the log2(d) term
in the convergence rate of `1-accGPM. We consider now another set-up, where we compare the
same methods on the real dataset LEUKEMIA from LIBSVM [Cha00], which contains n = 38

samples and d = 7129 features. We use the same stopping conditions as before. The convergence
behavior is depicted in Figure 4.3. In this case, we can see a clear advantage of using `1-accGPM.

4.5.2 Latent group Lasso

In this section, we consider the latent group Lasso (LGL) problem:

min
x∈Rd

1

2
‖y −Ax‖22 + λ‖x‖G,

91

Chapter 4. Non-Euclidean Convex Composite Optimization

iterations
100 102 104

10-6

10-4

10-2

100

102
F (xk)! F $

`1-accGPM
FISTA

time (sec)
10-5 100 105

10-6

10-4

10-2

100

102
F (xk)! F $

`1-accGPM
FISTA

iterations
100 102 104

10-3

10-2

10-1

100

101
kxk ! xcvxk2

`1-accGPM
FISTA

time (sec)
10-5 100 105

10-3

10-2

10-1

100

101
kxk ! xcvxk2

`1-accGPM
FISTA

Figure 4.4: Objective error (top) and optimization error (bottom), for d = 100, n = 50, s = 2.

where ‖x‖G is the LGL-norm, proposed by [OJV11] to induce supports that corresponds to union
of groups (see Section 1.3.1). Given a collection of groups G = {G1, · · · , GM}, the `p-LGL
norm is given by ‖x‖G = minv{

∑M
i=1 ‖vGi‖p : |x| =

∑M
i=1 vGi , supp(vGi) ⊆ Gi}. It is

known that `p-LGL is an atomic norm, with atoms A = {v ∈ Rd : supp(vGi) ⊆ Gi, ‖vGi‖p ≤
1} [OJV11]. We focus on the case p =∞ with finitely many atoms. Recall that `∞-LGL is the
convex envelope of the set cover function over the unit `∞-ball (see Sections 1.3.4 and 2.5.1).

As the goal here is to compare the time complexity of the proximal operator of the LGL norm,
with a Euclidean vs. a non-Euclidean norm, we do not optimize the choice of the non-Euclidean
norm to achieve the best convergence rate, and simply choose ‖ · ‖ to be the `∞-norm.

The atoms in A are not linearly independent, thus we cannot use the greedy Algorithm 2.
Nevertheless, `∞-LGL is a polyhedral function, as required in Section 4.3.1. Hence, its proximal
operator prox`∞G , with respect to the `∞-norm, can be computed via Algorithm 1, and its pk
can be computed by a feasibility LP, given in the Appendix.We use Gurobi [Gur16] to solve the
resulting LPs. We choose D(x) = 1

2‖x‖22 as the prox-function.

To the best of our knowledge, the only available approaches to compute the Euclidean proximal
operator of `∞-LGL, i.e., prox`2G , is either via duplicating the variables in the overlapping
groups, which is very inefficient for groups with substantial overlap, or via the cyclic projections
approach proposed in [VRMV14], which is guaranteed to converge but with no convergence rate
guarantees.

We first assess the time complexity of the proximal operator prox`∞G vs prox`2G . We fix the size of
the groups to |Gi| = 10 and generate M = 2.5d/10 (to ensure substantial overlap) groups with
randomly selected elements. The input u ∈ Rd is generated as a random Gaussian vector. For

92

4.6. Discussion

fairness, we set λ = 0.8 mini ‖uGi‖1 to ensure all groups are active. We report in Table 4.1 the
CPU time (in sec) of prox`∞G and prox`2G , as we vary the dimension d from 64 to 512 and the
accuracy tol from 10−2 to 10−5, where a true solution is obtained by the convex solver CVX
[GB14]. prox`∞G provides up to 300× speed up, and the cost of computing pk is negligible.

To assess if the slow performance of prox`2G is compensated by a better convergence rate, we
compare the performance of FISTA to `∞-accGPM on a synthetic learning problem, where the
true vector x\ is given by the union of s = 2 randomly selected groups. We follow otherwise the
same setup as in Section 4.5.1, with d = 100, n = 50 and the groups generated as before. We
stop both proximal algorithms after 105 iterations, or when the distance between iterates reaches
a precision, initialized to 10−5 and decreased linearly with iterations. For the outer algorithms,
we use an accuracy based stopping condition with tol= 10−9 where the optimal objective value
is obtained by CVX. We also use a 5000 iteration limit. We choose the regularization parameter λ
that yields the best performance on the CVX solution. Figure 4.4 plots (in logscale) the objective
error and optimization error. FISTA indeed has a better convergence rate in this case, but this is
undermined by the slow performance of prox`2G . Indeed, with the set iteration limit, prox`2G is not
able to reach the requested precision, and thus FISTA does not converge to the true solution.

4.6 Discussion

We presented two algorithms to compute the non-Euclidean proximal operator in GPM, for
polyhedral regularizers and norms: One general polynomial-time method (Algorithm 1), which
requires computing a logarithmic number of linear minimization problems over the intersection
of two polytopes. The other is an efficient greedy method (Algorithm 2) which only applies to
special cases where the regularizer is an atomic norm with linearly independent atoms. The cost
of updating the iterates of GPM via this greedy method is almost as cheap as Frank-Wolfe (FW)
iterates, and the resulting iterates are sparse; a very attractive property specially in the context of
structured sparsity.

We also introduced an accelerated variant of GPM, which only requires an additional feasibility
LP in general, as opposed to the additional proximal/projection operation typically required by
other acceleration schemes. We showcased the benefit of using non-Euclidean norms in GPM
numerically on two structured-sparsity examples, showing significant speed-up over state-of-the-
art methods.

The discussion in this chapter raises the following open questions:

Open question 6. The general Algorithm 1, though only requiring linear minimization problems,
can still be expensive in general; limiting the applicability of this approach. Can we extend the
greedy Algorithm 2 to handle any polyhedral function?

A possible promising approach to achieve this is to leverage the analysis from [GH16], which
considers a related problem to the local Fenchel conjugate operator (4.7) we use, namely a local

93

Chapter 4. Non-Euclidean Convex Composite Optimization

linear minimization oracle. In particular, in [GH16] the authors reduce the general polytope case
of their problem to the simpler case of the simplex constraint, but loose a factor of d in their
convergence rate in the process. It is worth investigating a similar reduction for the local Fenchel
conjugate operator. We expect the factor d to be replaced by a factor ρ, relating the norm ‖ · ‖
chosen in GPM to the `1-norm, such that ‖ · ‖21 ≤ ρ‖ · ‖2.

Such extension would result in a proximal gradient method with an attractive trade-off: It would
enjoy cheap and sparse iterates, which are only slightly more expensive than a linear minimization
oracle, and a fast convergence rate, optimal in terms of iteration-dependence, via the accelerated
variant we presented in this chapter.

Open question 7. One drawback to the acceleration method accGPM and any other acceleration
method, is the requirement that the prox-function D should be strongly convex. This restriction
on the choice of D then introduces dimension dependent terms in the convergence rate, which
offset the benefit of choosing a suitable norm, as observed in Section 4.5.1. In the worst case,
the dimension dependence can reach up to a factor d, if the chosen norm is the `∞-norm; this is
known as the `∞- barrier [She17]. Is this dimension-dependence necessary or it can be avoided
by better acceleration schemes?

A weaker notion than strong convexity, called area convexity, was introduced in a recent work
[She17] considering bilinear saddle point problems. In this work, a modified version of Nes-
terov’s dual extrapolation algorithm [Nes07] is presented, which only requires area-convexity
for convergence. This approach is successfully applied to accelerate maxflow problems, without
suffering any increase in dimension dependence. Such result suggest then that the dimension-
dependence might not be necessary. It is worth then investigating acceleration schemes of GPM,
under this weaker area convexity assumption on the prox-function D. Designing area-convex
prox-functions suitable for structured sparsity problems is also needed to be able to apply this
approach.

94

4.7. Appendix: Proofs

4.7 Appendix: Proofs

4.7.1 Proof of Theorem 4

Theorem 4. The iterates xk of GPM satisfy ∀k ∈ N:

F (xk)− F ? ≤ 2 max{LR(x0), F (x0)− F ?}
k

where R(x0) = max{x:F (x)≤F (x0)}minx?∈X ? ‖x − x?‖2. If, in addition, f(x) is µ-strongly
convex w.r.t. norm ‖ · ‖, then GPM satisfies

F (xk)− F ? ≤ (1− µ

L
)k
(
F (x0)− F ?

)
.

Proof. Without loss of generality, we assume that f is µ-strongly convex with µ ∈ [0,+∞)

(µ = 0 corresponds to the case where f is convex). Fix x? a minimizer of F such that
maxx:F (x)≤F (x0) ‖x− x?‖ ≤ R(x0), and k ∈ N. If xk is a minimizer of F then the claims are
trivial. Otherwise, let us define

(∀x ∈ Rd) Q(x,xk) = f(xk) +
〈
x− xk,∇f(xk)

〉
+ g(x) +

L

2
‖x− xk‖2. (4.10)

Then
xk+1 ∈ proxg(∇f(xk),xk, L) = arg min

x∈Rd
Q(x,xk). (4.11)

Since the gradient f is L-Lipschitz continuous,

f(xk+1) ≤ f(xk) +
〈
xk+1 − xk,∇f(xk)

〉
+
L

2
‖xk+1 − xk‖2 (4.12)

and hence (4.11) yields

F (xk) = Q(xk,xk) ≥ Q(xk+1,xk) ≥ F (xk+1). (4.13)

By strongly convexity of f we have,

(∀x ∈ Rd) f(xk) +
〈
x− xk,∇f(xk)

〉
≤ f(x)− µ

2
‖x− xk‖2. (4.14)

Also by strongly convexity of F and by lemma 13 in [SSS07] we have

(∀α ∈ [0, 1]) F (αx? + (1− α)xk) ≤ αF (x?) + (1− α)F (xk)− α(1− α)µ

2
‖x? − xk‖2.

(4.15)

95

Chapter 4. Non-Euclidean Convex Composite Optimization

It hence follows from (4.11), (4.14), and (4.15) that

Q(xk+1,xk) = min
x∈Rd

f(xk) +
〈
x− xk,∇f(xk)

〉
+ g(x) +

L

2
‖x− xk‖2

≤ min
x∈Rd

F (x) +
L− µ

2
‖x− xk‖2

≤ min
α∈[0,1]

F (αx? + (1− α)xk) +
(L− µ)α2

2
‖x? − xk‖2

≤ min
α∈[0,1]

αF (x?) + (1− α)F (xk)− α(1− α)µ

2
‖x? − xk‖2 +

(L− µ)α2

2
‖xk − x?‖2.

≤ min
α∈[0,1]

F (xk) + α
(
F (x?)− F (xk)

)
− α(1− α)µ− (L− µ)α2

2
‖x? − xk‖2.

(4.16)

For µ = 0, the function in (4.16) admits a minimizer at

α?k = min{ F (xk)− F ?
L‖xk − x?‖2 , 1} ∈ [0, 1], (4.17)

we deduce from (4.16) that

Q(xk+1,xk)− F ? ≤ max

{
1− F (xk)− F ?

2L‖xk − x?‖2 ,
1

2

}(
F (xk)− F ?

)
. (4.18)

Let ρ = 2 max{LR(x0), F (x0)− F ?}. Consequently, (4.13) yields

F (xk+1)− F ? ≤ Q(xk+1,xk)− F ? ≤
(

1− F (xk)− F ?
ρ

)(
F (xk)− F ?

)
. (4.19)

Let ak = F (xk)− F ?. Since ak − ak+1 ≥ a2k
ρ , we obtain

1

ak+1
− 1

ak
=
ak − ak+1

akak+1
≥ a2

k

ρa2
k

=
1

ρ
. (4.20)

Consequently, ak ≤ ρ
k , which proves the first claim. For the second claim, we note that

(∀x ∈ Rd)
µ

2
‖x− x?‖2 ≤ F (x)− F ? (4.21)

and hence α∗k =
µ

L
∈ (0, 1]. It then follows from (4.16) that Q(xk+1,xk) ≤ F (xk) −

α∗k
(
F (xk)− F ?

)
, and hence,

F (xk+1)− F ? ≤ (1− α∗k)
(
F (xk)− F ?

)
=

(
1− µ

L

)(
F (xk)− F ?

)
. (4.22)

96

4.7. Appendix: Proofs

4.7.2 Proof of Proposition 14 and Lemma 9

Proposition 14. Generalized Moreau’s decomposition Given g ∈ Γ0 and its Fenchel g∗, we
have

p− z ∈ prox∗g∗(−z,−u, 1/L) and x? − u ∈ −∂
(L
2
‖ · ‖2∗

)
(p) ∩

(
− u+ ∂g(p− z)

)
(4.6)

where p ∈ −∂
(
L
2 ‖ · ‖2

)
(x? − u) ∩

(
z + ∂g(x?)

)
and x? ∈ proxg(u, z, L).

Proof. Recall that y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y) for any f ∈ Γ0 and its Fenchel conjugate f∗.
Then since the Fenchel conjugate of −L

2 ‖ · ‖2 is given by − 1
2L‖ · ‖2∗, we have

x? − u ∈ ∂
(
− L

2
‖ · ‖2∗

)
(p)

x? ∈ ∂g(p− z)

⇔ x? − u ∈ ∂
(
− L

2
‖ · ‖2∗

)
(p−z +z) ∩

(
− u+ ∂g(p− z)

)
⇔ p− z ∈ prox∗g∗(−z,−u, 1/L)

Lemma 9. Let h(t) = min‖x−u‖≤t z
Tx+ g(x) and t? ∈ ∂h(t?)

L then

x? ∈ proxg(u, z, L)⇔ x? ∈ arg min
‖x−u‖≤t?

zTx+ g(x). (4.7)

Proof. The two problems are related in the following way:

min
x∈Rd

zTx+
L

2
‖x− u‖2 + g(x)

= min
t≥0

L

2
t2 + min

‖x−u‖≤t
zTx+ g(x)

= min
t≥0

L

2
t2 + h(t)

The lemma follows by optimality conditions.

4.7.3 Proof of Lemmas 10 and 11, and Proposition 15

Lemma 10. Given x =
∑2m

i=1 c
x
i ai, c

x ≥ 0, then
∑2m

i=1 c
x
i = ‖x‖A ⇔ ∀i, cxi = 0 or cxi+m = 0.

Proof. Assume towards contradiction that ∃i′, such that cxi′ 6= 0, cxi′+m 6= 0, then let c̃xi′ =

cxi′−min{cxi′ , cxi′+m}, c̃xi′+m = cxi′+m−min{cxi′ , cxi′+m}, which makes one of them zero and keep
all other coefficients unchanged. Note then that x =

∑2m
i=1 c̃

x
i ai, c̃

x ≥ 0 and 1T c̃x < 1Tcx =

97

Chapter 4. Non-Euclidean Convex Composite Optimization

‖x‖A leading to a contradiction. The uniqueness follows from the linear independence of the
atoms. The other direction follows from the uniqueness observation.

Lemma 11. Given x,y ∈ Rd, s.t cx = MR(x), cy = MR(y), we have ‖x−y‖A = ‖cx−cy‖1.

Proof. We can write x−y =
∑2m

i=1 c
x−y
i ai where cx−y = MR(x−y). By linear independence,

we have (cxi −cxi+m)− (cyi −c
y
i+m) = (cx−yi −cx−yi+m). By lemma 10, we know that ∀i either cx−yi

or cx−yi+m is zero. It follows then that the other will be equal to |(cxi − cxi+m)− (cyi − c
y
i+m)|. Hence

‖(cx(1 : m)− cy(1 : m))− (cx(m+ 1 : 2m)− cy(m+ 1 : 2m))‖1 = 1Tcx−y = ‖x− y‖A.

By lemma 10, we only need to consider these cases:

cxi cxi+m cyi cyi+m |(cxi − cxi+m)− (cyi − c
y
i+m)| |cxi − cyi |+ |cxi+m − c

y
i+m|

> 0 0 > 0 0 |cxi − cyi | |cxi − cyi |
> 0 0 0 > 0 cxi + cyi+m cxi + cyi+m
0 > 0 > 0 0 cxi+m + cyi cxi+m + cyi
0 > 0 0 > 0 |cxi+m − cyi+m| |cxi+m − cyi+m|

Hence, ‖x − y‖A = ‖(cx(1 : m) − cy(1 : m)) − (cx(m + 1 : 2m) − cy(m + 1 : 2m))‖1 =

‖cx(1 : m)− cy(1 : m)‖1 + ‖cx(m+ 1 : 2m)− cy(m+ 1 : 2m)‖1 = ‖cx − cy‖1.

Algorithm 4 presents the general version of Algorithm 2 which can handle the case where
‖u‖A > λ. In the case where ‖u‖A ≤ λ and t is given, Algorithm 4 reduces to Algorithm 5.

Proposition 15. Algorithm 2 returns x ∈ proxAg (u, z, L) in O(dT + d log d) time, where T is
the time to compute zTa for any atom a ∈ A.

Proof. We know from lemma 9 that solving proxAg (u, z, L) reduces to solving lconjAg (u, z, t)

with t = t?. We show first that given any t ≥ 0 Algorithm 5 indeed returns xk ∈ lconjAg (u, z, t).
Making use of lemma 10 and 11, we make the following observations:

• δ0 = maxδ>0{δ : u+ δajmin ∈ λ conv(A) ∩ (t conv(A) + u)}.
To see this note that for any δ > 0 s.t. x = u + δajmin is feasible, we need to have
‖x− u‖A = δ ≤ t and ‖x‖A ≤ λ, i.e.,

∑
i6=imin,imin+m c

u
i + |δ + cuimin

− cuimin+m| ≤ λ

(by lemma 10). Since 1Tcu = ‖u‖A ≤ c, we deduce the following constraint (note that
we don’t need to consider cases where δ+cuimin

−cuimin+m ≤ 0 since in that case ‖x‖A ≤ λ
is trivially satisfied for any δ ≥ 0), δ ≤ λ − ‖u‖A + 2cuimin+m. Hence, δ0 is indeed the
maximal feasible step in this direction.

• δ0 = t then x0 is optimal.
Given any x ∈ Rd s.t., ‖x − u‖A ≤ t, i.e., x − u ∈ t conv(A), we can write it as
x − u =

∑2m
i=1 c

x−u
i ai with cx−u ≥ 0 and 1Tcx−u = t (not necessarily a minimal

98

4.7. Appendix: Proofs

Algorithm 4 Prox of linearly independent atomic norms: proxAg (u, z, L)

1: Input: cu = MR(u).
2: Initialize: x0 = u, cx = cu, t0u = 0, r = 1.
3: tmin = max{‖u‖A − λ, 0}
4: aimin := LMOA(z)
5: t0l = max{−zTaimin/L, tmin}.
6: Sort zTai for active atoms: zTaj1 ≥ zTaj2 ≥ · · · , ∀cuj > 0.
7: if tmin > 0 then
8: Let r be the smallest integer s.t.

∑r
k=1 c

u
jk
≥ tmin.

9: for k = 1, · · · , r − 1 do
10: x0 = x0 − cujkajk , cxjk = 0.
11: end for
12: x0 = x0− (tmin−

∑k
i=1 c

u
jk

)ajk
13: cxjk = cujk− (tmin−

∑k
i=1 c

u
jk

).
14: δ0 = tmin.
15: else
16: δ0 = min{t0l , λ− ‖u‖A + 2cuimin+m}
17: x0 = u+ δ0aimin .
18: cximin

= max{δ0 + cuimin
− cuimin+m, 0}, cximin+m= −min{δ0 + cuimin

− cuimin+m, 0}
19: end if
20: t0u = δ0, t

r
l = t0l − t0u.

21: while k = r, · · · , d and tkl ≥ 0 do
22: tkl = max{−0.5zT (aimin − ajk)/L− tku, 0}.
23: δk = min{cxjk , tkl /2}
24: xk = xk−1 + δk(aimin − ajk)
25: tk+1

l = tkl − 2δk
26: end while
27: Return: xk

Algorithm 5 Local Conjugate of linearly independent atomic norms: lconjAg (u, z, t)

1: Input: cu = MR(u), t ≥ 0
2: Initialize: x0 = u, cx = cu, t0l = t
3: aimin ∈ arg mina∈A z

Ta
4: Sort: zTaj1 ≥ zTaj2 ≥ · · · ,∀cuj > 0.
5: δ0 = min{t0l , λ− ‖u‖A + 2cuimin+m}
6: x0 = u+ δ0aimin .
7: cximin

= max{δ0 + cuimin
− cuimin+m, 0}, cxjmin+m= −min{δ0 + cuimin

− cuimin+m, 0}
8: t1l = t0l − δ0.
9: while k = 1, · · · ,m and tkl ≥ 0 do

10: δk = min{cxjk , tkl /2}
11: xk = xk−1 + δk(aimin − ajk)
12: tk+1

l = tkl − 2δk
13: end while
14: Return: xk

99

Chapter 4. Non-Euclidean Convex Composite Optimization

representation). If t = δ0 then zT (x−u) =
∑2m

i=1 c
x−u
i zTai ≥ tzTaimin = zT (x0−u),

so x0 is optimal.

• If δ0 6= t, we have ‖x0‖A = λ.
We prove this by contradiction. Assume ‖x0‖A < λ and let δ = min{λ − ‖x0‖A, t −
δ0} > 0, and let x′ = u + (δ + δ0)aimin 6= x0. x′ is feasible since ‖x′ − u‖A =

‖(δ + δ0)aimin‖A = δ + δ0 ≤ t and ‖x′‖A ≤ ‖x0‖A + ‖δaimin‖A ≤ λ (by triangle
inequality). This contradicts the above observation about δ0.

• If δ0 6= t, then there exists an optimal solution x? s.t. ‖x?‖A = λ.
To see this let δ = min{(λ−‖x?‖A)/2, cx

?−u
j } > 0, where cx

?−u = MR(x?−u), and j
any index that satisfies j 6= imin, c

x?−u
j > 0. Such index exists unlessx? = u+cx

?−u
imin

aimin ,
in which casex0 is optimal. Letx′ = x?+δ(aimin−aj) 6= x?, ‖x′−u‖A = ‖(cx?−uimin

+δ−
cx
?−u
imin+m)aimin +(cx

?−u
j −δ))aj+

∑
i6=j,imin,imin+m

cx
?−u
i ai‖A ≤ 1Tcx

?−u ≤ t, ‖x′‖A ≤
‖x?‖A+ ‖δaimin‖A+ ‖δ(−aij)‖A = ‖x?‖A+ 2δ ≤ λ. So x′ is feasible and has a better
objective than x? leading to a contradiction.

• There exists an optimal solution s.t. ‖x? − x0‖A ≤ t− δ0.
By the above observation, this is trivial if t = δ0. It also holds trivially if δ0 = 0. Otherwise,
it is enough to show that cx

?−u
imin

≥ δ0, where cx
?−u = MR(x?−u). Since ‖x?−x0‖A =

‖(cx?−uimin
− cx?−uimin+m − δ0)aimin +

∑
i6=imin,imin+m

cx
?−u
i ai‖A, if cx

?−u
imin

≥ δ0 > 0, then by

lemma 10, cx
?−u
imin+m = 0 and ‖x? − x0‖A =

∑
i6=imin,imin+m c

x?−u
i + (cx

?−u
imin

− δ0) =

1Tcx
?−u − δ0 ≤ t− δ0.

To show that cx
?−u
imin

≥ δ0, assume towards contradiction that cx
?−u
imin

< δ0, and let j be an
index where cx

?−u
j > 0 and cx

?−u
j − cuj+m > 0 and j 6= imin. Such index must exists,

since otherwise ∀i 6= imin where cx
?−u
i > 0, we’ll have 0 < cx

?−u
i ≤ cui+m, hence by

lemma 10 cui = 0. Then we can write x? = u+
∑

i c
x?−u
i ai =

∑
cx
?−u
i >0,i6=imin

(−cui+m+

cx
?−u
i)ai + |cx?−uimin

− cuimin+m|aimin . We assume that ∃i 6= imin, c
x?−u
i > 0, otherwise

x? = x0. Hence, we’ll have the following 2 cases:

λ = ‖x?‖A

=


∑

cx
?−u
i >0

cui+m −
∑

cx
?−u
i >0

cx
?−u
i if cx

?−u
imin

− cuimin+m ≤ 0∑
cx
?−u
i >0

cui+m −
∑

cx
?−u
i >0,i6=imin

cx
?−u
i + cx

?−u
imin

− 2cuimin+m otherwise

<

{
‖u‖A if cx

?−u
imin

− cuimin+m ≤ 0

‖u‖A + δ0 − 2cuimin+m otherwise
(since cx

?−u
imin

< δ0)

≤ λ

which leads to a contradiction. Hence, such index must exists. Then let δ = cx
?−u
j −

cuj+m > 0 and x′ = x? + δ(aimin − aj) 6= x?. We show that x′ is feasible. First note
that −u =

∑
i c
u
i (−ai) =

∑
i c
u
i+mai and hence by lemma 11, ‖x?‖A = ‖x? − u −

(−u)‖A = ‖cx?−u− c̃u‖1 = λ where c̃ui = cui+m. Then, we have ‖x′−u‖A = ‖(cx?−uimin
+

100

4.7. Appendix: Proofs

δ − cx
?−u
imin+m)aimin + (cx

?−u
j − δ))aj +

∑
i6=j,imin,imin+m

cx
?−u
i ai‖A ≤ 1Tcx

?−u ≤ t

and ‖x′‖A = ‖∑i6=j,j+m(cx
?−u
i + cui)ai + (cx

?−u
j + cuj − cuj+m − δ)aj + δaimin‖A ≤

‖∑i6=j,j+m c
x?−u
i ai+(cx

?−u
j −cuj+m−δ)aj−(−u)‖A+‖δaimin‖A = ‖cx?−u− c̃u‖1−

δ + δ = λ, by lemma 13. Finally note that zTx′ ≤ zTx? leading to a contradiction.

Note that in Algorithm 5 we enter the loop only if t 6= δ0. So if we stop before that then we have
found an optimal solution x0. Otherwise, there exists an optimal solution s.t. ‖x?‖A = λ and
‖x? − x0‖A ≤ t− δ0, so we can now solve this problem instead:

min
‖x‖A=λ
‖x−x0‖A≤t

zTx (4.23)

We know though by lemma 11 that ‖x−x0‖A = ||cx−cx0‖1, for cx = MR(x), cx
0

= MR(x0).
Hence we can further reformulate problem 4.23 as:

min
1T cx=λ,cx≥0

‖cx−cx0‖1≤t

z̃Tcx (4.24)

where z̃i = zTai. This problem has been considered by [GH16], to obtain a local linear oracle.
The rest of our algorithm, i.e., after entering the loop, reduces to their algorithm. So we refer the
reader to their proof of correctness [GH16, Lemma 5.2]. This concludes the proof that algorithm
5 returns xk ∈ lconjAg (u, z, t).

Now we argue that Algorithm 2 returns xk ∈ proxAg (u, z, L). Recall from section 4.3.1 that h(t)

is a non-increasing piecewise linear function. But unlike the general case where we’re computing
h(t) using a black box optimizer, we actually can compute the slopes of the different pieces of
h(t) explicitly. In fact, h′(t?) belongs to one of these intervals: [zTaimin ,∞], [0.5(zTaimin −
zTaj2), 0.5(zTaimin − zTaj1)], · · · . Note that Algorithm 5 is actually minimizing the objective
along the path of possible values of t′ = ‖x − u‖A from t′ = tmin to t′ = t. In fact, xk ∈
lconjg(u, z, tku),∀k in Algorithm 5. Hence, it’s easy to incorporate the search for t? without
increasing the time complexity.
Finally, it is clear that the most expensive step in Algorithm 2 is the sorting operation on line 5,
and hence it’s time complexity is O(dT + d log d). Handling the case where ‖u‖A > λ (c.f.,
lines 7 -14) follows using similar arguments.

4.7.4 Proof of Theorem 5

First, we present a technical lemma, which can be found in [Cio90, Example 2.9]. We provide a
proof of it here for completeness. The term pk satisfies the following property, which is useful to
handle general norms.

Lemma 12 (cf., [Cio90, Example 2.9]). ‖ · ‖2 is differentiable at zero with ∂(1
2‖ · ‖2)(0) = 0

101

Chapter 4. Non-Euclidean Convex Composite Optimization

and ∀x ∈ Rd and p ∈ ∂(1
2‖ · ‖2)(x), we have

〈x,p〉 = ‖x‖2 = ‖p‖2∗. (4.25)

Proof. Note that ∀x ∈ Rd

lim
t→0

‖0 + tz‖2 − ‖0‖2
t

= lim
t→0

t‖x‖2 = 0, (4.26)

which implies that ‖ · ‖2 is differentiable at 0. Hence if x = 0 then p = 0 and (4.25) trivially
holds. Otherwise if x 6= 0, note that since ‖ · ‖2 is positively homogeneous of degree 2 and is
locally Lipschitz, then by [YWW10] Euler’s identity holds

‖x‖2 = 〈x,p〉 ≤ ‖x‖‖p‖∗, (4.27)

which implies that ‖x‖ ≤ ‖p‖∗. The subdifferential of ‖ · ‖ exists at every point (see [Zal02])
and p/‖x‖ ∈ ∂‖x‖. Then since ‖ · ‖ ∈ Γ0, it follows by Fenchel-Young equality,

‖p/‖x‖‖∗ + ‖x‖ = 〈x,p/‖x‖〉 = ‖x‖, (4.28)

where ‖ · ‖∗ is the Fenchel conjugate of ‖ · ‖. This implies that ‖p/‖x‖‖∗ = ι‖·‖∗≤1(p/‖x‖) = 0

and hence ‖p‖∗ ≤ ‖x‖, and thus (4.25) holds.

Theorem 5 (Convergence4). Given g which is µ-strongly convex w.r.t. ‖·‖. If accGPM terminates
at iteration k, i.e., xk+1 = yk+1, then xk+1 is a solution to (4.1). Otherwise, let x? ∈X ?, the
iterates of accGPM satisfy the following.

1. If µ = 0. Then ∀k ∈ N, we have F (xk+1)− F ? ≤ 4
(
σ(F (x0)− F ?) + β0D(x?)

)
σ{2 +

√
β0
∑k

i=0

√
γi}2

.

Consequently, if ∀k ∈ N, γk = 1/L, thenF (xk+1)−F ? ≤ 4L
(
σ(F (x0)− F ?) + β0D(x?)

)
σ{2
√
L+
√
β0(k + 1)}2

.

2. If µ > 0. Set τ = infk∈N τk, and ρ = τµ
2L

{√
1 + 4L

β0+µ − 1

}
. If β0 ≥ τµ and

∀k ∈ N, γk = 1/L, then we have F (xk+1)−F ? ≤ (1−ρ)k+1{F (x0)−F ?+ β0
σ D(x?)}.

Proof. If there exists k ∈ N such that xk+1 = yk+1 then it follows from Step 6 of Algorithm 3
and Fermat’s rule that

0 ∈ ∂g(xk+1) +∇f(xk+1) + ∂(
1

2γk
‖ · ‖2)(0) (4.29)

4This theorem and its proof are due primarily to B. Vu.

102

4.7. Appendix: Proofs

By lemma 12, (4.29) yields 0 ∈ ∂g(xk+1) +∇f(xk+1) and thus xk is a minimizer of F . We
now suppose that ∀k ∈ N, xk+1 6= yk+1. Step 10 of Algorithm 3 yields

(∀k ∈ N) pk −∇f(yk+1) ∈ ∂g(xk+1) (4.30)

It follows then that

g(x) ≥ g(xk+1) +
〈
x− xk+1,pk −∇f(yk+1)

〉
. (4.31)

Since ∇f is L-Lipschitz and since ∀k ∈ N, γk ∈ (0, 1/L], it follows from that

f(xk+1) ≤ f(yk+1) +
〈
xk+1 − yk+1,∇f(yk+1)

〉
+

1

2γk
‖xk+1 − yk+1‖2. (4.32)

In turn the convexity of f implies that

f(x) ≥ f(yk+1) +
〈
x− yk+1,∇f(yk+1)

〉
≥ f(xk+1) +

〈
yk+1 − xk+1,∇f(yk+1)

〉
− 1

2γk
‖xk+1 − yk+1‖2 +

〈
x− yk+1,∇f(yk+1)

〉
= f(xk+1) +

〈
x− xk+1,∇f(yk+1)

〉
− 1

2γk
‖xk+1 − yk+1‖2.

(4.33)
Adding (4.31) and (4.33) we get

F (x) ≥ F (xk+1) +
〈
x− xk+1,pk

〉
− 1

2γk
‖xk+1 − yk+1‖2. (4.34)

Hence, for every x ∈ Rd,

ek+1(x)− F (x) = (1− αk)(ek(x)− F (x)) + αk
(
(1− τk)(ψk(x)− F (x)) + τk(φk(x)− F (x))

)
≤ (1− αk)(ek(x)− F (x)). (4.35)

Since d is σ-strongly convex and g is µ-strongly convex, it follows by induction that ek is
βk-strongly convex. Next, let us show that

(∀k ∈ N) ek(w
k) ≥ F (xk). (4.36)

Note that e0(w0) ≥ F (x0). Suppose that ek(wk) ≥ F (xk) for some k ∈ N. Then it follows
from (4.34) that

ek(w
k) ≥ F (xk) ≥ ψk(xk)

Hence, since ek is βk-strongly convex, we have

ek(w
k+1) ≥ ek(wk) +

βk
2
‖wk+1 −wk‖2

≥ ψk(xk) +
βk
2
‖wk+1 −wk‖2. (4.37)

103

Chapter 4. Non-Euclidean Convex Composite Optimization

However, since pk −∇f(yk+1) ∈ ∂g(xk+1),

g(x) +
〈
x− xk+1,∇f(yk+1)− pk

〉
≥ g(xk+1), (4.38)

and hence we deduce from (4.32) that

φk(x) ≥ ψk(x). (4.39)

In turn, we deduce from (4.37) that

ek+1(wk+1) ≥ (1− αk)ek(wk+1) + αkψk(w
k+1)

= F (xk+1) +
(1− αk)βk

2
‖wk+1−wk‖2 +

〈
yk+1− xk+1,pk

〉
+
〈
αk(w

k+1 −wk),pk
〉
− 1

2γk
‖xk+1 − yk+1‖2.

(4.40)

It follows from definition of pk and Lemma 12 that〈
yk+1 − xk+1,pk

〉
=

1

γk
‖xk+1 − yk+1‖2 = γk‖ − pk‖2∗. (4.41)

On the other hand, the Cauchy-Schwarz inequality yields

αk
〈
wk+1 −wk,pk

〉
≥ − (1− αk)βk

2
‖wk+1 −wk‖2 − α2

k

2(1− αk)βk
‖pk‖2∗. (4.42)

Consequently, we deduce from (4.40) and (4.41) that

ek+1(wk+1) ≥ F (xk+1) +
1

2γk
‖xk+1 − yk+1‖2 − α2

k

2(1− αk)βkγk
‖xk+1 − yk+1‖2

≥ F (xk+1) +
1

2γk

{
1− α2

k

(1− αk)βkγk

}
‖xk+1 − yk+1‖2

= F (xk+1)

(4.43)

which proves (4.36). Finally, we derive from the definition of wk+1 and (4.35) that

(∀k ∈ N) F (xk+1)−F ? ≤ ek+1(wk+1)−F ? ≤ ek+1(x?)−F ? ≤ (1−αk)
(
ek(x

?)−F ?
)
,

(4.44)
where x? is a minimizer of F . Hence, by induction,

F (xk+1)− F ? ≤
k∏
i=0

(1− αi)
(
e0(x?)− F ?

)
. (4.45)

104

4.7. Appendix: Proofs

(1): Note that ∀k ∈ N

α2
k = (1− αk)βkγk and βk+1 = (1− αk)βk

Hence, it follows from Lemma 2.2 in [Gül92] that

k∏
i=0

(1− αi) ≤
1(

1 +
√
β0/2

∑k
i=0

√
γi
)2 . (4.46)

Consequently, the assertion follows from (4.45).

(2): First we note that by induction,

(∀k ∈ N) τµ ≤ βk ≤ β0 + µ. (4.47)

Therefore,

αk+1 =
βk
2L

{√
1 +

4L

βk
− 1

}
≥ τµ

2L

{√
1 +

4L

β0 + µ
− 1

}
(4.48)

and hence the assertion follows from (4.44).

4.7.5 Solving prox`1`1 and pk for Section 4.5.1

Computing `1-proximal operator

Computing the standard prox`2`1 of `1-norm can be computed efficiently in O(d) using the so-
called soft thresholding operator [DJ95], S (z, λ) = sign(z) ◦max{|z| − λ, 0}.

As explained in Remark 4, prox`1`1 can be solved by computing the prox over the `∞ ball by the
greedy Algorithm 4 and applying the decomposition in 14. By proposition 15, prox`1`1 can then
be computed in O(d log d) time. However, prox`1`1 is simple enough that we opt for a direct way
to solve it using again an intuitive greedy algorithm, of the same “flavor" as Algorithm 2.

Proposition 16. Algorithm 6 returns x ∈ prox`1`1(u, z, L) in O(d log d) time.

The high level idea of Algorithm 10 is the following. By lemma 11, we know that computing
prox`1`1(u, z, L) is equivalent to computing lconj`1`1(u, z, L, t?), where recall from Section 4.3.2,
h(t) is a non-increasing piecewise linear function, whose slopes can be computed explicitly.
Hence, the search for t? is done in Algorithm 10 the same way as in Algorithm 2. Algorithm 10
then solves lconj`1`1(u, z, L, t) along the path of possible t values. Note that given t and the signs
of x, the objective in lconj`1`1(u, z, L, t) reduces to minimizing a linear function sign(x) ◦ (z +

λ sign(x)) over the `1-ball ‖x − u‖1 ≤ t? and the signs constraint, whose solution is simple
(c.f., lines 10 and 16). To guess the optimal signs, we start by the feasible ones, sign(u), and
modify them gradually along the greedy solution path. It’s clear that the time complexity of

105

Chapter 4. Non-Euclidean Convex Composite Optimization

Algorithm 6 `1-prox of `1-norm

1: Input: u ∈ Rd, L1 > 0
2: Initialization: x0 = u, t0u = 0, s0 = sign(x0), k = 0
3: s0

i = − sign(S (zi, λ)),∀i s.t. x0
i = 0.

4: w = [s0 ◦ (z + λs0), s0 ◦ (z − λs0)]
5: Sort: |wi1 | ≥ |wi2 | ≥ · · · |wi2p |
6: while k = 1, · · · , d+ 1 and tkl ≥ 0 do
7: if wik = skik ◦ (zik + λskik) then
8: tk+1

l ← max{|wkik |/L1 − tku, 0}
9: if sign(wkik) > 0 then

10: xk+1
ik

= skik max{|xkik | − tkl , 0}
11: tk+1

u = tku − |xk+1
ik
|+ |xkik |

12: if xk+1
ik

= 0 then
13: sk+1

ik
= − sign(S (zi, λ))

14: end if
15: else
16: xk+1

ik
= skik(|xkik |+ tkl)

17: tk+1
u = tku + |xk+1

ik
| − |xkik |

18: end if
19: end if
20: end while

Return: xk+1

Algorithm 10 is dominated by the sorting operation on line 5, leading to a worst case complexity
of O(d log d). However, in practice, we notice that we rarely do more than one iteration. In
fact, when Algorithm 10 is executed within GPM and accGPM, it’s not hard to see that doing
more than one iteration requires ‖∇f(xk)‖∞ ≤ λ, and since λ is usually small, this condition
implies that we’re already near convergence, which is exactly what we observe in our experiments
(c.f., section 4.5.1). Hence, in our implementation we choose instead to compute the maximum
value of w at each iteration instead of sorting, leading to an expected complexity of O(d). This
observation is interesting, since it implies that running FW with a carefully chosen step-size,
approximate running a proximal gradient method.

Finally note that the updates generated by x ∈ prox`1`1(u, z, L) are always sparse, i.e., given an
s-sparse vector u, x is at most s + 1-sparse. The proof of proposition 16 follows by similar
arguments as in proposition 15.

Computing the momentum term pk

Recall that accGPM required the computation of a momentum term pk at each iteration k (c.f.,
line 10). Below, we show that the computation of pk, in this setting, has a closed form solution.

Proposition 17. Givenx ∈ prox`1`1(u, z, L) generated by Algorithm 6, to have p ∈ ∂
(
−L

2 ‖x− u‖21
)
∩

106

4.7. Appendix: Proofs

(z + λ∂‖x‖1), we can choose

pi =

{
−L‖x− u‖1 sign(x− u) if 0 = xi 6= ui

(si)
2(zi + λsi) otherwise

where si = sign(xi) if xi 6= 0 and si = − sign(S (zi, λ)) otherwise.

Proof. We note first than, by the optimality of x, whenever one of the two sets consists of
a unique element, then choosing this element must be a feasible choice. If ‖x − u‖1 = 0,
then from Algorithm 6, we know that s = 0 and hence the above choice will correspond to
p = 0, which is the unique choice here. If 0 = xi 6= ui or xi 6= 0 the choice of pi above
is again unique. Otherwise, if 0 = xi = ui, then the choice of pi is a feasible one, since
(si)

2(zi + λsi) ∈ [−L‖x− u‖1, L‖x− u‖1] ∩ zi + [−λ, λ].

4.7.6 Solving pk for prox`∞G in Section 4.5.2

Proposition 18. Givenx ∈ prox`∞G (u, z, L) generated by Algorithm 1, to have p ∈ ∂
(
−L

2 ‖x− u‖2∞
)
∩

(z + λ∂‖x‖G), where ‖x‖G is the `∞-LGL norm, we need to solve the following linear feasibility
program.

p ∈ arg min
p∈Rd

0

subject to pT
(x− u
−Lt

)
= t(

sign(x− u) ◦ p

−Lt
)T
1 ≤ 1

xT (p− z) = λ‖x‖G
BT (sign(x) ◦ (p− z)) ≤ λ
sign(x− u) = sign(p)

sign(x) = sign(p− z)

where t = ‖x− u‖∞ and B is the matrix whose columns are the indicator vectors of the groups,
i.e., Bi = 1Gi .

Proof. By definition of dual norms, the subdifferential of the ∂
(
−L

2 ‖x− u‖2∞
)

= {−Ltκ :

κT (x−u) = ‖x−u‖∞, ‖κ‖1 ≤ 1}. The dual of `∞-LGL norm is given by maxi∈[1,··· ,M] ‖κGi‖1,
hence λ∂‖x‖G = {κ : κTx = λ‖x‖G, ‖κGi‖1 ≤ λ,∀i ∈ [1, · · · ,M]}. The proposition then
follows directly.

107

5 Non-Convex Proximal Method for
Structured Sparsity

5.1 Introduction

Our discussion so far has focused on convex approaches to structured sparse learning. We saw
that for structures that can be expressed by monotone submodular functions or monotone integral
linear programs (i.e, ILP penalties introduced in Chapter 2), employing the convex envelope as a
convex surrogate can yield efficient and accurate solutions. On the other hand, our analysis in
Chapter 3 showed that convex relaxations fail to capture non-monotone structures. Furthermore,
computing the convex envelope of structures outside the class of submodular and ILP penalties is
in general intractable. To handle such cases, we adopt in this chapter a non-convex approach. We
are thus interested in directly addressing the following optimization problem:

min
x∈Rd

f(x) + F (supp(x)), (5.1)

where f : Rd → R is a smooth convex loss function and F : 2V → R+, where V = {1, · · · , d},
is a normalized (i.e., F (∅) = 0) set function encoding a structured sparsity model.

5.1.1 Related work

A main instance of functions that do not admit meaningful convex envelopes are symmetric1

functions. In the special case of symmetric submodular functions, [Bac11] proposed to use their
Lovász extension as a convex regularizer, to impose prior knowledge on the level sets of x,
instead of its support. This choice is justified by showing that the Lovász extension can be viewed
as the convex envelope of F defined over the level sets2 of x.

On the other hand, existing non-convex approaches (see Section 1.5) have mostly focused on
the constrained formulation of the structured learning problem (5.1). In this setting, available

1A set function F is symmetric if it satisfies F (S) = F (V \ S),∀S ⊆ V
2Level sets of a vector x ∈ Rd are sets of indices above a given threshold α; i.e., {i : xi ≥ α}.

109

Chapter 5. Non-Convex Proximal Method for Structured Sparsity

algorithms require a discrete projection step, which is NP-Hard for general structures, including
submodular and ILP structures. Existing non-convex approaches that consider the penalized
formulation are limited to simple sparsity [HGT06] and non-overlapping group sparsity [BH18].

5.1.2 Contributions

This chapter presents preliminary results towards addressing problem (5.1), when disciplined
convex approaches are inapplicable. In particular, we first demonstrate that the Lovász extension
is not a suitable convex relaxation of symmetric submodular functions, in cases where we do
not seek piecewise constant solutions. We propose to use instead a discrete proximal gradient
descent method, which is a simple extension of the discrete projected gradient descent method,
typically used in non-convex approaches (see Section 1.5), and is efficient for several classes of
structures, including submodular, supermodular and ILP penalties. For concreteness, we consider
regression with clustering penalties as a motivating example. We numerically illustrate that the
proposed algorithm performs better than the alternative convex method, for this example.

This chapter is based on the joint work with Luca Baldassarre and Volkan Cevher [EHBC13].

5.2 Motivating example: Graph cuts

As a motivating example, we consider a compressive sensing scenario where we observe com-
pressive samples y ∈ Rn of a “clustered" sparse vector x\ ∈ Rd, through a dimensionality
reducing matrix A. In this case, f(x) = 1

2‖y − Ax‖22. Then, the clustering model can be
naturally enforced by a cut function Fcut(S) = |δ(S)|, defined over an appropriate undirected
graph G = (V,E), where δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S} is the cut-set induced by S
in G. One can also consider a weighted version of Fcut, where each edge is associated with a
positive weight. Cut functions favor sets whose elements are clustered on the given graph, which
is a desired structure for example in several computer vision problems [CHDB09, KZ04]. For
example, for background subtraction in images, the vertices of the graph are pixels of the image,
and edges connect pixels next to each other, forming a lattice.

Convex envelope of graph cuts: Recall that the convex envelope of F (supp(x)) over the unit
`∞-ball is given by Θ∞(x) = infs∈[0,1]d{f−(x) : s ≥ |x|} (see Lemma 1), where f− is the
convex closure of F , i.e., the largest convex function defined on [0, 1]d that always lower bounds
F (see Appendix A.2). For example, when F is a monotone submodular function, its convex
closure is given by its Lovász extension f− = fL, and its convex envelope by Θ∞(x) = fL(|x|).
Unfortunately, for any symmetric functions, the resulting convex envelope is the zero function,
i.e., Θ∞(x) = 0, ∀x ∈ Rd, since f−(1) = F (V) = F (∅) = 0. In particular, the convex
envelope of cut functions, which are symmetric submodular functions, is then the zero function.

As an alternative, one can use instead the convex closure of F as the second most natural convex
relaxation. In the case of symmetric submodular functions, where f− = fL, such choice is

110

5.2. Motivating example: Graph cuts

further motivated by the result of [Bac11], showing that fL is the convex envelope of the function
x→ minα∈R F ({i : xi ≥ α}) on the set [0, 1]d + R1 = {x ∈ Rd : maxi∈V xi −mini∈V xi ≤
1}.

Lovász extension of graph cuts: The Lovász extension of cut functions is known to be the total
variation semi-norm (see, e.g., [Bac11]). We provide here an elementary proof of this fact.

Proposition 19. The Lovász extension of Fcut is the anisotropic discrete Total Variation semi-
norm ‖x‖TV =

∑
(i,j)∈E |xi − xj | .

Proof. Given x ∈ Rd, we sort its components in decreasing order xj1 ≥ · · · ≥ xjd . Let m = |E|
and ∀k ∈ V and ` ∈ [1,m], let σk(e`) = 1 if e` ∈ E is cut by {j1, . . . , jk} and σk(e`) = 0

otherwise, then by definition of the Lovász extension (see Definition 17):

Fcut(x) =
d−1∑
k=1

|δ({j1, . . . , jk})|(xjk − xjk+1
)

=
d−1∑
k=1

m∑
`=1

σk(e`)(xjk − xjk+1
)

=
m∑
`=1

∑
k∈[s`,t`]

(xjk − xjk+1
) = ‖x‖TV ,

where [s`, t`] is the range of indices associated with each edge e`, such that e` is cut by
{j1, . . . , jk} for k ∈ [s`, t`]. Let e` = (i, j), then assuming w.l.o.g that xi ≥ xj , we have
js` = i, jt`+1 = j, and σk(e`) = 1 for k ∈ [s`, t`] and 0 otherwise.

The TV semi-norm is a classical regularizer commonly used in computer vision, which leads
to piecewise constant solutions [TSR+05]. More generally, the Lovász extension of general
symmetric submodular functions were also shown in [Bac11] to lead to solutions with many
equal values. Hence, the structure induced by such convex relaxation differ significantly from the
original structure encoded in F . Indeed, Fcut encourages the clustering of the support of x, but
not of its coefficient values.

To clarify how the convex relaxation can radically alter the solutions of (5.1) in this case,
consider the simple denoising example where A = I , and assume that y has full support, i.e.,
supp(y) = V . In this case, since Fcut(V) = 0, the minimizer of (5.1) for f(x) = 1

2‖y − x‖22 is
simply x? = y. While, if we instead substitute Fcut by its Lovász extension ‖x‖TV , the solutions
returned by the resulting convex problem will not be equal to x? (unless y has constant values).

Also note that Fcut(supp(x)) is symmetric around the origin, while its Lovász extension is not
(see Figure 5.1), which makes it vulnerable to sign flip errors. One can try to correct for this
by composing the Lovász extension with the absolute value, but the resulting function is only
guaranteed to be convex in the case of monotonic submodular functions. For example, ‖|x|‖TV

111

Chapter 5. Non-Convex Proximal Method for Structured Sparsity

Figure 5.1: Cut function Fcut (red), its Lovász extension ‖x‖TV (blue), and its Lovász extension
composed with the absolute value ‖|x|‖TV (green), in R2.

Algorithm 7 Discrete proximal gradient descent algorithm

1: Input: x0 ∈ Rd
2: while not converged do
3: u = xk − 1

L∇f(xk)
4: S = arg minA⊆V F (A)− L

2 ‖uA‖22
5: xk+1 = uS
6: xk+1 = arg minx:supp(x)⊆S f(x) (optional full correction step)
7: end while

is not convex (see Figure 5.1). In the numerical experiments, we exploit this weakness to show
that the TV semi-norm has poor performance when we perturb the signal with random sign flips.

5.3 Discrete proximal gradient descent method

We assume that f has an L-Lipschitz continuous gradient (i.e, ∀ x,y ∈ Rd, ‖∇f(x) −
∇f(y)‖2 ≤ L‖x − y‖2). We propose an iterative majorization-minimization scheme for
solving (5.1) in Algorithm 7. Given its Lipschitz constant L, we have the following bound on
f(x):

f(x) ≤ f(x′) + 〈∇f(x′),x− x′〉+
L

2
‖x− x′‖22 := Q(x,x′) (5.2)

for all x,x′ ∈ Rd. Similar to the classical convex proximal gradient descent method (see
Section 1.4.1), Algorithm 7 proceeds by minimizing at each iteration the majorizer Q(x,xk) +

F (supp(x)) of f(x) + F (supp(x)). This corresponds to the iterates xk+1 ∈ proxF/L(xk −
1
L∇f(xk)), where proxF is a discrete proximal operator3 defined by

proxF (u) = arg min
x∈Rd

1

2
‖x− u‖22 + F (supp(x)) (5.3)

3When F is an indicator function, this reduces to the discrete projection operator (see Section 1.5).

112

5.3. Discrete proximal gradient descent method

The update x̂ ∈ proxF (u) can be computed by finding an optimal set

S ∈ arg min
A⊆V

F (A)− 1

2
‖uA‖22 (5.4)

and setting x̂S = uS . Note that the function M(S) = 1
2‖uS‖22 is a modular function.

The proximal update step (lines 3-5) is followed by an optional full correction step (line 6), where
we minimize the original loss function f over the current estimate of the support. When it can
be solved efficiently (e.g., when f is the least squares loss), the full correction step significantly
improves the performance of Algorithm 7.

It is easy to see that the objective is guaranteed to be monotonically decreasing, which is
characteristic of majorization-minimization algorithms. We defer the theoretical characterization
of the solutions returned by Algorithm 7 to future work.

Proposition 20. At each iteration, the new estimate xk+1 produced by Algorithm 7 satisfies
f(xk+1) + F (supp(xk+1)) ≤ f(xk) + F (supp(xk)), which implies convergence.

Proof. Let Sk+1 = supp(xk+1) and Sk = supp(xk). Based on the discussion above, we have

f(xk+1) + F (Sk+1) ≤ f(uSk+1) + F (Sk+1)

≤ Q(uSk+1 ,xk) + F (Sk+1)

≤ Q(uSk ,x
k) + F (Sk)

≤ Q(xk,xk) + F (Sk)

= f(xk) + F (Sk),

Therefore, at each iteration the objective value does not increase and it is lower bounded by 0,
hence the algorithm converges.

Computational complexity per iteration: Computing the discrete proximal operator is in
general NP-Hard. But for several classes of structures, including structures that do not admit
tractable or meaningful convex envelopes, it can be efficiently solved exactly or approximately.

• Submodular penalties: When F is a submodular function, problem (5.4) becomes a
submodular minimization problem, which can be solved efficiently (see Section A.1). In
the special case of cut functions, it can be solved even more efficiently with a min s-t-cut
algorithm [GR98]. For further examples of structures in this class, see e.g., [Bac11] and
[OB16]. It is worth noting here that projecting on a feasible set described by a submodular
function, i.e., proxιF (supp(x)≤λ)

(u) is in contrast NP-Hard in general. As a result, existing
non-convex methods are inapplicable.

113

Chapter 5. Non-Convex Proximal Method for Structured Sparsity

Table 5.1: A summary of the regularizers used in experiments

Model Regularizer
Sparse graph cut (GC + L0) λFcut(supp(x)) + τ | supp(x)|
Total Variation (TV) λ‖x‖TV
Sparse TV (TV + L1) λ‖x‖TV + τ‖x‖1

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 5.2: Shepp-Logan phantom: Original (left) and Dirty, i.e., with randomized signs (right).

• ILP penalties: When F can be expressed by an integral linear program as in Chapter 2,
problem (5.4) becomes a linear program, which can be solved efficiently (see Section 2.4).
For examples of structures in this class, see Section 2.5. Similar to submodular functions,
projecting on a feasible set described by an ILP penalty is also NP-Hard in general.

• Supermodular penalties: When F is a supermodular4 function, problem (5.4) becomes a
submodular maximization problem, which can be approximated efficiently with a greedy al-
gorithm, achieving 1/2-approximation ratio [BFSS15]. Supermodular regularizers are used
to promote diversity of features, leading to more representative features and better noise
robustness. For examples of structures in this class, see e.g., [DDK12]. In contrast, com-
puting the convex envelope of a supermodular functions is in general NP-Hard. Similarly,
projecting on a feasible set described by a supermodular function is also NP-Hard.

• Set cover penalties: When F is the minimal weighted set cover penalty (see Def. 5), prob-
lem (5.4) is again a submodular maximization problem, and thus it can be approximated
efficiently. In this case, projecting over group cover constraints can also be approximated
efficiently by a greedy algorithm [JRD16]. In contrast, recall that computing the convex
envelope of this function, for non-TU group structures, is NP-Hard (see Section 2.5.1).

5.4 Experiments

We perform a compressive sensing experiment to highlight the differences between solutions
of (5.1) and its convex relaxation via the Lovász extension. We take dimensionality reducing
measurements of a “clustered" sparse x\ via A and then seek to minimize f(x) = 1

2‖y −Ax‖22
with a regularizer matched to the structure of x\. Our linear measurements A are randomly
subsampled Fourier coefficients of x, and hence, the Lipschitz constant of f is L = 0.5.

4A set function F is supermodular if it satisfies F (B ∪ {i})− F (B) ≥ F (A ∪ {i})− F (A),∀A ⊆ B, i ∈ Bc.

114

5.5. Discussion

We compare the performance of three regularizers as summarized in Table 5.1. To promote
sparsity, we add a cardinality term to Fcut. The corresponding Lovász extension is the sparse total
variation regularizer, i.e., the TV semi-norm plus the `1-norm5. We also include the total variation
regularizer alone to emphasize that its solutions are significantly different from regularization
with Fcut directly.

We consider the standard Shepp-Logan phantom image of size 256× 256 pixels. The resulting
image is sparse (s = 8084 non-zero pixels) with its coefficients forming constant value clusters,
see Figure 5.2(left). This image suits the TV models that encourage the signal coefficients to have
constant values. We then randomly flip the signs of the coefficients, obtaining the Dirty phantom,
see Figure 5.2(right). In this case, the TV models can enforce an incorrect structure as the true
coefficient values are not smooth. However, the sign change does not affect the sparse graph cut
penalty, since it is agnostic to the coefficient values and only cares about whether they cluster.

We show recovery performance using n = 1.5s samples, which is less than the theoretically
minimum number of samples for `0 recovery (i.e., n = 2s). Hence, without the structured
sparsity model, it is impossible to do tractable guaranteed recovery. We measure performance
with the relative recovery error, E = ‖x̂ − x\‖22/‖x\‖22, where x̂ is the estimated image and
x\ the original one. The regularization parameters λ and τ have been tuned according to E to
yield the best possible result for each model. Since, the convex models might not yield exactly
sparse solutions, we adopt the debiasing heuristic of finding the support of the coefficients that
are greater in magnitude than a threshold. We do this by visually inspecting the histogram of
the solutions. The debiased estimate is then given by the least squares solution on the estimated
support. Figure 5.3 presents the recovered images for the original and Dirty phantom respectively,
while Table 5.2 contains the relative recovery errors. In the figures, we use the log scale of the
coefficients’ absolute value to accentuate the errors.

The debiased estimates perform well in recovering the standard image, while the TV and TV +
L1 penalties fail to set the background exactly to zero. Our method recovers the image with no
need for debiasing since it correctly identifies the support of the signal. Note that in the original
phantom, the values of the pixels inside the eyes of the phantom are not exactly zero. Hence the
sparse graph cut model actually perfectly recovers the entire support. As expected, on the Dirty
Shepp-Logan, TV does not perform well. Debiasing helps in this case too, but it is not able to
recover the correct support.

5.5 Discussion

We proposed to use a simple non-convex iterative algorithm, the discrete proximal gradient
descent method, to tackle directly structured sparse learning problems, without relying on convex

5Note that the convex envelope of λFcut(supp(x)) + τ | supp(x)| is not the zero function anymore (unless τ = 0).
However, as the aim of this experiment is to illustrate the effect of using the convex closure as a “heuristic” convex
relaxation, when no meaningful convex envelope exists, we will not consider the true convex envelope here.

115

Chapter 5. Non-Convex Proximal Method for Structured Sparsity

Table 5.2: Relative Recovery Errors

Model Original phantom Dirty phantom
TV 0.25 0.13
TV + L1 0.005 0.14
TV (debiased) 8.8 ∗ 10−12 0.013
TV + L1 (debiased) 8.8 ∗ 10−12 0.027
GC + L0 1.2 ∗ 10−10 1.4 ∗ 10−11

TV TV + L1 TV (debiased) TV + L1 (debiased) GC + L0

50 100 150 200 250

50

100

150

200

250
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

50 100 150 200 250

50

100

150

200

250
−25

−20

−15

−10

−5

50 100 150 200 250

50

100

150

200

250

−2

−1.5

−1

−0.5

0

50 100 150 200 250

50

100

150

200

250

−2

−1.5

−1

−0.5

0

50 100 150 200 250

50

100

150

200

250

−25

−20

−15

−10

−5

0

50 100 150 200 250

50

100

150

200

250
−16

−14

−12

−10

−8

−6

−4

−2

0

50 100 150 200 250

50

100

150

200

250
−16

−14

−12

−10

−8

−6

−4

−2

0

50 100 150 200 250

50

100

150

200

250
−15

−10

−5

0

50 100 150 200 250

50

100

150

200

250
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

50 100 150 200 250

50

100

150

200

250

−30

−25

−20

−15

−10

−5

0

Figure 5.3: Top: Clean Phantom recovery. Bottom: Dirty Phantom recovery. The colorbar
changes with each figure.

relaxations. Such algorithm is of particular interest, in cases where the convex envelope of the
underlying structure is either intractable or trivial, and thus disciplined convex approaches are
inapplicable. This algorithm provides also an alternative to the the discrete projected gradient
descent method, for cases where the discrete projection is difficult. Our preliminary numerical
results indicate that the solutions returned by the proposed algorithm upon convergence can have
significant recovery benefits compared to solutions obtained by “heuristic” convex relaxations.

The missing piece in our discussion is the theoretical characterization of the quality of the
solutions returned by the proposed algorithm, both with exact and approximate proximal operators.

Open question 8. Existing non-convex methods, based on variants of the discrete projected
gradient descent method, guarantee near-optimal recovery, under some conditions on the design
matrix, such as the restricted isometry property (RIP) [BCDH10]. Such results were further
extended, e.g., in [HIS15a] and [JRD16], to allow for inexact projections. Can similar theoretical
guarantees be obtained for the discrete proximal gradient descent method?
Recently, [BH18] studied Problem (5.1) when F is a set cover penalty or constraint (or both),
with non-overlapping groups, and showed that the discrete proximal gradient descent method
is guaranteed to return a stationary point in this setting. One promising starting point is then to
characterize the properties of stationary points of Problem (5.1), under RIP-like conditions.

116

6 MAP Estimation for Mixture Models
with Combinatorial Priors

6.1 Introduction

In this chapter, we continue with the non-convex approach to structured sparse learning, but from
a probabilistic view. We have so far assumed that signals to be estimated are exactly sparse.
Real-world signals though rarely satisfy this assumption. In this chapter, we consider instead
signals consisting of a mixture of large and small coefficients, with only few large coefficients,
and where the small coefficients are not exactly zero. We further assume that the large coefficients
satisfy a structured sparsity model.

6.1.1 Related work

Most existing work in structured sparsity typically assume that small coefficients in signals of
interest are negligible if not exactly sparse, and thus they do not explicitly account for them. In this
setting, compressible signals, i.e., signals that are not exactly sparse, but are well-approximated
by sparse signals, were considered in the compressive sensing (CS) literature. Compressible
signals have coefficients that decay rapidly to zero, when sorted in order of decreasing magnitude1.
Most of the theory on CS extends to this model. Furthermore, [DHCB09] also extended the
non-convex structured sparsity framework of [BCDH10] to compressible signals. This framework
guarantees recovery of structured compressible signals, but it does not explicitly account for
small coefficients in its recovery algorithm. It also requires a discrete projection step, which is
NP-Hard for general combinatorial structures, including ones expressed by submodular functions
and integral linear programs (ILP).

In the Bayesian framework, the two-state mixture models we consider in this chapter are well-
studied classical models. They were used in the context of structured sparsity, e.g., in [SBB06]
and [DWB08], to express approximately sparse signals, but the structures considered on the large
coefficients were limited to simple sparsity and tree sparsity.

1Signals constrained to an `p-ball, with p ≤ 1, satisfy this rapid decay.

117

Chapter 6. MAP Estimation for Mixture Models with Combinatorial Priors

[d]

s ∼ p(s) xi ∼ Qi,si(θi,si)

θi,0 θi,1ψ

yj ∼ N (Ajx,σ)

σ

d n

Figure 6.1: Graphical model

6.1.2 Contributions

We introduce a Bayesian mixture model with combinatorial priors, which allows to incorpo-
rate both continuous and discrete prior knowledge on the signal. We extend the majorization-
minimization algorithm presented in Chapter 5 to approximate the corresponding maximum
a posteriori estimate. The resulting algorithm is again guaranteed to converge, and efficient
for several classes of structures, including submodular, supermodular and ILP penalties. Our
numerical results show that the proposed algorithm can take full advantage of all available prior
information on the signal, while for non-truly sparse signals, state-of-the-art methods are capable
of leveraging only a part of it. For sparse signals, our algorithm can be used to further improve
on existing methods.

This chapter is based on the joint work with Luca Baldassarre and Volkan Cevher [EHBC14].

6.2 Mixture model with combinatorial priors

In a Bayesian framework, prior knowledge is encoded by placing a prior distribution on the signal
x ∈ Rd that favors the desired structure. We differentiate between two kinds of prior knowledge:
a discrete structure on the state (small/large) of the coefficients (e.g., the large coefficients are
clustered together), and a continuous structure on the values of the coefficients of the signal (e.g.,
the coefficients are sampled from a Gaussian distribution with fixed variance). In this paper, we
investigate a model that leverage both types of structure.

We consider a Bayesian mixture model where the signal is generated by a mixture of probability
distributions. Mixture models provide flexibility to model real-world signals, and are often used
as priors in practice. In particular, we assume each component xi is independently drawn from
one of two possible distributions Q0 and Q1, which corresponds to two possible states of xi.
To this end, we introduce for each xi a latent binary random state variable si ∈ {0, 1} which
indicates the distribution xi was drawn from, i.e., xi ∼ Qsi(θi,si) where θi,si are the parameters
of Qsi (see Section 6.4.2 for examples of continuous priors). For example, if Q0 is a Dirac delta
distribution centered at zero, i.e., all small coefficients are exactly zero, s would correspond to
the support of x, i.e., s = supp(x).

118

6.3. Majorization-minimization algorithm

The discrete structure is encoded by a prior distribution over the state vector s that ensures that
certain state configurations are more likely than others. In particular, we assume that the discrete
structure can be captured by a prior p(s) = exp(−F (supp(s))), where F is a set function with
parameters ψ (see Section 6.4.3 for examples of discrete priors). We can treat set functions F as
functions on the boolean hypercube {0, 1}d, i.e., we use F (s) = F (supp(s)).

For simplicity, we assume all hyperparameters in our model (θi,1, θi,0, ψ) are known. Learning
the hyperparameters is deferred to future work. A graphical summary of the considered model
is depicted in Figure 6.1, for the case where the noise ε ∼ N (0, σ2I) (see Section 6.4.1 for
examples of priors on the noise).

We propose to estimate x by computing its maximum a posteriori (MAP) estimate x̂. However,
the presence of the discrete component F in our model renders the optimization difficult. We
present an extension of the Majorization-Minimization algorithm introduced in Chapter 5, that
iteratively maximizes the log-posterior log p(x, s|y), with guaranteed convergence.

6.3 Majorization-minimization algorithm

In what follows, we denote the likelihood distribution by p(y|x) = exp(−Ly(x)), where Ly(x)

is some suitable data fidelity term. In our model, we make the following assumptions:

A1. The loss function Ly(x) = − log p(y|x) is smooth with L-Lipschitz continuous gradient,
i.e., ∀ x,x′ ∈ dom(Ly), ‖∇Ly(x)−∇Ly(x′)‖2 ≤ L‖x− x′‖2.

A2. The variables xi are independent given si, and accordingly the continuous prior G(x|s) =

− log p(x|s) is separable, i.e. G(x|s) = −∑d
i=1 log p(xi|si).

A3. The proximal operator of G, i.e., proxG(·|s)(z) := arg minx∈Rd
1
2‖z−x‖22 +G(x|s) has

a closed form solution.

A4. The discrete prior F (s) = − log p(s) admits an efficient minimizer for minS⊆V M(S) +

F (S), for any modular function M .

We provide examples of interesting priors that satisfy these assumptions in Section 6.4. Given
these assumptions, we want to compute the MAP estimate of [x, s].

[x?, s?] = arg max
x∈Rd,s∈{0,1}d

p(x, s|y)

= arg min
x∈Rd,s∈{0,1}d

− log p(y|x)− log p(x|s)− log p(s)

= arg min
x∈Rd,s∈{0,1}d

Ly(x) +G(x|s) + F (s) (6.1)

Unfortunately, computing the MAP estimate (6.1) is NP-Hard2. Here, we aim to efficiently
2If G(x|s) = ιsupp(x)=s(x), we recover the original structured sparse learning problem (1.1)

119

Chapter 6. MAP Estimation for Mixture Models with Combinatorial Priors

Algorithm 8 MAP-MM algorithm

1: Input: x0 ∈ Rd
2: while not converged do
3: u = xt − 1

L∇Ly(xt)
4: x̂(s) = proxG(·|s)/L(u)

5: st+1 = arg mins∈{0,1}d
L
2 ‖x̂(s)− u‖22 +G(x̂(s)|s) + F (s)

6: xt+1 = x̂(st+1)
7: xt+1 = arg minx Ly(x) +G(x|st+1) (optional full correction step)
8: end while

compute numerically good approximations to the MAP estimator.

Given our assumptions, the objective function in (6.1) can be iteratively minimized by the
majorization-minimization scheme of Algorithm 8. By assumption A1, the loss function admits
the following quadratic upper bound:

Ly(x) ≤ Ly(x′) + 〈∇Ly(x′),x− x′〉+
L

2
‖x− x′‖22 := Q(x,x′) (6.2)

for all x,x′ ∈ Rd. Therefore, the objective function in (6.1) is upper bounded by Q(x,x′) +

G(x|s) +F (s). At each iteration t+ 1, Algorithm 8 proceeds by minimizing this majorizer with
x′ = xt, the estimate obtained at the previous iteration,

min
x,s

Q(x,xt) +G(x|s) + F (s) = (6.3)

min
s

min
x

L

2
‖x− (xt − 1

L
∇Ly(xt))‖22 +G(x|s) + F (s)

For a fixed s, the inner minimization with respect to x reduces to the proximal operator of G(·|s),
which by assumption A3 has a closed form solution. Let x̂(s) = proxG(·|s)/L(xt − 1

L∇Ly(xt)),
then the minimization in (6.3) with respect to s is equivalent to:

min
s∈{0,1}d

L

2
‖x̂(s)− (xt − 1

L
∇Ly(xt))‖22 +G(x̂(s)|s) + F (s) (6.4)

Since G is separable, then the function M(s) = L
2 ‖x̂(s)− (xk − 1

L∇Ly(xk))‖22 +G(x̂(s)|s)
is modular. Hence by assumption A4, problem (6.4) can be efficiently solved.

Given the current estimate of the state vector st+1, we update our estimate xt+1 with a full
correction step (line 7), where we minimize the original objective function with s = st+1, if it
can be done efficiently, otherwise we use xt+1 = x̂(st+1).

Proposition 21. Algorithm 8 produces a sequencext+1 that satisfies p(xt+1, st+1|y) ≥ p(xt, st|y)

which implies convergence.

120

6.4. Examples

The proof of Proposition 21 follows from similar arguments as in Proposition 20.

6.4 Examples

In this section, we present some examples of signal priors that fit in our framework.

6.4.1 Priors on the noise

Classical priors on the noise do indeed satisfy assumption A1. For example when ε is a zero-mean
Gaussian noise with covariance σ2I , i.e., p(y|x) = N (Ax, σ2I), the data fidelity term is the
usual least squares loss functionLy(x) = 1

2σ2 ‖y−Ax‖22+n log(
√

2πσ). Another example is the
logistic loss function, commonly used in classification, Ly(x) =

∑n
i=1 log(1+exp(−yi(aTi x))),

where ai is the i-th row ofA, which corresponds to the prior p(y|x) =
∏n
i=1

1
1+exp(−yi(aTi x))

.

6.4.2 Priors on the continuous structure of the signal

The Gaussian and Laplacian distributions are examples of distributions with closed form proximal
operators. Then sampling each xi independently from a Gaussian or Laplacian distribution with
parameters depending on si, leads to a continuous prior satisfying assumptions A2 and A3. For
p(xi|si) = N (µi,si , σ

2
i,si

), the proximal operator x̂(s) = proxG(·|s)/L(u) used in Algorithm 8
is given by:

x̂i(si) =
Lui + µi,si/σ

2
i,si

L+ 1/σ2
i,si

,

and for p(xi|si) = Laplace(µi,si , σi,si), it is given by:

x̂i(si) = µi,si + S (ui, 1/(Lσi,si)),

where S (x, λ) = sign(x) max{|x| − λ, 0} is the standard soft-thresholding operator.
The mixture of two (or more) Gaussians, i.e Qsi(θi,si) = N (µi,si , σ

2
i,si

) such that σi,1 > σi,0,
is ubiquitous in literature (see, e.g., [DWB08, BND12, JXC08]), due to their simplicity and
effectiveness in modeling real-world signals. One can also use a Gaussian-Laplacian mixture, i.e
Q1(θi,1) = N (µi,1, σ

2
i,1), and Q0(θi,0) = Laplace(µi,0, σi,0) where the Laplacian distribution is

used as a sparsity promoting prior [See08]. Another example is the Laplacian mixture model,
an analogue to the Gaussian mixture model, that is better suited to model signals with “peaky”
distributions, see, e.g., [GO10, AZG07, MS]. To enforce exact sparsity, the Dirac delta distribu-
tion can be used. The mixture of a Gaussian and delta distribution is known as the spike and slab
model, see e.g., [IR+05].

121

Chapter 6. MAP Estimation for Mixture Models with Combinatorial Priors

6.4.3 Priors on the discrete structure of the signal

Examples of set functions that satisfy assumption A4 include submodular, supermodular, ILP
penalties and minimal set cover functions (see Section 5.3). We highlight below three examples
of interesting discrete structures expressed by submodular functions. In what follows, we refer
to coefficients with si = 1 as “large”, and si = 0 as “small”. Accordingly, large coefficients
are drawn from the distribution of larger variance σi,1, and small ones from the distribution of
smaller variance σi,0.

Approximately sparse model

The simplest discrete prior on x is the expected number k of large coefficients, which is equivalent
to sparsity for signals whose small coefficients are exactly zero. In this model, each binary variable
si is drawn independently from the same Bernoulli distribution with known parameter k/d. We
then have p(s) =

∏d
i=1(kd)si(1− k

d)1−si and

− log p(s) =
d∑
i=1

(
si log

(
d− k
k

)
− log

(
1− k

d

))
,

which is a modular function of s. When k � d, this discrete prior used in conjunction with the
mixture model captures well the structure of approximately sparse signals, where small values
are not small enough to be ignored. Note that for σ0 = 0, we recover the standard sparsity model.

The special case of Gaussian mixture with the above sparsity prior was considered in [SBB06]
to recover approximately sparse signals. However, the proposed recovery algorithm relies on a
specific measurement scheme, and is not guaranteed to converge.

Markov tree model

Moving beyond simple sparsity priors, one can consider priors where each binary variable si is
drawn from a Bernoulli distribution with parameters that depends on the index i. In particular,
we consider the Markov Tree Gaussian mixture model described in [DWB08] which assumes
that the variables xi are organized over a given tree T , and their values tend to decay from root
to leaves. This model provides a good description of wavelet coefficients encountered in many
classes of signals [DWB08].

Formally, we have p(s) =
∏d
i=1 B(1, pi), where pi depend on the level of the variable xi in the

tree T , so that

− log p(s) =

d∑
i=1

(
si log

(
1− pi
pi

)
− log (1− pi)

)
,

which is again a modular function of s.

122

6.5. Experiments

Approximately sparse model Markov Tree model Sparse clustered model

0 100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

30

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

30

Figure 6.2: Signals sampled from each model, for σ1/σ0 = 10, and other parameters as described
in the text.

Sparse clustered model

We revisit the clustering model discussed in Section 5.2. Recall that clustering can be naturally
enforced via cut functions defined over an undirected graph G = (V,E), where the vertices are
the d indices, and the edges connect “neighboring” indices (e.g., adjacent pixels in an image).
We recall the definition of the cut function, Fcut(S) = |δ(S)|, where δ(S) = {(i, j) ∈ E : i ∈
S, j /∈ S} is the cut-set induced by S in G.

In the context of our model, a signal whose large coefficients are sparse and clustered can be
modeled by the following prior:

p(s) ∝ exp(−λFcut(s)− ρ|s|),

where the parameters λ, ρ ≥ 0 control the level of sparsity and “clusteredness”. Note that
− log p(s) is then a submodular function.

Remark 5. Note that, since the approximately sparse model and Markov tree model yield
modular regularizers, our algorithm can easily handle more than two states with these priors.

6.5 Experiments

We demonstrate our approach on the two state Gaussian mixture model with the three discrete
priors described in Section 6.4.3. An example of a signal generated by each model is shown in
Figure 6.2. We compare against state-of-the-art convex methods adapted to each model.

We consider a linear model, y = Ax\ + ε, with ε ∼ N (0, σ2I), and A a random normalized
Gaussian matrix. We measure the relative recovery error with E = ‖x̂ − x\‖2/‖x‖2, and the
state recovery quality with Q = ‖ŝ− s\‖0, where s\ is the true state vector. We fix σ = 0.01,
σ0 = 1 and σ1 = r, with r = 10 and r = 100. The value of r controls the sparsity of the signal;
a small r leads to signals not truly sparse (see Figure6.2), while a large r leads to sparser signals.
We adopt two initializations for our proposed algorithm, MAP-MM starts with x0 = 0, while
MAP-MM-I starts with the estimate of the best convex competing method. Figures 6.3, 6.4,
and 6.5 (left) illustrate the importance of a correct initialization of MAP-MM in the sparse case
(r = 100), where convex approaches capture well the structure of the signal. Starting from their
estimate allows MAP-MM to achieve further improvement. For the non-sparse case (r = 10),
even MAP-MM obtains excellent performance, as shown in Figures 6.3, 6.4, and 6.5 (middle).

123

Chapter 6. MAP Estimation for Mixture Models with Combinatorial Priors

200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

MAP−MM
MAP−MM−I
BPDN
OMP

200 300 400 500 600 700 800 900 1000

10
−1

10
0

Number of measurements, M
N

or
m

al
iz

ed
 e

rr
or

, E
 (

lo
gs

ca
le

)

MAP−MM
MAP−MM−I
BPDN
OMP

200 300 400 500 600 700 800 900 1000

820

840

860

880

900

920

940

960

980

1000

1020

Number of measurements, M

S
ta

te
 r

ec
ov

er
y

qu
al

ity
, Q

MAP−MM

MAP−MM−I
OMP

All small Guess

Figure 6.3: Performance of MAP-MM compared to other state-of-the arts algorithms for the approx-
imately sparse Gaussian mixture model, in terms of signal recovery error E (in logscale) for σ = 0.01,
r = 100 (right) and r = 10 (middle), and in terms of state recovery quality Q for σ = 0.01, r = 10 (left).
The average number of large coefficients over the 50 simulations is 129.

200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

MAP−MM
MAP−MM−I
BPDN
OMP
WBPDN
HGL

200 300 400 500 600 700 800 900 1000

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

MAP−MM
MAP−MM−I
BPDN
OMP
WBPDN
HGL

200 300 400 500 600 700 800 900 1000
985

990

995

1000

1005

1010

1015

1020

Number of measurements, M

S
ta

te
 r

ec
ov

er
y

qu
al

ity
, Q

MAP−MM

MAP−MM−I
OMP

All small Guess

Figure 6.4: Performance of MAP-MM compared to other state-of-the arts algorithms for the Hidden
Markov Tree Gaussian mixture model, in terms of signal recovery error E (in logscale) for σ = 0.01,
r = 100 (right) and r = 10 (middle), and in terms of state recovery quality Q for σ = 0.01, r = 10 (left).
The average number of large coefficients over the 50 simulations is 27.

200 300 400 500 600 700 800 900 1000

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

MAP−MM
MAP−MM−I
BPDN
OMP
OGL
Flasso

200 300 400 500 600 700 800 900 1000

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

MAP−MM
MAP−MM−I
BPDN
OMP
OGL
Flasso

200 300 400 500 600 700 800 900 1000

820

840

860

880

900

920

940

960

980

1000

1020

Number of measurements, M

S
ta

te
 r

ec
ov

er
y

qu
al

ity
, Q

MAP−MM

MAP−MM−I
OMP

All small Guess

Figure 6.5: Performance of MAP-MM compared to other state-of-the arts algorithms for the sparse
clustered Gaussian mixture model, in terms of signal recovery error E (in logscale) for σ = 0.01, r = 100
(right) and r = 10 (middle), and in terms of state recovery quality Q for σ = 0.01, r = 10 (left). The
average number of large coefficients over the 50 simulations is 113.

124

6.5. Experiments

We fix the dimension d = 1024, and vary n from 128 to 1024 measurements. For each n we
perform 50 simulations using different randomly generated signals and measurement matrices.

For recovery of the state variables, we only consider MAP-MM and Orthogonal Matching Pursuit
(OMP) [TG07], since all the other algorithms considered cannot recover the state variables. As
a baseline, we compare against the recovery quality Q achieved by always guessing small (red
dashed line). MAP-MM (or MAP-MM-I for r = 100) always outperform OMP in terms of
recovering the correct states (Figures 6.3, 6.4, and 6.5 (right))

6.5.1 Approximately sparse Gaussian mixture model

We consider signals where each si is sampled from B(0, kd) with k = 128, then each xi is
independently drawn from N (0, σ2

si) with the same large/small variances for all i ∈ V :=

{1, · · · , d}. Figure 6.3 shows the performance of MAP-MM, OMP and Basis pursuit denoising
(BPDN) [CDS98], as we vary n. OMP only exploits the true number of large coefficients in x
which is clearly not enough for signals with non-negligible small coefficients (middle). BPDN
uses the true variance of the noise and also accounts for sparsity by way of the `1-norm, yielding
better estimates than OMP, but still worse than MAP-MM.

6.5.2 Hidden Markov tree Gaussian mixture model

We consider the Markov Tree Model proposed in [DWB08] using a binary tree. We assume that
the root is always picked as a “large” coefficient with variance σ2

1 , while its child is either large
with probability pi = 0.9 and variance σ2

1 , or small with probability 0.1 and variance σ2
0 . The

large and small variances decay according to the level and pi depends both on the level and the
state of its parent. For details, we refer to [DWB08]. We use the following parameters: α0 = 0.2,
α1 = 0.1, C11 = 0.5, C00 = 2, γ0 = 5 and γ1 = 0.5. This choice implies that the coefficients’
states are persistent across levels and the variances decay slowly, so that small coefficients at
deep levels are still not negligible.

Figure 6.4 shows the performance of MAP-MM, OMP, BPDN, hierarchical group Lasso (HGL)
[ZRY09] and the weighted BP algorithm with weights defined as the probability of being large
(WBPDN) [DWB08], as we vary n. MAP-MM-I outperforms all the other methods for both
r = 10 and r = 100. Even though WBPDN and HGL leverage the tree structure, they do not
take into account the coefficient variances and hence produce poorer results.

6.5.3 Sparse clustered Gaussian mixture model

We consider the one dimensional clustering model over a chain. We sample s from p(s) ∝
exp(−λFcut(s)− ρ|s|) with the parameters λ = 5 and ρ = 1.0986 that yield an average sparsity
of 113. Each xi is then independently drawn fromN (0, σ2

si), with the same large/small variances

125

Chapter 6. MAP Estimation for Mixture Models with Combinatorial Priors

for all i ∈ V .

Figure 6.5 shows the performance of MAP-MM, OMP, BPDN, overlapping group Lasso (OGL)
[JAB11] with sequential groups of length 2 and overlap 1 and fused Lasso (FLasso) [TSR+05],
as we vary n. MAP-MM-I again outperforms all the other algorithms. Both OGL and FLasso
promote clustering and sparsification of the coefficients, but do not exploit the continuous prior,
yielding suboptimal performance.

6.6 Discussion

We proposed a mixture model with combinatorial priors, which provides a more realistic model
for structured signals, which are not exactly sparse. In contrast to conventional structured sparsity
models, our model explicitly account for small coefficients, instead of assuming they are exactly
zero. We adapted the discrete proximal gradient descent method from Chapter 5, to directly
approximate the corresponding non-convex MAP estimate, without relying on convex relaxations.
In addition to the incentives considered in Chapter 5, the non-convex approach is further motivated
here by the fact that the obtained MAP criterion is not easily amenable to tractable convex
relaxations. Indeed, it is not clear if the function g(x) = mins∈{0,1}d G(x|s) + F (s) admits a
tractable convex envelope, even in cases where F (supp(x)) does (when σ0 6= 0). Our numerical
results demonstrate that our proposed approach can be used to improve upon solutions returned
by convex methods, when a statistical characterization of the signal is available.

As in Chapter 5, the missing piece in our discussion is again the theoretical characterization of
the quality of the solutions returned by the proposed majorization-minimization algorithm. As
the setting in this chapter is more general, resolving Open question 8 is a necessary prerequisite
for answering the following ones.

Open question 9. The MAP majorization-minimization (MAP-MM) algorithm proposed in this
chapter reduces to the discrete proximal gradient descent method in the case where G(x|s) =

ιsupp(x)=s(x). Assuming theoretical recovery guarantees can be obtained in the special case of
sparse or compressible signals, can such results be further extended to general signals satisfying
our model? How does the sample complexity relate to the ratio σ1/σ0?

Open question 10. Our proposed algorithm also assumed that true hyper-parameter values, e.g.,
of σ1 and σ0 are known, which is an unrealistic assumption. Can these hyper-parameters be
learned instead from the data, or chosen according to some theoretical recommendation? It
would be interesting to study the performance of MAP-MM, when the guessed and true values of
these parameters are mismatched.

126

7 Conclusions

7.1 Summary

In this thesis, we addressed some computational and statistical concerns arising in structured
sparsity learning problems, and extended the applicability of convex and non-convex approaches,
used to solve these problems, to a wider range of structures.

By borrowing tools from integer programming, we introduced a new structured sparsity frame-
work, which allows us to naturally describe a large range of structures, and to automatically
obtain corresponding tight convex relaxations, amenable to efficient optimization. This enabled
us to recover several popular structured sparsity-inducing norms in the literature, as well as define
new interesting ones, which are not necessarily norms. This framework thus expands the class of
practical structures that can be efficiently expressed via convex penalties.

We also presented a theoretical characterization of which combinatorial structures can be truly
expressed via convex penalties. In particular, we demonstrated how the common practice of
imposing homogeneity on convex regularizers leads to an unnecessary loss of structure. We
further showed that non-homogeneous convex penalties can better capture structure in general,
both in a geometric and a statistical sense. Such theoretical insights can help guide the design of
convex structured sparsity-inducing penalties in the future.

Furthermore, we established the tractability of a non-Euclidean proximal gradient method for
solving a broad class of non-smooth convex minimization problems, including ones that arise as
convex relaxations of structured sparsity learning problems. In particular, we proposed efficient
algorithms to compute proximal operators based on non-Euclidean norms, in various settings.
We also provided an accelerated variant of this method, with a small extra computational cost.
The interest in the non-Euclidean setting stems from the benefit it can entail on the computational
complexity. We further illustrated numerically this benefit on some structured sparsity examples.

To handle structures where the convex approach is not applicable, we proposed to use a discrete
proximal gradient descent method, which directly addresses structured sparse learning problems,

127

Chapter 7. Conclusions

without relying on convex relaxations. This method is efficient for several classes of structures,
for which existing non-convex methods are inapplicable, and is competitive with alternative
heuristic convex methods.

Finally, we proposed a probabilistic model as a prior for structured signals which are only
approximately sparse. We extended the discrete proximal gradient descent method to approximate
the corresponding maximum a posteriori estimate. We illustrated numerically that this approach
improves on state-of-the-art methods, for signals which satisfy this prior.

7.2 Future directions

The results presented in this thesis lead to several interesting directions for future research. We
have presented some of them at the end of each chapter, we now discuss two additional questions.

Existing approaches (including the ones presented in this thesis) to solve structured sparsity
learning problems fall into two main classes; convex and non-convex ones, each with its own
advantages and disadvantages. These two approaches have so far been studied separately. An
important avenue of research is then the development of methods that combine the benefits of
both approaches. The following two questions propose research problems along that direction.

Open question 11. Computing and optimizing the convex envelope of structures outside the
class of submodular and ILP penalties (introduced in Chapter 2) is in general intractable. Is it
possible to still design approximate efficient convex methods to handle some of these “intractable”
structures in a principled way?

In particular, we are interested in efficient algorithms to approximately solve the relaxed convex
structured sparsity learning problem (1.2), where the convex surrogate is chosen, as in Chapter
3, to be the convex envelope an `p-regularized combinatorial penalty Fp(x) = 1

qF (supp(x)) +
1
p‖x‖

p
p, even when such surrogate is intractable to evaluate.

One way to address this question is to develop a convex method able to exploit discrete approxi-
mation algorithms. Such algorithmic tools have proved to be key for the development of efficient
non-convex methods, for a number of intractable structures, while convex methods have so far
failed to exploit them.

A promising approach is to reformulate the convex relaxed problem (1.2) as the following
convex-concave saddle point problem:

min
x∈Rd

max
y∈Rd

f(x) + x>y − F ∗p (y), (7.1)

and to leverage the following insight, based on the results presented in Chapter 3: A subgradient
of the Fenchel conjugate F ∗p can be obtained by solving a discrete proximal/projection operator.
Such operations are at the heart of most non-convex algorithms, and though NP-Hard in general,

128

7.2. Future directions

Structure class Discrete Proximal operator Discrete Projection operator Example applications
Minimum weighted group Submodular Weighted maximum Genomics [OJV11, STM+05]
cover [OJV11, HZM11] maximization [BFSS15] cover [NWF78] Image processing [PF11]

Supermodular Submodular 7 Diverse and noise-robust feature selection [DDK12]
functions [DDK12] maximization [BFSS15] Representative feature selection [DP05]

Weighted graph 7 Prize-collecting Computer vision [HIS15a]
models [HIS15a] Steiner tree [HIS15a] Seismic exploration, astronomical sensing [HIS15a, SHI13].

Table 7.1: Examples of structures, whose convex envelope is intractable, but that admit efficient
approximate discrete projection/proximal operators.

they can be solved exactly or approximately in several cases, via discrete optimization algorithms
(see e.g., Sections 1.5 and 5.3, and Table 7.1).

Problem (7.1) is a special case of variational inequality problems (VIP), and thus can be solved
via subgradient schemes such as [Nes07], when the domain of y is bounded, and the subgradient
of F ∗p can be computed exactly. An interesting research problem is then to develop algorithms
that builds on such subgradient schemes, and to analyse their performance when the domain of
y is unbounded as in problem (7.1), and we only have access to inexact first-order information
about F ∗p , obtained from solving the discrete proximal/projection operator approximately.

Developing such methods is challenging, but if successful would greatly enhance the class of
structures that can be handled via principled convex approaches (e.g., structures in Table 7.1),
and can further inspire new applications of structured sparsity in various fields.

Open question 12. In Chapter 5, we considered the discrete proximal gradient method, which is
a generalization of the discrete projected gradient method, on which most existing non-convex
methods for solving the structured sparsity learning problem (1.1) are based (see Section 1.5).
The iterates in this algorithm are xk+1 ∈ proxF (xk− ∇f(xk)

L), where L is the Lipschitz constant
of f , and proxF (y) ∈ arg minx∈Rd

1
2‖x−y‖22 + 1

2F (supp(x)) is the discrete proximal operator
of F . Based on the insight discussed in Open question 11, we can equivalently view these iterates
as xk+1 ∈ ∂F ∗2 (xk − ∇f(xk)

L).

This observation raises the following question: Can the discrete proximal gradient method be
viewed as a convex algorithm solving the relaxed convex problem (1.2), with F ∗∗2 as a regularizer?
Such connection might seem far-fetched, as these updates do not correspond to any known convex
algorithm, but if true it would explain for example the similarity between statistical results
obtained by convex and non-convex approaches.

It is then worth investigating the performance of such an algorithm, through the lens of convexity,
in particular with respect to solving problem (7.1), for p = 2. This perspective can also easily be
extended for any p, by considering a general variant where xk+1 ∈ ∂F ∗p (xk − ∇f(xk)

L).

Such a perspective would lead to a unifying view of convex and non-convex approaches to
structured sparsity. This would enable the exchange of insights between the two approaches, and
would potentially lead to the design of better structured sparsity methods. Such analysis would
also provide an alternative way to theoretically characterize the quality of the solutions returned

129

Chapter 7. Conclusions

by the discrete proximal gradient method, i.e., it would answer our open question 8.

Furthermore, it is also interesting to analyze the performance of this algorithm, with inexact
proximal/projection operators. This was studied from the discrete perspective for example in
[HIS15a] and [JRD16]. Studying this from the convex perspective would provide an alternative
approach to address the above open question 11.

130

A Submodular Analysis

In this appendix, we briefly review some concepts from submodular analysis, which we use in
the thesis. For more exhaustive reviews, we refer the reader to [Fuj05, Bac13].

A.1 Submodular functions and their Lovász extensions

In this section, we consider finite-valued set functions F : 2V → R such that F (∅) = 0.
Submodular functions admit several equivalent definitions. We present here the two most
commonly used ones. For other equivalent definitions, see [NWF78, Prop. 2.1] and [Bac13,
Section 2.1].

Definition 16 (Submodular functions). A set function F : 2V → R is submodular iff

F (A) + F (B) ≥ F (A ∪B) + F (A ∩B), ∀A,B ⊆ V.
F (A ∪ {i})− F (A) ≥ F (B ∪ {i})− F (B), ∀A ⊆ B ⊆ V,∀i ∈ Bc.

If F is submodular, then −F is called supermodular. If F is both submodular and supermodular,
it is called modular, and it can be written as F (A) =

∑
i∈Awi, for some w ∈ Rd.

Lovász extension We can define the Lovász extension for any set-function F , but in the case
of submodular functions it satisfies several nice properties, some of which we present below.

Definition 17 (Lovász extension). Given any set-function F such that F (∅) = 0, its Lovász

131

Appendix A. Submodular Analysis

extension fL : Rd → R is given by:

fL(x) =
d−1∑
k=1

xjk [F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

=
d−1∑
k=1

F ({j1, . . . , jk})(xjk − xjk+1
) + F (V)xjd .

where xj1 ≥ · · · ≥ xjd are the component of x ∈ Rd sorted in decreasing order.

The Lovász extension admits other equivalent definitions too, see [Bac13, Def. 3.1]. It is
easy to see from Definition 17 that fL is an extension of F from {0, 1}d to Rd, i.e, fL(1S) =

F (S),∀S ⊆ V .

Submodular polyhedra Two classical polyhedra associated with submodular functions are
the submodular polyhedron P (F) = {s ∈ Rd : s(A) ≤ F (A),∀A ⊆ V } and the base polytope
B(F) = {s ∈ Rd : s(A) ≤ F (A), ∀A ⊂ V, s(V) = F (V)}.

Both polyhedra P (F) and B(F) are solvable; i.e., we can efficiently optimize linear functions
over them (despite having exponentially many constraints). In fact, this can be done in O(d log d)

via a greedy algorithm.

Proposition 22 (Greedy algorithm [Edm03]). Given a submodular function F , and its Lovász
extension fL, let x ∈ Rd such that xj1 ≥ · · · ≥ xjd , we define ŝ ∈ Rd such that ŝjk =

F ({j1, · · · , jk})− F ({j1, · · · , jk−1}), then ŝ ∈ B(F) and is a maximizer in the following two
problems:

• ∀x ∈ Rd+,maxs∈P (F) x
Ts = fL(x),

• ∀x ∈ Rd,maxs∈B(F) x
Ts = fL(x).

Proof. First let’s show that ŝ ∈ B(F). For all A ⊆ V , we have:∑
jk∈A

ŝjk =
∑
jk∈S

F ({j1, · · · , jk})− F ({j1, · · · , jk−1})

≤
∑
jk∈S

F (A ∩ {j1, · · · , jk})− F (A ∩ {j1, · · · , jk−1}) (by submodularity)

=

n∑
k=1

F (A ∩ {j1, · · · , jk})− F (A ∩ {j1, · · · , jk−1})

= F (A) (by telescoping the sums)

132

A.1. Submodular functions and their Lovász extensions

It remains to show that ŝ is the optimal point in both B(F) and P (F) (when x ∈ Rd+). For all
∀s ∈ P , we have:

xT (ŝ− s) =
d∑
k=1

xjk(ŝjk − sjk)

=
d∑
k=1

xjk(F ({j1, · · · , jk})− F ({j1, · · · , jk−1})− sjk)

=
d∑
k=1

xjk [(F ({j1, · · · , jk})− s({j1, · · · , jk}))− (F ({j1, · · · , jk−1})− s({j1, · · · , jk−1}))]

=
d∑
k=1

xjk [F ({j1, · · · , jk})− s({j1, · · · , jk})]−
d∑
k=1

xjk(F ({j1, · · · , jk−1})− s({j1, · · · , jk−1}))

=
n∑
k=1

xjk(F ({j1, · · · , jk})− s({j1, · · · , jk}))−
d−1∑
k=0

xjk+1
(F ({j1, · · · , jk})− s({j1, · · · , jk}))

=
d−1∑
k=1

(xjk − xjk+1
)(F ({j1, · · · , jk})− s({j1, · · · , jk})) + xd(F (V)− s(V))

≥ 0

Submodular function minimization A variety of methods were developed to minimize gen-
eral submodular functions, in polynomial time, either exactly or approximately up to some
accuracy F (A) − minS⊆V F (S) ≤ ε. These methods include combinatorial algorithms such
as [IFF01, Sch00], and convex algorithms which utilize the following connections between
submodularity and convexity.

Proposition 23 ([Lov83]). The Lovász extension fL is convex iff F is submodular.

Proposition 24 (Submodular function minimization, see, e.g., [Bac13, Proposition 3.7]). Given
a submodular function F and its Lovász extension fL, we have the following equivalence:

min
S⊆V

F (S) = min
s∈[0,1]d

fL(s)

Moreover, if S? is a minimizer of F , then 1S? is a minimizer of fL, and if s? is a minimizer of fL,
then any set {i : s?i ≥ θ}, obtained by thresholding s? with any θ ∈ (0, 1), is a minimizer of F .

Proposition 25 (Lemma 7.4 in [Fuj05]). Consider the following quadratic program over the
base polytope:

x∗ = arg min
x∈B(f)

1

2
‖x‖22

We define the sets A− = {i ∈ V |x∗i < 0} and A+ = {i ∈ V |x∗i ≤ 0}. Then, A− is the unique
minimal minimizer of F , and A+ is the unique maximal minimizer of F .

133

Appendix A. Submodular Analysis

For a review of submodular minimization algorithms see [Bac13, Chapter 10], and [CJK14,
CLSW17] for more recent updates. The best known time-complexity for general submodular
minimization problems is Õ(d5/3 · EO ·M/ε2) time, given by [CLSW17], where EO is the time
to evaluate F on any set S ⊆ V and M = maxS⊆V F (S).

A.2 Convex closure of set functions

In this section, we consider a general set function F : 2V → R, allowed to take infinite value,
and which is not necessarily submodular. We review the concept of the convex closure of F ,
which characterizes its tightest convex extension on [0, 1]d. The results presented here are mostly
based on the survey [Dug09] and the lecture notes [Von10], which we have adjusted to allow for
infinite values.

Formally, the convex closure is defined as follows.

Definition 18 (Convex Closure, see, e.g., [Dug09, Def. 3.1]). Given a set function F : 2V → R,
the convex closure f− : [0, 1]d → R is the point-wise largest convex function from [0, 1]d to R
that always lower bounds F .

The convex closure admit also two variational forms, which we present below.

Definition 19 (Equivalent definition of Convex Closure, see, e.g., [Von10, Def. 1] and [Dug09,
Def. 3.2]). Given a set function F : 2V → R, the convex closure of F can equivalently be defined
∀x ∈ [0, 1]n as:

f−(x) = inf{
∑
S⊆V

αSF (S) : x =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0}

It is easy to see that f− is a convex extension of F from the above definition.

Proof. To see that the two definitions are equivalent, let f−1 denote the function as defined in
Def. 18 and f−2 as defined in Def. 19. Note first that if f−2 (x) = ∞ then f−1 (x) = ∞, since
f−2 ≤ f−1 . Otherwise if f−2 (x) 6=∞

f−1 (x) = f−1 (
∑

α?S(x)1S) (where α? is the minimizer in the Def. of f−2)

≤
∑

α?S(x)f−1 (1S) (by convexity of f−1)

=
∑

α?S(x)F (S) (f−1 is a lower bound on F)

= f−2 (x)

On the other hand, since f−2 is a convex extension of F and f−1 is the largest convex lower bound
on F , we must have f−2 ≤ f−1 , and hence f−2 = f−1 .

134

A.2. Convex closure of set functions

Definition 20 (Another equivalent definition of Convex Closure). Given a set function F : 2V →
R, the convex closure of F can be also written ∀x ∈ dom f− as:

f−(x) = max
κ∈Rd,ρ∈R

{κTx+ ρ : κ(S) + ρ ≤ F (S),∀S ⊆ V }

Proof.

f−(x) = min
α
{
∑
S⊆V

αSF (S) : x =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0}

= min
α≥0

max
κ,ρ
{
∑
S⊆V

αSF (S) + κT (x−
∑
S⊆V

αS1S) + ρ(
∑
S⊆V

αS − 1)}

= max
κ,ρ

min
α≥0
{κTx+

∑
S⊆V

αS(F (S)− κT1S − ρ) + ρ} (by Slater’s condition)

= max
κ,ρ
{κTx+ ρ : κT1S + ρ ≤ F (S))}

Next, we present some useful properties of the convex closure.

Proposition 26. The convex closure f− of a set function F : 2V → R is lower semi-continuous.

Proof. This follows from Definition 20 of f−(x). We present an elementary proof here.

It’s enough to show that the sublevel sets of f− are closed. First note that the domain of f−

is closed. Since dom f− = conv {S : F (S) 6=∞} and the convex hull of a finite set is closed.
Then given any α ∈ R, let f(x) > α, we will show that ∃ε > 0, s.t., ∀x′ ∈ Bε(x), f(x′) > α.
If x 6∈ dom f , this holds since dom f is a closed set. Otherwise, let κ?, ρ? be the maximizers in
Definition 20 of f−(x). We choose ε < f−(x)−α

‖κ?‖2 . Then ∀x′ ∈ Bε(x) we have,

f−(x′) ≥ (κ?)Tx′ + ρ? = (κ?)T (x′ − x) + (κ?)Tx+ ρ?

≥ −‖κ?‖2‖x′ − x‖2 + f−(x)

> α

Then the sublevel set {f(x) ≤ α} is closed.

Proposition 27 (see, e.g., [Dug09, Prop. 3.23]). The minimum values of a proper set function F
and its convex closure f− are equal, i.e.,

min
s∈[0,1]d

f−(s) = min
S⊆V

F (S)

Moreover, if S? is a minimizer of F , then 1S? is a minimizer of f−, and if s? is a minimizer of
f−, then every set in the support of α?, where α? is the corresponding minimizer in Definition

135

Appendix A. Submodular Analysis

19 of f−(x?), is a minimizer of F .

Proof. First note that, {0, 1}d ⊆ [0, 1]d implies that f−(s?) ≤ F (S?). On the other hand,
f−(s?) =

∑
S⊆V α

?
SF (S) ≥ ∑S⊆V α

?
SF (S?) = F (S?). The rest of the proposition follows

directly.

Corollary 12. The convex closure f− of a set function F satisfies

max
S⊆V

m(S)− F (S) = max
s∈[0,1]d

mTs− f−(s)

for any modular function m : 2V → R and the corresponding vector representationm ∈ Rd.

Proof. This follows directly from proposition 27 by noting that the convex closure of m(S)−
F (S) is given bymTs− f−(s).

Proposition 28 (see, e.g., [Von10, Lemma 4]). The convex closure f− and the Lovász extension
fL of a set function F : 2V → R are identical, i.e., f−(s) = fL(s), ∀s ∈ [0, 1]d, iff F is a
submodular function.

Note that Proposition 24 can be seen then as a corollary of Proposition 27 and 28.

136

Bibliography

[Aho16] M. Ahookhosh. Accelerated first-order methods for large-scale convex minimiza-
tion. arXiv preprint arXiv:1604.08846, 2016.

[AZG07] T. Amin, M. Zeytinoglu, and L. Guan. Application of laplacian mixture model to
image and video retrieval. Multimedia, IEEE Transactions on, 9(7), 2007.

[AZO14] Z. Allen-Zhu and L. Orecchia. Linear coupling: An ultimate unification of gradient
and mirror descent. arXiv preprint arXiv:1407.1537, 2014.

[Bac08] F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9(Jun):1179–1225, 2008.

[Bac10a] F. Bach. Structured sparsity-inducing norms through submodular functions. In
NIPS, pages 118–126, 2010.

[Bac10b] F. Bach. Convex analysis and optimization with submodular functions: a tutorial.
arXiv preprint arXiv:1010.4207, 2010.

[Bac11] F. Bach. Shaping level sets with submodular functions. In Advances in Neural
Information Processing Systems, pages 10–18, 2011.

[Bac13] F. Bach. Learning with submodular functions: A convex optimization perspective.
Foundations and Trends R© in Machine Learning, 6(2-3):145–373, 2013.

[Bae09] M. Baes. Estimate sequence methods: extensions and approximations. Institute
for Operations Research, ETH, Zürich, Switzerland, 2009.

[BBC+16] L. Baldassarre, N. Bhan, V. Cevher, A. Kyrillidis, and S. Satpathi. Group-sparse
model selection: Hardness and relaxations. IEEE Transactions on Information
Theory, 62(11):6508–6534, 2016.

[BBCK13] L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis. Group-sparse model selec-
tion: Hardness and relaxations. arXiv preprint arXiv:1303.3207, 2013.

[BCDH10] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive
sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010.

137

Bibliography

[BD86] J. P. Boyle and R. L. Dykstra. A method for finding projections onto the intersection
of convex sets in hilbert spaces. In Advances in order restricted statistical inference,
pages 28–47. Springer, 1986.

[BD09] T. Blumensath and M. Davies. Sampling theorems for signals from the union of
finite-dimensional linear subspaces. Information Theory, IEEE Transactions on,
55(4):1872–1882, 2009.

[Ben09] Y. Bengio. Learning deep architectures for ai. Foundations and trends R© in
Machine Learning, 2(1):1–127, 2009.

[Ber82] D. P. Bertsekas. Projected newton methods for optimization problems with simple
constraints. SIAM Journal on control and Optimization, 20(2):221–246, 1982.

[BFSS15] N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on
Computing, 44(5):1384–1402, 2015.

[BH18] A. Beck and N. Hallak. Optimization problems involving group sparsity terms.
Mathematical Programming, Apr 2018.

[BJM+12] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Optimization with sparsity-
inducing penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106,
2012.

[BL10] J. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization: theory
and examples. Springer Science & Business Media, 2010.

[BLM09] K. Bredies, D. A. Lorenz, and P. Maass. A generalized conditional gradient method
and its connection to an iterative shrinkage method. Computational Optimization
and Applications, 42(2):173–193, 2009.

[BND12] S. Babacan, S. Nakajima, and M. Do. Bayesian group-sparse modeling and
variational inference. Submitted to IEEE Transactions on Signal Processing, 2012.

[BS17] A. Beck and S. Shtern. Linearly convergent away-step conditional gradient for
non-strongly convex functions. Mathematical Programming, 164(1-2):1–27, 2017.

[BT04] A. Beck and M. Teboulle. A conditional gradient method with linear rate of con-
vergence for solving convex linear systems. Mathematical Methods of Operations
Research, 59(2):235–247, 2004.

[BT09a] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[BT09b] A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal
recovery. Convex optimization in signal processing and communications, pages
42–88, 2009.

138

Bibliography

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[BWB14] C. Boyer, P. Weiss, and J. Bigot. An algorithm for variable density sampling with
block-constrained acquisition. SIAM Journal on Imaging Sciences, 7(2):1080–
1107, 2014.

[CC68] M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of
frank-wolfe algorithm. SIAM Journal on Control, 6(4):509–516, 1968.

[CDS98] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
SIAM journal on scientific computing, 20(1):33–61, 1998.

[Cha00] C.-C. Chang. Libsvm: Introduction and benchmarks. http://www. csie. ntn. edu.
tw/˜ cjlin/libsvm, 2000.

[CHDB09] V. Cevher, C. Hegde, M. Duarte, and R. Baraniuk. Sparse signal recovery using
markov random fields. In NIPS, 2009.

[Cio90] I. Cioranescu. Geometry of Banach spaces, duality mappings and nonlinear
problems, volume 62 of Mathematics and its Applications. Kluwer Academic
Publishers Group, Dordrecht, 1990.

[CJK14] D. Chakrabarty, P. Jain, and P. Kothari. Provable submodular minimization via
fujishige-wolfe’s algorithm. Adv. in Neu. Inf. Proc. Sys.(NIPS), 2014.

[Cla10] K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe
algorithm. ACM Transactions on Algorithms (TALG), 6(4):63, 2010.

[CLS84] W. Cook, L. Lovász, and A. Schrijver. A polynomial-time test for total dual
integrality in fixed dimension. In Mathematical programming at Oberwolfach II,
pages 64–69. Springer, 1984.

[CLSW17] D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C.-w. Wong. Subquadratic submod-
ular function minimization. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 1220–1231, New York,
NY, USA, 2017. ACM.

[CP11] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing.
In Fixed-point algorithms for inverse problems in science and engineering, pages
185–212. Springer, 2011.

[CR02] S. F. Cotter and B. D. Rao. Sparse channel estimation via matching pursuit with
application to equalization. IEEE Transactions on Communications, 50(3):374–
377, 2002.

139

Bibliography

[CRPW12] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex geometry of
linear inverse problems. Foundations of Computational Mathematics, 12:805–849,
2012.

[CT05] E. J. Candes and T. Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

[CT13] C. Cartis and A. Thompson. An exact tree projection algorithm for wavelets. arXiv
preprint arXiv:1304.4570, 2013.

[CW05] P. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[CWB08] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted
minimization. Journal of Fourier analysis and applications, 14(5):877–905, 2008.

[DDFG10] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and
Applied Mathematics, 63(1):1–38, 2010.

[DDK12] A. Das, A. Dasgupta, and R. Kumar. Selecting diverse features via spectral
regularization. In NIPS, pages 1592–1600, 2012.

[dGJ13] A. d’Aspremont, C. Guzmán, and M. Jaggi. An optimal affine invariant smooth
minimization algorithm. arXiv preprint arXiv:1301.0465, 2013.

[DHCB09] M. F. Duarte, C. Hegde, V. Cevher, and R. G. Baraniuk. Recovery of compressible
signals in unions of subspaces. In Information Sciences and Systems, 2009. CISS
2009. 43rd Annual Conference on, pages 175–180. IEEE, 2009.

[DJ95] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. Journal of the american statistical association, 90(432):1200–1224,
1995.

[DK11] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for
subset selection, sparse approximation and dictionary selection. arXiv preprint
arXiv:1102.3975, 2011.

[DNW13] M. A. Davenport, D. Needell, and M. B. Wakin. Signal space cosamp for sparse
recovery with redundant dictionaries. IEEE Transactions on Information Theory,
59(10):6820–6829, 2013.

[Don06] D. Donoho. Compressed sensing. Information Theory, IEEE Transactions on,
52(4):1289–1306, 2006.

[DP05] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene
expression data. Journal of bioinformatics and computational biology, 3(02):185–
205, 2005.

140

Bibliography

[DSSSC08] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections
onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th
international conference on Machine learning, pages 272–279. ACM, 2008.

[Dug09] S. Dughmi. Submodular functions: Extensions, distributions, and algorithms. a
survey. arXiv preprint arXiv:0912.0322, 2009.

[DWB08] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk. Wavelet-domain compressive
signal reconstruction using a hidden markov tree model. In Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages
5137–5140. IEEE, 2008.

[EB09] Y. C. Eldar and H. Bolcskei. Block-sparsity: Coherence and efficient recovery. In
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on, pages 2885–2888. IEEE, 2009.

[Edm03] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combina-
torial Optimization—Eureka, You Shrink!, pages 11–26. Springer, 2003.

[EHBC13] M. El Halabi, L. Baldassarre, and V. Cevher. To convexify or not? Regression
with clustering penalties on graphs. In Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on, pages
21–24. IEEE, 2013.

[EHBC14] M. El Halabi, L. Baldassarre, and V. Cevher. Map estimation for bayesian mixture
models with submodular priors. In Machine Learning for Signal Processing
(MLSP), 2014 IEEE International Workshop on, pages 1–6. IEEE, 2014.

[EHBC18] M. El Halabi, F. Bach, and V. Cevher. Combinatorial penalties: Structure preserved
by convex relaxations. Proceedings of the 21st International Conference on
Artificial Intelligence and Statistics, 2018.

[EHC15] M. El Halabi and V. Cevher. A totally unimodular view of structured sparsity.
Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, pp. 223–231, 2015.

[EHHV+17] M. El Halabi, Y.-P. Hsieh, B. Vu, Q. Nguyen, and V. Cevher. General proximal
gradient method: A case for non-Euclidean norms. (EPFL-CONF-230391), 2017.

[EKDN16] E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban. Restricted strong
convexity implies weak submodularity. arXiv preprint arXiv:1612.00804, 2016.

[EM09] Y. Eldar and M. Mishali. Robust recovery of signals from a structured union of
subspaces. Information Theory, IEEE Transactions on, 55(11):5302–5316, 2009.

[FBDN07] M. A. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak. Majorization–
minimization algorithms for wavelet-based image restoration. IEEE Transactions
on Image processing, 16(12):2980–2991, 2007.

141

Bibliography

[Fei98] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[FF93] L. E. Frank and J. H. Friedman. A statistical view of some chemometrics regression
tools. Technometrics, 35(2):109–135, 1993.

[FL01] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–
1360, 2001.

[Fuj05] S. Fujishige. Submodular functions and optimization, volume 58. Elsevier Science,
2005.

[FW56] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics (NRL), 3(1-2):95–110, 1956.

[GB14] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, March 2014.

[GE13] R. Giryes and M. Elad. Iterative hard thresholding with near optimal projection
for signal recovery. In 10th Intl. Conf. on Sampling Theory and Appl.(SAMPTA),
2013.

[GH13] D. Garber and E. Hazan. A linearly convergent conditional gradient algorithm with
applications to online and stochastic optimization. arXiv preprint arXiv:1301.4666,
2013.

[GH15] D. Garber and E. Hazan. Faster rates for the frank-wolfe method over strongly-
convex sets. In International Conference on Machine Learning, pages 541–549,
2015.

[GH16] D. Garber and E. Hazan. A linearly convergent variant of the conditional gradi-
ent algorithm under strong convexity, with applications to online and stochastic
optimization. SIAM Journal on Optimization, 26(3):1493–1528, 2016.

[GK02] W. Gerstner and W. Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

[GM86] J. Guélat and P. Marcotte. Some comments on wolfe’s ‚Äòaway step‚Äô. Mathe-
matical Programming, 35(1):110–119, 1986.

[GO10] P. Garrigues and B. Olshausen. Group sparse coding with a laplacian scale mixture
prior. In NIPS, 2010.

[GP79] F. Giles and W. R. Pulleyblank. Total dual integrality and integer polyhedra. Linear
algebra and its applications, 25:191–196, 1979.

142

http://cvxr.com/cvx

Bibliography

[GR98] A. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783–797, September 1998.

[GRC09] G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with a
certain family of nonconvex penalties and dc programming. IEEE Transactions on
Signal Processing, 57(12):4686–4698, 2009.

[Gül92] O. Güler. New proximal point algorithms for convex minimization. SIAM J. Optim.,
2(4):649–664, 1992.

[Gur16] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016.

[HDC09] C. Hegde, M. Duarte, and V. Cevher. Compressive sensing recovery of spike trains
using a structured sparsity model. In SPARS’09-Signal Processing with Adaptive
Sparse Structured Representations, 2009.

[HGT06] K. K. Herrity, A. C. Gilbert, and J. A. Tropp. Sparse approximation via iterative
thresholding. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, volume 3, pages III–III.
IEEE, 2006.

[HIS15a] C. Hegde, P. Indyk, and L. Schmidt. Approximation algorithms for model-based
compressive sensing. IEEE Transactions on Information Theory, 61(9):5129–5147,
2015.

[HIS15b] C. Hegde, P. Indyk, and L. Schmidt. A nearly-linear time framework for graph-
structured sparsity. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 928–937, 2015.

[HJN15] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms
for norm-regularized smooth convex optimization. Mathematical Programming,
152(1-2):75–112, 2015.

[HSK17] H. Hassani, M. Soltanolkotabi, and A. Karbasi. Gradient methods for submodular
maximization. In Advances in Neural Information Processing Systems, pages
5843–5853, 2017.

[HZ10] J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics,
38(4):1978–2004, 2010.

[HZM11] J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. The
Journal of Machine Learning Research, 12:3371–3412, 2011.

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM),
48(4):761–777, 2001.

143

Bibliography

[IR+05] H. Ishwaran, J. S. Rao, et al. Spike and slab variable selection: frequentist and
bayesian strategies. The Annals of Statistics, 33(2):730–773, 2005.

[JAB11] R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-
inducing norms. Journal of Machine Learning Research, 12:2777–2824, 2011.

[Jag13] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13),
pages 427–435, 2013.

[JMOB11] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierar-
chical sparse coding. Journal of Machine Learning Reasearch, 12:2297–2334,
2011.

[JOB10] R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component
analysis. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 366–373, 2010.

[JOV09] L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlap and graph lasso. In
International Conference on Machine Learning, 2009.

[JRD16] P. Jain, N. Rao, and I. S. Dhillon. Structured sparse regression via greedy hard
thresholding. In Advances in Neural Information Processing Systems, pages 1516–
1524, 2016.

[JSK11] V. Jojic, S. Saria, and D. Koller. Convex envelopes of complexity controlling
penalties: the case against premature envelopment. In International Conference on
Artificial Intelligence and Statistics, pages 399–406, 2011.

[JXC08] S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. Signal Processing,
IEEE Transactions on, 56(6), 2008.

[KBEH+15] A. Kyrillidis, L. Baldassarre, M. El Halabi, Q. Tran-Dinh, and V. Cevher. Struc-
tured sparsity: Discrete and convex approaches. In Compressed Sensing and its
Applications, pages 341–387. Springer, 2015.

[KF00] K. Knight and W. Fu. Asymptotics for lasso-type estimators. Annals of statistics,
pages 1356–1378, 2000.

[KG12] A. Krause and C. E. Guestrin. Near-optimal nonmyopic value of information in
graphical models. arXiv preprint arXiv:1207.1394, 2012.

[KLOS14] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 217–226. SIAM, 2014.

144

Bibliography

[KX10] S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with struc-
tured sparsity. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 543–550, 2010.

[KZ04] V. Kolmogorov and R. Zabin. What energy functions can be minimized via
graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on,
26(2):147–159, 2004.

[Lan12] G. Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012.

[LDP07] M. Lustig, D. Donoho, and J. Pauly. Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic resonance in medicine, 58(6):1182–1195,
2007.

[Liu10] H. Liu. Nonparametric Learning in High Dimensions. Carnegie Mellon University,
2010.

[LJJ15] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of frank-wolfe
optimization variants. In Advances in Neural Information Processing Systems,
pages 496–504, 2015.

[LLN06] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

[LMH15] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization.
In Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

[Lov83] L. Lovász. Submodular functions and convexity. In Mathematical Programming
The State of the Art, pages 235–257. Springer, 1983.

[LST13] J. D. Lee, Y. Sun, and J. E. Taylor. On model selection consistency of penalized
m-estimators: a geometric theory. In Advances in Neural Information Processing
Systems, pages 342–350, 2013.

[LZ16] G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM
Journal on Optimization, 26(2):1379–1409, 2016.

[Mar70] B. Martinet. Régularisation d’inéquations variationnelles par approximations
successives. Revue française d’informatique et de recherche opérationnelle. Série
rouge, 4(R3):154–158, 1970.

[Mil02] A. Miller. Subset selection in regression. CRC Press, 2002.

[MJBO10] J. Mairal, R. Jenatton, F. R. Bach, and G. R. Obozinski. Network flow algorithms
for structured sparsity. In Advances in Neural Information Processing Systems,
pages 1558–1566, 2010.

145

Bibliography

[MJOB11] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow
optimization for structured sparsity. Journal of Machine Learning Research,
12(Sep):2681–2720, 2011.

[MMP13] C. A. Micchelli, J. M. Morales, and M. Pontil. Regularizers for structured sparsity.
Advances in Computational Mathematics, pages 1–35, 2013.

[Mor62] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. CR Acad. Sci. Paris Ser. A Math., 255:2897–2899, 1962.

[MRS+10] S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa. Solving structured
sparsity regularization with proximal methods. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 418–433.
Springer, 2010.

[MS] N. Mitianoudis and T. Stathaki. Overcomplete source separation using laplacian
mixture models. IEEE Signal Processing Letters, 12(4).

[MZ93] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 41(12):3397–3415, 1993.

[Nat95] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24(2):227–234, 1995.

[Nes04] Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied
Optimization. Kluwer Academic Publishers, Boston, MA, 2004. A basic course.

[Nes05] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical pro-
gramming, 103(1):127–152, 2005.

[Nes07] Y. Nesterov. Dual extrapolation and its applications to solving variational in-
equalities and related problems. Mathematical Programming, 109(2-3):319–344,
2007.

[Nes13] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013.

[Nes15] Y. Nesterov. Complexity bounds for primal-dual methods minimizing the model of
objective function. Mathematical Programming, pages 1–20, 2015.

[NRW+12] S. N. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu, et al. A unified framework
for high-dimensional analysis of m-estimators with decomposable regularizers.
Statistical Science, 27(4):538–557, 2012.

[NRWY11] S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework
for high-dimensional analysis of m-estimators with decomposable regularizers. In
Adv. Neural Inf. Proc. Sys.(NIPS), 2011.

146

Bibliography

[NT09] D. Needell and J. Tropp. Cosamp: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–
321, 2009.

[NW99] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization,
volume 18. Wiley New York, 1999.

[NWF78] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for
maximizing submodular set functions — I. Mathematical Programming, 14(1):265–
294, 1978.

[NYD83] A. Nemirovskii, D. B. Yudin, and E. R. Dawson. Problem complexity and method
efficiency in optimization. 1983.

[OB12] G. Obozinski and F. Bach. Convex relaxation for combinatorial penalties. arXiv
preprint arXiv:1205.1240, 2012.

[OB16] G. Obozinski and F. Bach. A unified perspective on convex structured sparsity:
Hierarchical, symmetric, submodular norms and beyond. 2016.

[OJV11] G. Obozinski, L. Jacob, and J. Vert. Group lasso with overlaps: The latent group
lasso approach. arXiv preprint arXiv:1110.0413, 2011.

[OTJ10] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing,
20(2):231–252, 2010.

[Owe07] A. B. Owen. A robust hybrid of lasso and ridge regression. Contemporary
Mathematics, 443:59–72, 2007.

[PF11] G. Peyré and J. Fadili. Group sparsity with overlapping partition functions. In
Signal Processing Conference, 2011 19th European, pages 303–307. IEEE, 2011.

[PVMH08] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi. Recovering sparse signals using
sparse measurement matrices in compressed dna microarrays. IEEE Journal of
Selected Topics in Signal Processing, 2(3):275–285, 2008.

[RBV08] F. Rapaport, E. Barillot, and J. Vert. Classification of arraycgh data using fused
svm. Bioinformatics, 24(13):i375–i382, 2008.

[RNWK11] N. S. Rao, R. D. Nowak, S. J. Wright, and N. G. Kingsbury. Convex approaches
to model wavelet sparsity patterns. In Image Processing (ICIP), 2011 18th IEEE
International Conference on, pages 1917–1920. IEEE, 2011.

[RRN12] N. Rao, B. Recht, and R. Nowak. Signal recovery in unions of subspaces with
applications to compressive imaging. arXiv preprint arXiv:1209.3079, 2012.

147

Bibliography

[RT14] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming,
144(1-2):1–38, 2014.

[S+58] M. Sion et al. On general minimax theorems. Pacific J. Math, 8(1):171–176, 1958.

[SBB06] S. Sarvotham, D. Baron, and R. Baraniuk. Compressed sensing reconstruction via
belief propagation. preprint, 2006.

[Sch00] A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–
355, 2000.

[SCJX17] C. Song, S. Cui, Y. Jiang, and S.-T. Xia. Accelerated stochastic greedy coordinate
descent by soft thresholding projection onto simplex. In Advances in Neural
Information Processing Systems, pages 4841–4850, 2017.

[See08] M. Seeger. Bayesian inference and optimal design for the sparse linear model. The
Journal of Machine Learning Research, 9, 2008.

[SFHT13] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal
of Computational and Graphical Statistics, 22(2):231–245, 2013.

[Sha49] C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21, 1949.

[She17] J. Sherman. Area-convexity, l &infty; regularization, and undirected multicommod-
ity flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 452–460. ACM, 2017.

[SHI13] L. Schmidt, C. Hegde, and P. Indyk. The constrained earth mover distance model,
with applications to compressive sensing. In 10th Intl. Conf. on Sampling Theory
and Appl.(SAMPTA), 2013.

[SPH09] M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-sparse
signals with an optimal number of measurements. Signal Processing, IEEE Trans-
actions on, 57(8):3075–3085, 2009.

[SRB11] M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. NIPS, Granada, Spain, 2011.

[SSS07] S. Shalev-Shwartz and Y. Singer. Online learning: Theory, algorithms, and appli-
cations. Technical report, Hebrew University, 2007.

[STM+05] A. Subramanian, P. Tamayo, V. Mootha, S. Mukherjee, B. Ebert, M. Gillette,
A. Paulovich, S. Pomeroy, T. Golub, E. Lander, et al. Gene set enrichment analysis:
a knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences of the United States of America,
102(43):15545–15550, 2005.

148

Bibliography

[TG07] J. Tropp and A. Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. Information Theory, IEEE Transactions on, 53(12):4655–4666,
2007.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[Tro04] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information theory, 50(10):2231–2242, 2004.

[Tru90] K. Truemper. A decomposition theory for matroids. v. testing of matrix total
unimodularity. Journal of Combinatorial Theory, Series B, 49(2):241–281, 1990.

[Tse08] P. Tseng. On accelerated proximal gradient methods for convex-concave optimiza-
tion. submitted to siam j. J. Optim, 2008.

[TSR+05] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(1):91–108, 2005.

[VDGB09] S. A. Van De Geer and P. Bühlmann. On the conditions used to prove oracle results
for the lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

[Von07] J. Vondrák. Submodularity in combinatorial optimization. 2007.

[Von10] J. Vondrák. Continuous extensions of submodular functions. CS 369P: Polyhedral
techniques in combinatorial optimization, https://theory.stanford.edu/~jvondrak/
CS369P/lec17.pdf, November 2010.

[VRMV14] S. Villa, L. Rosasco, S. Mosci, and A. Verri. Proximal methods for the latent group
lasso penalty. Computational Optimization and Applications, 58(2):381–407, 2014.

[VSBV13] S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact forward-
backward algorithms. SIAM Journal on Optimization, 23(3):1607–1633, 2013.

[Wei05] S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

[WNF09] S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable
approximation. Signal Processing, IEEE Transactions on, 57(7):2479–2493, 2009.

[Wol70] P. Wolfe. Convergence theory in nonlinear programming. Integer and nonlinear
programming, pages 1–36, 1970.

[WT13] M. Walter and K. Truemper. Implementation of a unimodularity test. Mathematical
Programming Computation, 5(1):57–73, 2013.

[WWJ16] A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on acceler-
ated methods in optimization. arXiv preprint arXiv:1603.04245, 2016.

149

https://theory.stanford.edu/~jvondrak/CS369P/lec17.pdf
https://theory.stanford.edu/~jvondrak/CS369P/lec17.pdf

Bibliography

[WWW+16] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems, pages
2074–2082, 2016.

[YB+17] X. Yan, J. Bien, et al. Hierarchical sparse modeling: A choice of two group lasso
formulations. Statistical Science, 32(4):531–560, 2017.

[YL06] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 68(1):49–67, 2006.

[YWW10] F. C. Yang, Z. Wei, and D. Wang. Subdifferential representation of homogeneous
functions and extension of smoothness in banach spaces. Acta Mathematica Sinica,
English Series, 26(8):1535–1544, 2010.

[YZS17] Y. Yu, X. Zhang, and D. Schuurmans. Generalized conditional gradient for sparse
estimation. Journal of Machine Learning Research, 18(144):1–46, 2017.

[Zal02] C. Zalinescu. Convex analysis in general vector spaces. World scientific, 2002.

[ZJH10] Y. Zhou, R. Jin, and S. Hoi. Exclusive lasso for multi-task feature selection. In
International Conference on Artificial Intelligence and Statistics, pages 988–995,
2010.

[ZL08] H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood
models. Annals of statistics, 36(4):1509, 2008.

[Zou06] H. Zou. The adaptive lasso and its oracle properties. Journal of the American
statistical association, 101(476):1418–1429, 2006.

[ZRY09] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical variable selection. The Annals of Statistics, 37(6A):3468–3497,
2009.

150

Marwa El Halabi
Allée du Tilleul 3

1022 Chavannes-près-Renens
Switzerland

H +41 78 930 85 74
B marwa.elhalabi@epfl.ch

Google Scholar ID:
Vd6RW7cAAAAJ

Research Interests
Machine Learning, Discrete & Continuous Optimization, Submodularity, Algorithms.

Education
2012–present PhD in Computer and Communication Sciences, École Polytechnique

Fédérale de Lausanne (EPFL), Switzerland. Advisor: Prof. Volkan Cevher.
Thesis title: “Learning with Structured Sparsity: From Discrete to Convex and Back.”
Date of private defense: May 18, 2018.

2008–2012 B.Sc. in Computer and Communications Engineering, Minor in Mathe-
matics, American University of Beirut (AUB), Lebanon.
Graduated with distinction, GPA: 3.98/4.

Research Experience
2012–present Doctoral Assistant, Laboratory for Information and Inference Systems, LIONS,

EPFL. Advisor: Prof. Volkan Cevher.
Developed novel efficient methods for structured sparse recovery, convex and submodular
optimization.

Jan - Apr,
2017

Visiting Researcher, Machine learning research laboratory, SIERRA, INRIA.
Host: Prof. Francis Bach.
Characterized geometrically and statistically combinatorial structures preserved by convex
continuous relaxations.

Nov, 2016 Visiting Researcher, Learning & Adaptive Systems Group, LAS, ETH.
Host: Prof. Andreas Krause.
Investigated variational inference in structured sparsity models.

2011–2012 Final Year Project, Electrical and Computer Engineering Dept., AUB.
Advisor: Prof. Fadi Karameh.
Studied the effect of different electrode configurations on spatial targeting in electroconvulsive
therapy (ECT), using a modeling and numerical solver software (OpenMEEG).

Jul–Aug,
2011

Research Intern, Algorithmics Laboratory, ALGO, EPFL.
Advisor: Prof. Amin Shokrollahi.
Implemented in VHDL encoding/decoding methods for a parallelized construction of gener-
alized Reed-Solomon codes to study speed-up compared to a regular construction.

2010-2011 Research Assistant, Electrical and Computer Engineering Dept., AUB.
Advisor: Prof. Wassim Masri.
Developed a multidimensional visualization tool, in Java, to visualize and analyze test cases
based on their execution profiles and enable user-aided software fault localization.

151

Teaching and Supervision Experience
2012–2016 Teaching Assistant, EPFL.

{ Mathematics of Data: From Theory to Computation, Fall’15, Fall’16 and Fall’17. Masters
course (∼ 60 Students).

{ Advanced Topics in Data Sciences, Spring’16. PhD course (13 Students).
{ Circuits and Systems I, Fall’12 and Fall’13. Undergraduate course (∼150 Students).

May-Jul.
2015

Student Project Co-Supervisor, EPFL.
Siddhartha Satpathi, “Totally unimodular structure in phase retrieval of sparse signals and
in nuclear magnetic resonance (NMR) spectroscopy”, internship.

Awards and Honors
2015 Nominated for SPARS Best Student Paper award.
2013 Nominated for CAMSAP Best Student Paper award.
2013 CAMSAP travel grant, supported by the U.S. Army Research Office.

2008–2012 Placed on the Dean’s Honor List at AUB (awarded for students ranked in the top
10% of their class).

Publications
Book Chapters

2015 Kyrillidis, A., Baldassarre, L., El Halabi, M., Tran-Dinh, Q. and Cevher, V. “Struc-
tured sparsity: Discrete and convex approaches”. In Compressed Sensing and its
Applications, pp. 341–387. Springer. Available at: https://arxiv.org/abs/1507.
05367

Preprints

2017 El Halabi, M., Hsieh, Y.-P., Vu, B., Nguyen, Q. and Cevher, V. “General prox-
imal gradient method: A case for non-Euclidean norms”. Available at: https:
//infoscience.epfl.ch/record/230391.

Refereed Conference & Workshop Publications

2017 El Halabi, M., Bach. F. and Cevher, V. “Combinatorial penalties: Which structures
are preserved by convex relaxations?”. In Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS). Available at: https:
//arxiv.org/abs/1710.06273.

2016 Norouzi, A., Bazzi, A., El Halabi, M., Bogunovic, I., Hsieh, Y.-P. and Cevher, V.
“An efficient streaming algorithm for the submodular cover problem”. In Advances
in Neural Information Processing Systems (NIPS). Available at: https://arxiv.
org/abs/1611.08574.

2016 Odor, G., Li, Y.-H., Yurtsever, A., Hsieh, Y.-P., Tran-Dinh, Q., El Halabi, M. and
Cevher, V. “ Frank-Wolfe works for non-Lipschitz continuous gradient objectives:
Scalable poisson phase retrieval”. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Available at: https://arxiv.org/abs/
1602.00724.

152

2015 El Halabi, M. and Cevher, V. “A totally unimodular view of structured spar-
sity”. In Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics (AISTATS). Available at: https://arxiv.org/abs/
1411.1990.Extended abstract nominated for SPARS Best Student Paper
award.

2014 El Halabi, M., Baldassarre, L. and Cevher, V. “Map estimation for Bayesian mixture
models with submodular priors”. In IEEE International Workshop on Machine
Learning for Signal Processing (MLSP). Available at: https://infoscience.epfl.
ch/record/201800/files/PID3330271.pdf.

2013 El Halabi, M., Baldassarre, L. and Cevher, V. “To convexify or not? Regression
with clustering penalties on graphs”. In IEEE 5th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Avail-
able at: https://infoscience.epfl.ch/record/189976. Nominated for Best
Student Paper award.

Skills
Programming C/C++, Matlab. Prior experience in: Python, Java, and VHDL.

Languages Arabic (native), English (fluent), French (fluent).

Invited and Conference Talks
{ Combinatorial penalties: Which structures are preserved by convex relaxations?

- International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Canary
Islands, April 2018 (Poster).

{ General proximal gradient method: A case for non-Euclidean norms.
- The Summer Research Institute (SuRI), Data Science track poster session, EPFL, Switzerland,
June 2017 (Poster).

- SIAM Conference on Optimization (OP17), Vancouver, Canada, May 2017 (Oral).

{ An efficient streaming algorithm for the submodular cover problem.
- Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, December 2016
(Poster).

- EPFL-Google Research Day, EPFL, Switzerland, February 2018 (Poster).

{ A totally unimodular view of structured sparsity.
- Signal Processing with Adaptive Sparse Structured Representations (SPARS), Cambridge, UK,
July 2015 (Oral).

- International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego,
California, USA, May 2015 (Poster).

- EPFL-Idiap-ETH Sparsity Workshop, EPFL, Switzerland, March 2015 (Oral).

{ Map estimation for Bayesian mixture models with submodular priors.
- IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Reims,
France, September 2014 (Oral).

{ To convexify or not? Regression with clustering penalties on graphs.
- IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing

153

(CAMSAP), Saint Martin, French West Indies, December 2013 (Oral & poster).

Professional Service
Journal & Conference Reviews:
{ International Conference on Machine Learning (ICML), 2018.
{ Advances in Neural Information Processing Systems (NIPS), 2017.
{ IEEE Transactions on Signal Processing (TSP), 2016.
{ IEEE International Symposium on Information Theory (ISIT), 2014.

Conference Volunteer:
{ Advances in Neural Information Processing Systems (NIPS), 2017.
{ IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-

cessing (CAMSAP), 2013.

154

