
c© 2019 Pan Li

LEARNING ON GRAPHS WITH HIGH-ORDER RELATIONS: SPECTRAL
METHODS, OPTIMIZATION AND APPLICATIONS

BY

PAN LI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Olgica Milenkovic, Chair
Professor Bruce Hajek
Professor Jiawei Han
Associate Professor David Gleich, Purdue University
Assistant Professor Niao He

ABSTRACT

Learning on graphs is an important problem in machine learning, computer

vision and data mining. Traditional algorithms for learning on graphs pri-

marily take into account only low-order connectivity patterns described at

the level of individual vertices and edges. However, in many applications,

high-order relations among vertices are necessary to properly model a real-

life problem. In contrast to the low-order cases, in-depth algorithmic and

analytic studies supporting high-order relations among vertices are still lack-

ing. To address this problem, we introduce a new mathematical model family,

termed inhomogeneous hypergraphs, which captures the high-order relations

among vertices in a very extensive and flexible way. Specifically, as opposed

to classic hypergraphs that treat vertices within a high-order structure in a

uniform manner, inhomogeneous hypergraphs allow one to model the fact

that different subsets of vertices within a high-order relation may have dif-

ferent structural importance. We propose a series of algorithms and relevant

analytic results for this new model.

First, after we introduce the formal definitions and some preliminaries, we

propose clustering algorithms over inhomogeneous hypergraphs. The first

clustering method is based on a projection method, where we use graphs with

pairwise relations to approximate high-order relations and then directly use

spectral clustering methods over obtained graphs. For this type of method,

we provide provable performance guarantee, which works for a sub-class of

inhomogeneous hypergraphs that additionally impose constraints on the in-

ternal structures of high-order relations. Such constraints are related to

submodular functions, so we term such a sub-class of inhomogeneous hyper-

graphs as submodular hypergraphs. Later, we study the Laplacian operators

for these hypergraphs and generalize many important results in spectral the-

ory for this setting including Cheeger’s inequalities and discrete nodal domain

theorems. Based on these new results, we further develop new clustering al-

ii

gorithms with tighter approximating properties than projection methods.

Second, we propose some optimization algorithms for inhomogeneous hy-

pergraphs. We first find that min-cut problems over submodular hypergraphs

are closely related to an extensively studied optimization problem termed

decomposable submodular hypergraph minimization (DSFM). Our contribu-

tion is how to leverage hypergraph structures to accelerate canonical solvers

for DSFM problems. Later, we connect PageRank approaches to submodular

hypergraphs and propose a new optimization problem termed quadratic de-

composable submodular hypergraph minimization (QDSFM). For this new

problem, we propose algorithms with first provable linear convergence guar-

antee and identify new relevant applications.

iii

To my parents and grandparents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to thank many people for their support over the past four years.

First, I owe my deepest gratitude to my advisor Professor Olgica Milenkovic

for her continuous support. She guided me to find and dive into many inter-

esting research problems. Without her guidance, I would not have completed

this thesis. She helped me a lot with improving my writing and presentation

skills, which I will treasure throughout my academic life. She also worked

hard on applying for grants and kept generously providing financial support

of all my research projects.

Next, I would like to particularly thank my doctoral committee mem-

ber Professor David Gleich. As an expert in high-order data processing, he

generously offered insightful advice on my works. More than technique-level

guidance, David also kindly assisted me in deciding my career path. Without

his constant support, I would have given up the academic career. I am more

than thrilled to become his colleague at Purdue University in the future.

I also would like to acknowledge other members of my doctoral committee

including Professors Jiawei Han, Niao He and Bruce Hajek for their valu-

able feedback and discussions on my works. Special thanks to Niao: We

have closely worked together. She has always been ready for discussions and

willing to tackle problems together with me.

I also would like to thank many friends at UIUC, Weihao Gao, Zhenzhe

Zheng, Yuheng Bu, Kaiqing Zhang, Shiyu Liang, Ruochen Lu, Xiaolong

Zhang, Bangqi Wang, Siyu Lai, Yanyun Wang and many others, for their

companionship and encouragement. Also, many thanks to my colleagues in

our lab, Eli Chien, Jianhao Peng, Minji Kim, Sri Pattabiraman and others,

for their help in many ways. I feel particularly fortunate to work with Eli on

some research projects. He is a very brilliant young researcher.

Finally, my deepest gratitude to my family! I thank my parents and grand-

parents for their endless love and constant support in every aspect of my life.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 PRELIMINARIES AND NOTATIONS 6
2.1 Graph partitioning and the Cheeger inequality 6
2.2 Definition of inhomogeneous hypergraphs and its submod-

ular subclass . 8
2.3 Relevant background on submodular functions 9

CHAPTER 3 CLIQUE-EXPANSION ALGORITHMS FOR IN-
HOMOGENEOUS HYPERGRAPH CLUSTERING 11
3.1 The clique expansion algorithm and related theoretical analysis 12
3.2 Applications . 17

CHAPTER 4 SUBMODULAR HYPERGRAPHS: SPECTRAL GRAPH
THEORY AND SPECTRAL CLUSTERING 31
4.1 p-Laplacians for submodular hypergraphs and the spectra . . . 32
4.2 Discrete nodal domain theorems for p−Laplacians 35
4.3 Higher-order Cheeger inequalities 38
4.4 Spectral clustering algorithms based on p-Laplacians 38
4.5 Data clustering with large hyperedges 43

CHAPTER 5 DECOMPOSABLE SUBMODULAR FUNCTION
MINIMIZATION — MIN-CUTS 47
5.1 Background and problem formulation 49
5.2 Continuous DSFM algorithms with incidence relations 52
5.3 Experiments on images and networks segmentation 63
5.4 Using weighted proximal terms for acceleration 68

CHAPTER 6 QUADRATIC DECOMPOSABLE SUBMODULAR
FUNCTION MINIMIZATION — PAGERANKS 74
6.1 Dual formulation . 76
6.2 Linearly convergent algorithms for solving the QDSFM problem 78
6.3 Computing the conic projections 84
6.4 Applications to PageRank . 88
6.5 Applications to semi-supervised learning 98

vi

APPENDIX A SUPPLEMENTARY PROOFS, DERIVATIONS
AND TABLES . 105
A.1 Proof of some preliminary results 105
A.2 Proof for Chapter 3 . 106
A.3 Proof for Chapter 4 . 126
A.4 Proof for Chapter 5 . 147
A.5 Proof for Chapter 6 . 160
A.6 Additional Tables . 184

REFERENCES . 187

vii

CHAPTER 1

INTRODUCTION

A graph is a mathematical tool for systematical modeling of relations between

objects. It has been used in a wide range of real-life settings, such as social

networks [1], biological networks [2], communication/computer networks [3],

or modeling topological adjacency relations between data points [4].

Traditional graphs only model pairwise dependencies between objects.

However, in many real-world problems, it is necessary to capture joint,

higher-order relations between subsets of objects. From a mathematical point

of view, these higher-order relations may be described via hypergraphs, where

objects correspond to vertices and higher-order relations among objects cor-

respond to hyperedges [5]. Recent work on hypergraph analysis has focused

on a variety of problems, including finding min-cuts [6], clustering [7], random

walk studies [8] and others [9].

In the traditional definition of hypergraphs, each hyperedge is typically

equipped with a scalar weight to represent the strength of the high-order

connection. We term such hypergraphs as homogeneous hypergraphs. The

definition is simple but it limits the power of representation for hypergraphs

to model high-order relations. Clearly, a scalar weight itself prohibits the use

of information regarding how different vertices or subsets of vertices belong-

ing to a hyperedge contribute to the higher-order relation. A more appropri-

ate formulation entails assigning different weights to different subsets of the

hyperedges, thereby endowing hyperedges with vector weights capturing the

high-order relation. To illustrate the point, consider the example of metabolic

networks [10]. In these networks, vertices describe metabolites while edges

describe transformative, catalytic or binding relations. Metabolic reactions

are usually described via equations that involve more than two metabolites,

such as M1 + M2 → M3. Here, both metabolites M1 and M2 need to be

present in order to complete the reaction that leads to the creation of the

product M3. The three metabolites play different roles: M1,M2 are reac-

1

M3(Product)

M1(Reactant) M2(Reactant)

w(M1)

w(M3)

w(M2)

1

2

3

4

5

6

7

8

910

Figure 1.1: An example of inhomogeneous hypergraph. Left: Each reaction is
represented by a hyperedge. The hyperedge is associated with three weights
w(M1), w(M2), w(M3) that indicate how much each vertex contributes to this
high-order relation. Right: a metabolic network.

tants, while M3 is the product metabolite. This high-order relation can be

modeled as a hyperedge. A synthetic metabolic network involving reactions

with three reagents as described above is depicted in Figure 1.1. A proper

way to represent this high-order relation is to allow to assign three weights

w(M1), w(M2) and w(M3) that describe the contribution of each metabolite

to the whole relation. According to their roles, we might set w(M1) = w(M2)

while allowing w(M3) to be different from the other two, which captures the

semantic meaning underlying this hypergraph. Generally, for each hyper-

edge e and a subset S ⊂ e, we let we(S) denote the weight of the subset S

with respect to the hyperedge e (formal definitions are postponed to Chapter

2). We term such a type of hypergraph as an inhomogeneous hypergraph.

The scope of this thesis is to solve a collection of problems associated with

inhomogeneous hypergraphs.

First, we examine the inhomogeneous hypergraph clustering (partitioning)

problem. In Chapter 3, we propose an efficient algorithm for inhomogeneous

hypergraph partitioning, which is based on the clique-expansion method [11].

The algorithmic method first transforms hypergraphs into graphs and sub-

sequently performs spectral clustering based on the normalized Laplacian of

the derived graph. As opposed to the uniform clique expansion method for

homogeneous hypergraph clustering, the inhomogeneous clustering algorithm

allows for non-uniform expansion of one hyperedge. We also analyze the con-

ditions under which clique-expansion-based algorithm have theoretical per-

formance guarantees. We prove that when the weights associated with the

inhomogeneous hyperedges are symmetric and submodular, the inhomoge-

2

neous clustering procedure has the same quadratic approximation properties

as spectral graph clustering [12] (with the presence of an additional constant

factor that is determined by the size of the hyperedges). We term this sub-

class of inhomogeneous hypergraphs as submodular hypergraphs. At the end

of the chapter, we also provide multiple applications including hierarchical bi-

ological network decompositions, structure learning of rankings and subspace

clustering, all to demonstrate the effectiveness of inhomogeneous hypergraph

models and the proposed clique-expansion-based clustering algorithm.

Although clique expansion works well when the size of the hyperedges is

a small constant, it may introduce a large distortion when expanding large

hyperedges. This motivates the work in the Chapter 4. We avoid resorting

to the spectral clustering of standard graphs and try to directly perform

spectral clustering based on the Laplacians of inhomogeneous hypergraphs.

We focus on the subclass of submodular hypergraphs and define p-Laplacians

of submodular hypergraphs and analyze their spectra. In particular, we

generalize two fundamental results in spectral graph theory to submodular

hypergraphs: discrete nodal domain theorems and Cheeger inequalities. We

also provide algorithms to learn the spectra of these Laplacian operators,

which can be shown to provide better clustering results than clique expansion.

Inhomogeneous hypergraphs, especially submodular hypergraphs, also have

arisen in many applications other than data clustering. Actually, many semi-

supervised learning problems [13, 14] where practitioners know a few labels

while intending to infer other missing labels naturally appear in the set-

tings of inhomogeneous hypergraphs. For example, in images, pixels can

be viewed as vertices and pairs of adjacent pixels in the same columns and

rows naturally correspond to edges, which overall model images as graphs.

If the relations between pixels are more than one-hop relations, e.g., a super

pixel — a local region of the image that covers multiple pixels — then im-

ages correpond to hypergraphs instead of graphs. Moreover, such high-order

relations may be associated with set functions to characterize partitioning

costs, which typically satisfies submodularity, and then the whole image nat-

urally becomes a submodular hypergraph. Many recent works on image

segmentation leveraged these modeling strategies and used the min-cut solu-

tions between user-specified pixels of an object and of the background as the

boundary for segementation [15, 16, 17]. Because of this important applica-

tion, it is always an important problem to consider how to efficiently solve the

3

min-cut problem over these submodular hypergraphs. Mathematically, such

a min-cut problem is essentially a submodular function minimization prob-

lem, while some additional structures may be leveraged here to accelerate

the generic approachers for submodular function minimization: Basically,

the whole submodular function is naturally decomposed into the submod-

ular functions defined over hyperedges, and thus this type of submodular

functions can be termed termed as decomposable submodular functions in

relevant literature [18]. The overall minimization problem is termed decom-

posable submodular function minimization (DSFM) problems. Chapter 5 in

this thesis proposes a way to properly leverage such decomposable structures

to accelerate DSFM. In Chapter 5, we analyze in-depth how to leverage the

incident relations between vertices and hyperedges to improve the previously

proposed algorithms for DSFM including alternative projection (AP) [19]

and random coordinate descent (RCD) [20]. We find AP can be significantly

accelerated by leveraging incident relations while RCD cannot, for which we

show a negative example. However, incident relations may be used to accel-

erate RCD if multiple cooredinates are allowed to descend in parallel. More-

over, we show that properly setting the weights of different vertices based

on their incident relations when we formulate DSFM problems in continuous

domain is also helpful to decrease the complexity of AP and RCD.

The min-cut type of solutions are effective in tasks like image segmenta-

tion where the output consists of discrete labels that correspond to either

an object or the background, while many other applications want to have

soft scores rather than discrete labels, e.g., ranking problems in information

retrieval and recommender systems: When using web search, one will not ex-

pect the response of the search engine to only tell binary information about

which documents are relevant to the query and which are not. One may

expect to have a ranking of these documents based on some relevant scores.

For these applications, we need to use another graph-based algorithm termed

PageRank that builds the initial algorithmic foundation for the world-wide

search engine — Google Search [21]. Actually, the PageRank vector can be

obtained via solving an optimization problem [22]. In the graph case, this

optimization problem has a form similar to that of the optimization problem

to compute the min-cut solution shown in Chapter 5, but the only differ-

ence appears in the powers of the regularizer defined for smoothing values

according to graph topology. Specifically, the power order of the regularizer

4

to have PageRanks as solutions is two while that to have min-cut solutions

is one. Based on this obsevation, we may revise the power of the regularizer

appearing in DSFM to two and obtain a new optimization problem termed

quadratic decomposable submodular function minimization (QDSFM) prob-

lems. QDSFM can be used to compute PageRanks over submodular hyer-

graphs that are determined by the 2-Laplacian operators defined in Chapter

4. Actually, relevant formulation for standard hypergraphs has been con-

sidered in some previous works [9, 23] and our new formulation generalizes

it. Chapter 6 gives the formal formulation of QDSFM and discusses how to

solve it. Some idea of DSFM solvers can be leveraged but many new tech-

niques have to be developed. We may use AP and RCD to solve QDSFM

while we need new techniques to prove their linearly convergent properties.

Moreover, each iteration of both AP and RCD requires computing projec-

tion to cones generated from the base polytopes of submodular functions. To

compute such projection for general submodular functions, we generalize the

Frank-Wolfe algorithm [24] and the min-norm-point algorithm [25] for the

conic cases. We also prove that the obtained PageRank over hypergraphs

can be used to find partitions of hypergraphs that approximate hypergraph

conductance.

5

CHAPTER 2

PRELIMINARIES AND NOTATIONS

2.1 Graph partitioning and the Cheeger inequality

A weighted graph G = (V,E,µ,w) is an ordered pair of two sets, the vertex

set V = [N] = {1, 2, . . . , N}, equipped with a positive weight function µ =

{µu}u∈V , and the edge set E ⊆ V × V , equipped with a positive weight

function w = {we}e∈E. Given a subset of vertices S ⊆ V , the volume of S is

defined as

vol(S) =
∑
u∈S

µu. (2.1)

For graph, the degree of a vertex is defined as du =
∑

v:(u,v)∈E wuv for u ∈ V .

A common choice of the vertex weight is to set µu = du. However, here, µu

is allowed for a different value for more general results. Let U and D be the

diagonal matrices such that Uvv = µv and Dvv = dv for v ∈ V respectively.

Also, define τ = maxu∈V
du
µu

.

A cut C = (S, S̄) is a bipartition of the set V , while the cut-set (boundary)

of the cut C is defined as the set of edges that have one endpoint in S and

one in the complement of S, S̄, i.e., ∂S = {(u, v) ∈ E | u ∈ S, v ∈ S̄}. The

volume of the cut induced by S equals vol(∂S) =
∑

u∈S, v∈S̄ wuv. Based on

this definition, the conductance of the cut is defined as

c(S) =
vol(∂S)

min{vol(S), vol(S̄)} .

The smallest conductance of any bipartition of a graph G is denoted by

h2 and referred to as the Cheeger constant of the graph. A generalization of

the Cheeger constant is the k−way Cheeger constant of a graph G. Let Pk

denote the set of all partitions of V into k-disjoint nonempty subsets, i.e.,

6

Pk = {(S1, S2, ..., Sk)|Si ⊂ V, Si 6= ∅, Si ∩ Sj = ∅,∀i, j ∈ [k], i 6= j}. The

k−way Cheeger constant is defined as

hk = min
(S1,S2,...,Sk)∈Pk

max
i∈[k]

c(Si).

It is known to be NP-complete to find the partition that achieves the

Cheeger constant for graphs [26]. However, an efficient algorithm based on

spectral techniques (Algorithm 2.1 below) can produce a solution Ŝ such that

c(Ŝ) ≤
√

2τλ, (2.2)

where λ is the second smallest eigenvalue of the U -normalized graph Lapla-

cian L. The well known Cheeger inequality further asserts the following

relationship between h2 and λ:

h2 ≤
√

2τλ ≤ 2
√
τh2. (2.3)

Therefore, spectral clustering for graphs provides a quadratically optimal

graph partition. Note that both (2.2) and (2.3) can be obtained by accomo-

dating the proof of [12] with the vertex weights µ.

Algorithm 2.1: Spectral graph partitions for graphs

Input: G = (V,E,µ,w)

1: Construct the adjacency matrix A: Auv = wuv if (u, v) ∈ E or 0 otherwise.

2: Construct the diagonal degree matrix D.

3: Construct the diagonal vertex weight matrix U .

4: Construct the U -normalized Laplacian matrix L = U−1/2(D − A)U−1/2.

5: Compute the eigenvector x = (x1, x2, ..., xn)T corresponding to the second

smallest eigenvalue of L.

6: Let ui be the index of the i-th smallest entry of U−1/2x.

7: Compute S = arg minSi,1≤i≤N−1 c(Si) over all sets Si = {u1, u2, . . . , ui}.
Output: Output S if vol(S) < vol(S̄), and S̄ otherwise.

7

2.2 Definition of inhomogeneous hypergraphs and its

submodular subclass

A weighted hypergraph G = (V,E,µ,w) is an ordered pair of two sets, the

vertex set V = [N] and the hyperedge set E ⊆ 2V , both equipped with a

weight function µ : V → R+ and w : E → R+ respectively. The relevant

notions of cuts, boundaries and volumes for hypergraphs can be defined in

a similar manner as for graphs. If each cut of a hyperedge e has the same

weight we, we refer to the cut as a homogeneous cut and the corresponding

hypergraph as a homogeneous hypergraph.

A weighted hypergraph G = (V,E,µ,w) is termed a inhomogeneous hy-

pergraph with vertex set V , hyperedge set E and positive vertex weight vector

µ , {µv}v∈V , if each hyperedge e ∈ E is associated with a weight function

we(·) : 2e → [0, 1] that satisfies

• Normalized, so that we(∅) = 0, and all cut weights corresponding to

a hyperedge e are normalized by ϑe = maxS⊆ewe(S). In this case,

we(·) ∈ [0, 1];

• Symmetric, so that we(S) = we(e\S) for any S ⊆ e;

The inhomogeneous hyperedge weight functions are summarized in the vector

w , {(we, ϑe)}e∈E. Let ζ(E) , maxe |e|.
For a ground set Ω, a set function f : 2Ω → R is termed submodular if for

all S, T ⊆ Ω, one has f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). In addition, if

the weight function we(·) also satisfy submodularity, we term this subclass

of inhomogeneous hypergraphs as submodular hypergraphs.

If we(S) = 1 for all S ∈ 2e\{∅, e}, inhomogeneous hypergraphs reduce to

homogeneous hypergraphs. We omit the designation homogeneous whenever

there is no context ambiguity.

We define a vertex v is incident to a hyperedge e if for some S ⊆ e\{v},
we(S ∪ {v}) 6= we(S). Clearly, for submodular hypergraphs, a vertex v is in

e if and only if we({v}) > 0: as |we(S ∪ {v}) − we(S)| ≤ we({v}) if we(·) is

symmetric and submodular. Moreover, we define the degree of a vertex v as

dv =
∑

e∈E: v∈e ϑe, i.e., as the sum of the max weights of edges incident to the

vertex v. The volume of a subset of vertices S ⊆ V equals vol(S) =
∑

v∈S µv.

For any S ⊆ V , we generalize the notions of the boundary of S and the

volume of the boundary of S according to ∂S = {e ∈ E|e∩S 6= ∅, e∩ S̄ 6= ∅},

8

and

vol(∂S) =
∑
e∈∂S

ϑewe(S) =
∑
e∈E

ϑewe(S), (2.4)

respectively. Then, the conductance of the cut induced by S, the Cheeger

constant and the k-way Cheeger constant for hypergraphs are defined in an

analogous manner as for graphs.

2.3 Relevant background on submodular functions

Given an arbitrary set function F : 2V → R, the Lovász extension [27]

f : RN → R of F is defined as follows: For any vector x ∈ RN , we order its

entries in nonincreasing order xi1 ≥ xi2 ≥ · · · ≥ xin while breaking the ties

arbitrarily, and set

f(x) =
N−1∑
j=1

F (Sj)(xij − xij+1
) + F (V), (2.5)

with Sj = {i1, i2, ..., ij}. For submodular F , the Lovász extension is a convex

function [27].

Let 1S ∈ RN be the indicator vector of the set S. Hence, for any S ⊆ V ,

one has F (S) = f(1S). For a submodular F , we define a convex set termed

the base polytope

B , {y ∈ RN |y(S) ≤ F (S), for all S ⊆ V, and such that y(V) = F (V) = 0}.

According to the defining property of submodular functions [27], we may

write f(x) = maxy∈B〈y, x〉.
The subdifferential ∇f(x) of f is defined as

{y ∈ RN | f(x′)− f(x) ≥ 〈y, x′ − x〉, ∀x′ ∈ RN}.

An important result from [28] characterizes the subdifferentials ∇f(x): If

f(x) is the Lovász extension of a submodular function F with base polytope

9

B, then

∇f(x) = arg max
y∈B
〈y, x〉. (2.6)

Observe that ∇f(x) is a set and that the right-hand side of the definition

represents a set of maximizers of the objective function. If f(x) is the Lovász

extension of a submodular function, then 〈q, x〉 = f(x) for all q ∈ ∇f(x).

For each hyperedge e ∈ E of a submodular hypergraph, following the

above notations, we let Be, E(Be), fe denote the base polytope, the set of

extreme points of the base polytope, and the Lovász extension of the submod-

ular hyperedge weight function we, respectively. Note that for any S ⊆ V ,

we(S) = we(S ∩ e). Consequently, for any y ∈ Be, yv = 0 for v 6∈ e. Since

∇fe ⊆ Be, it also holds that (∇fe)v = 0 for v /∈ e. When using formula (2.5)

to explicitly describe the Lovász extension fe, we can either use a vector x

of dimension N or only those of its components that lie in e. Furthermore,

in the later case, |E(Be)| = |e|!.

10

CHAPTER 3

CLIQUE-EXPANSION ALGORITHMS FOR
INHOMOGENEOUS HYPERGRAPH

CLUSTERING

Graph partitioning or clustering is a ubiquitous learning task that has found

many applications in statistics, data mining, social science and signal process-

ing [29, 30]. In most settings, clustering is formally cast as an optimization

problem that involves entities with different pairwise similarities and aims

to maximize the total “similarity” of elements within clusters [31, 32, 33], or

simultaneously maximize the total similarity within clusters and dissimilar-

ity between clusters [34, 35, 36]. Graph partitioning may be performed in an

agnostic setting, where part of the optimization problem is to automatically

learn the number of clusters [34, 35].

In this chapter and the next, our partitioning/clustering problems choose

to use the 2-way partition (S, S̄) that may approximate the Cheeger constant

h2 as the objective. Concretely, we essentially try to solve the following

optimization problem:

min
S⊂V

c(S). (3.1)

In this chapter, we introduce the first spectral clustering approach for inho-

mogeneous hypergraphs which is inspired by the clique expansion method for

homogeneous hypergraphs [11, 7]. We show that the clique expansion method

does not offer good performance guarantees for general inhomogeneous hy-

pergraph, but provably works for submodular hypergraphs with small hyper-

edge sizes. We also introduce several applications to evaluate our algorithms,

including learning ranking models, hierarchical network clustering and sub-

space segmentation. In all these cases, inhomogeneous hypergraphs prove to

be outstanding modeling and data mining tools.

11

3.1 The clique expansion algorithm and related

theoretical analysis

We first introduce the clique expansion methods. The approach first trans-

forms hypergraphs into graphs and then leverages the classic spectral clus-

tering (Algorithm 3.1). Specifically, it includes three steps: 1) Projecting

each hyperedge onto a subgraph; 2) Merging the subgraphs into a graph; 3)

Performing spectral clustering (Algorithm 3.1) based on the obtained graph.

In contrast to the homogeneous case, the novelty of the clique expansion ap-

proach of inhomogeneous hypergraphs is in introducing the additional con-

straints in the projection step according to the projection, and stating an

optimization problem that provides the provably best weight splitting for

projections. For each inhomogeneous hyperedge (e, we), we aim to find a

complete subgraph Ge = (V (e), E(e), w(e)) that “best” represents this hyper-

edge; here, V (e) = e, E(e) = {{v, ṽ}|v, ṽ ∈ e, v 6= ṽ}, and w(e) : E(e) → R

denotes the hyperedge weight vector. The goal is to find the graph edge

weights that provide the best approximation to the split hyperedge weight

according to:

min
w(e),β(e)

β(e) s.t. we(S) ≤
∑

v∈S,ṽ∈e/S

w
(e)
vṽ ≤ β(e) we(S), (3.2)

for all S ∈ 2e, we(S) is defined.

Upon solving for the weights w(e), we construct a graph G = (V,Eo, w), where

V are the vertices of the hypergraph, Eo is the complete set of edges, and

where the weights wvṽ, are computed via

wvṽ ,
∑
e∈E

ϑew
(e)
vṽ , ∀{v, ṽ} ∈ Eo. (3.3)

This step represents the projection weight merging procedure, which sim-

ply reduces to the sum of weights of all hyperedge projections on a pair of

vertices. Due to the linearity of (2.1) and (2.4) of sets S of vertices, for any

S ⊂ V , we have

Vol(∂S) ≤ VolG(∂S) ≤ β∗Vol(∂S), (3.4)

12

where VolG(·) denotes the volumes of corresponding sets over the obtained

graph G and β∗ = maxe∈E β
(e). Applying spectral clustering on G = (V,Eo, w)

produces the desired partition (S∗, S̄∗). The next result is a consequence of

combining the bounds of (3.4) with the approximation guarantees of spectral

graph clustering (2.2) and (2.3).

Theorem 3.1.1. If the optimization problem (3.2) is feasible for all hy-

peredges and the weights wvṽ obtained from (3.3) are nonnegative for all

{v, ṽ} ∈ Eo, then

c(S∗) ≤ 2β∗
√
τh2 (3.5)

where β∗ = maxe∈E β
(e).

There are no guarantees that the wvṽ will be nonnegative: The optimiza-

tion problem (3.2) may result in solutions w(e) that are negative. The per-

formance of spectral methods in the presence of negative edge weights is not

well understood [37, 38]; hence, it would be desirable to have the weights

wvṽ generated from (3.3) be nonnegative. Unfortunately, imposing nonnga-

tivity constraints in the optimization problem may render it infeasible. In

practice, one may use (wvṽ)+ = max{wvṽ, 0} to remove negative weights

(other choices, such as (wvṽ)+ =
∑

e(w
(e)
vṽ)+ do not appear to perform well).

This change invalidates the theoretical result of Theorem 3.1.1, but provides

solutions with very good empirical performance. The issues discussed are

illustrated by the next example.

Example 3.1.1. Let e = {1, 2, 3}, (we({1}), we({2}), we({3})) = (0, 0, 1).

The solution to the weight optimization problem is (β(e), w
(e)
12 , w

(e)
13 , w

(e)
23) =

(1,−1/2, 1/2, 1/2). If all components w(e) are constrained to be nonnega-

tive, the optimization problem is infeasible. Nevertheless, the above choice of

weights is very unlikely to be encountered in practice, as we({1}), we({2}) = 0

indicates that vertices 1 and 2 have no relevant connections within the given

hyperedge e, while we({3}) = 1 indicates that vertex 3 is strongly connected to

1 and 2, which is a contradiction. Let us assume next that the negative weight

is set to zero. Then, we adjust the weights ((w
(e)
12)+, w

(e)
13 , w

(e)
23) = (0, 1/2, 1/2),

which produce clusterings ((1,3)(2)) or ((2,3)(1)); both have zero costs based

on we.

13

Another problem is that arbitrary choices for we may cause the optimiza-

tion problem to be infeasible (3.2) even if negative weights of w(e) are allowed,

as illustrated by the following example.

Example 3.1.2. Let e = {1, 2, 3, 4}, with we({1, 4}) = we({2, 3}) = 1 and

we(S) = 0 for all other choices of sets S. To force the weights to zero, we

require w
(e)
vṽ = 0 for all pairs vṽ, which fails to work for we({1, 4}), we({2, 3}).

For a hyperedge e, the degrees of freedom for we are 2|e|−1 − 1, as two values

of we are fixed, while the other values are paired up by symmetry. When

|e| > 3, we have
(|e|

2

)
< 2|e|−1− 1, which indicates that the problem is overde-

termined/infeasible.

In what follows, we provide sufficient conditions for the optimization prob-

lem to have a feasible solution with nonnegative values of the weights w(e).

Also, we provide conditions for the weights we that result in a small constant

β∗ and hence allow for quadratic approximations of the optimum solution.

Our results depend on the availability of information about the weights we:

In practice, the weights have to be inferred from observable data, which

may not suffice to determine more than the weight of singletons or pairs of

elements.

Only the values of we({v}) are known. In this setting, we are only

given information about how much each node contributes to a higher-order

relation, i.e., we are only given the values of we({v}), v ∈ V . Hence, we

have |e| costs (equations) and |e| ≥ 3 variables, which makes the problem

underdetermined and easy to solve. The optimal βe = 1 is attained by setting

for all edges {v, ṽ}

w
(e)
vṽ =

1

|e| − 2
[we({v}) + we({ṽ})]−

1

(|e| − 1)(|e| − 2)

∑
v′∈e

we({v′}). (3.6)

The components of we(·) with positive coefficients in (3.1) are precisely those

associated with the endpoints of edges vṽ. Using simple algebraic manipula-

tions, one can derive the conditions under which the values w
(e)
vṽ are nonneg-

ative.

The solution to (3.6) produces a perfect projection with β(e) = 1. Unfor-

tunately, one cannot guarantee that the solution is nonnegative. Hence, the

question of interest is to determine for what types of cuts one can deviate

from a perfect projection but ensure that the weights are nonnegative. The

14

proposed approach is to set the unspecified values of we(·) so that the inho-

mogeneous hypergraph becomes a submodular hypergraph, which guarantees

nonnegative weights w
(e)
vṽ that can constantly approximate we(·), although

with a larger approximation constant β. In submodular hypergraphs, the

constraint on hyperedge weights we performs as a sufficient condition for the

optimization problem to have a feasible solution with nonnegative values of

the weights w(e), which we will prove later on. Also, we provide conditions

for the weights we that result in a small constant β∗ and hence allow for

quadratic approximations of the optimum solution.

Theorem 3.1.2. If we is normalized, submodular and symmetric, then

w
∗(e)
vṽ =

∑
S∈2e/{∅,e}

[
we(S)

2|S|(|e| − |S|)1|{v,ṽ}∩S|=1 (3.7)

− we(S)

2(|S|+ 1)(|e| − |S| − 1)
1|{v,ṽ}∩S|=0 −

we(S)

2(|S| − 1)(|e| − |S|+ 1)
1|{v,ṽ}∩S|=2

]
is nonnegative. For 2 ≤ |e| ≤ 7, the function above is a feasible solution for

the optimization problem (3.2) with parameters β(e) listed in Table 3.1.

Table 3.1: Feasible values of β(e) for δ(e).

|e| 2 3 4 5 6 7
β 1 1 3/2 2 4 6

Theorem 3.1.2 also holds when some weights in the set we are not speci-

fied, but may be completed to satisfy submodularity constraints (see Exam-

ple 3.1.3).

Example 3.1.3. Let e = {1, 2, 3, 4}, (we({1}), we({2}), we({3}), we({4})) =

(1/3, 1/3, 1, 1). Solving (3.6) yields w
(e)
12 = −1/9 and β(e) = 1. Complet-

ing the missing components in we as (we({1, 2}), we({1, 3}), we({1, 4})) =

(2/3, 1, 1) leads to submodular weights (observe that completions are not nec-

essarily unique). Then, the solution of (3.7) gives w
(e)
12 = 0 and β(e) ∈

(1, 2/3], which is clearly larger than one.

Remark 3.1.1. It is worth pointing out that β = 1 when |e| = 3, which

asserts that homogeneous triangle clustering may be performed via spectral

methods on graphs without any weight projection distortion [39]. The above

15

results extend this finding to a much more general case, i.e., submodular

hypergraphs. In addition, triangle clustering based on random walks [40]

may be extended to submodular hypergraphs similarly.

Also, (3.7) leads to an optimal approximation ratio β(e) if we restrict w(e)

to be a linear mapping of we, which is formally stated next.

Theorem 3.1.3. Suppose that for all pairs of {v, ṽ} ∈ Eo, w(e)
vṽ is a linear

function of we, denoted by w
(e)
vṽ = Tvṽ(we), where {Tvṽ}{vṽ∈E(e)} depends on |e|

but not on we. Then, when |e| ≤ 7, the optimal values of β for the following

optimization problem depend only on |e|, and are equal to those listed in

Table 3.1.

min
{Tvṽ}{v,ṽ}∈Eo ,β

max
we

β (3.8)

s.t. we(S) ≤
∑

v∈S,ṽ∈e/S

Tvṽ(we) ≤ βwe(S), for all S ∈ 2e

we is normalized, symmetric and submodular.

Remark 3.1.2. Although we were able to prove optimality of linear solutions

(Theorem 3.1.3) only for small values of |e|, we conjecture the results to be

true for all |e|.

The following corollary shows that if the weights we of hyperedges in a

hypergraph are generated from graph cuts of a latent weighted graph, then

the projected weights of hyperedges are proportional to the corresponding

weights in the latent graph.

Corollary 3.1.4. Suppose that Ge = (V (e), E(e), w(e)) is a latent graph that

generates hyperedge weights we according to the following procedure: for any

S ⊆ e, we(S) =
∑

v∈S,ṽ∈e/S w
(e)
vṽ . Then, equation (3.7) establishes that w

∗(e)
vṽ =

β(e)w
(e)
vṽ , for all vṽ ∈ E(e), with β(e) = 2|e|−2

|e|(|e|−1)
.

Corollary 3.1.4 establishes consistency of the linear map (3.7), and also

shows that the min-max optimal approximation ratio for linear functions

equals Ω(2|e|/|e|2). An independent line of work [41], based on Gomory-Hu

trees (non-linear), established that submodular functions represent nonneg-

ative solutions of the optimization problem (3.2) with β(e) = |e| − 1. There-

fore, an unrestricted solution of the optimization problem (3.2) ensures that

β(e) ≤ |e| − 1.

16

For those practical applications that involve hypergraphs with small, con-

stant |e|, the Gomory-Hu tree approach in this case is suboptimal in approx-

imation ratio compared to (3.7). The expression (3.7) can be rewritten as

w∗(e) = M we, where M is a matrix that only depends on |e|. Hence, the

projected weights can be computed in a very efficient and simple manner,

as opposed to constructing the Gomory-Hu tree or solving (3.2) directly. In

the rare case that one has to deal with hyperedges for which |e| is large, the

Gomory-Hu tree approach and a solution of (3.2) may be preferred. How-

ever, in this case, we suggest to use the approach based on p−Laplacian of

submodular hypergraphs which is proposed in the next chapter.

3.2 Applications

In this section, we will introduce a collection of applications to evaluate

the proposed clique-expansion-based inhomogeneous hypergraph clustering

methods, including network motif clustering (3.2.1), structural learning over

ranking data (3.2.2), subspace clustering (3.2.3). In the following, for brevity,

we term the inhomogeneous method as InH-partition, while the homogeneous

method as H-partition.

3.2.1 Network motif clustering

Real-world networks exhibit rich higher-order connectivity patterns frequently

referred to as network motifs [42]. Motifs are special subgraphs of the graph

and may be viewed as hyperedges of a hypergraph over the same set of

vertices. Recent work has shown that hypergraph clustering based on mo-

tifs may be used to learn hidden high-order organization patterns in net-

works [39, 36, 40]. However, this approach treats all vertices and edges

within the motifs in the same manner, and hence ignores the fact that each

structural unit within the motif may have a different relevance or different

role. As a result, the vertices of the motifs are partitioned with a uniform

cost. However, this assumption is hardly realistic as in many real networks,

only some vertices of higher-order structures may need to be clustered to-

gether. Hence, inhomogeneous hyperedges are expected to elucidate more

subtle high-order organizations of network. We illustrate the utility of InH-

17

partition on the Florida Bay foodweb [43] and compare our findings to those

of [39].

The Florida Bay foodweb comprises 128 vertices corresponding to different

species or organisms that live in the Bay, and 2106 directed edges indicating

carbon exchange between two species. The Foodweb essentially represents a

layered flow network, as carbon flows from so-called producers organisms to

high-level predators. Each layer of the network consists of “similar” species

that play the same role in the food chain. Clustering of the species may

be performed by leveraging the layered structure of the interactions. As a

network motif, we use a subgraph of four species, and correspondingly, four

vertices denoted by vi, for i = 1, 2, 3, 4. The motif captures, among others,

relations between two producers and two consumers: The producers v1 and

v2 both transmit carbons to v3 and v4, and all types of carbon flow between v1

and v2, v3 and v4 are allowed (see Figure 3.1 Left). Such a motif is the small-

est structural unit that captures the fact that carbon exchange occurs in one

direction between layers, while being allowed freely within layers. The inho-

mogeneous hyperedge costs are assigned according to the following heuristics:

First, as v1 and v2 share two common carbon recipients (predators) while v3

and v4 share two common carbon sources (prey), we set we({vi}) = 1 for

i = 1, 2, 3, 4, and we({v1, v2}) = 0, we({v1, v3}) = 2, and we({v1, v4}) = 2.

Based on the solution of the optimization problem (3.2), one can construct a

weighted subgraph whose costs of cuts match the inhomogeneous costs, with

β(e) = 1. The graph is depicted in Figure 3.1 (left).

Our approach is to perform hierarchical clustering via iterative application

of the InH-partition method. In each iteration, we construct a hypergraph by

replacing the chosen motif subnetwork by an hyperedge. The result is shown

in Figure 3.1. At the first level, we partitioned the species into three clusters

corresponding to producers, primary consumers and secondary consumers.

The producer cluster is homogeneous in so far that it contains only producers,

a total of nine of them. At the second level, we partitioned the obtained

primary-consumer cluster into two clusters, one of which almost exclusively

comprises invertebrates (28 out of 35), while the other almost exclusively

comprises forage fishes. The secondary-consumer cluster is partitioned into

two clusters, one of which comprises top-level predators, while the other

cluster mostly consists of predatory fishes and birds. Overall, we recovered

five clusters that fit five layers ranging from producers to top-level consumers.

18

Primary consumers
Secondary consumers

Producers Invertebrates Forage fishes Predatory fishes & Birds Top-­‐level Predators

v1

v2

v3

v4
1

0
0

0
0

1

v1

v2

v3

v4

ProjectionMotif:

Microfauna Pelagic fishes

Crabs&
Benthic fishes Macroinvertebrates

Motif
(Benson’16):

Projection

Figure 3.1: Motif clustering in the Florida Bay foodweb. Left:
inhomogeneous case. Left-top: Hyperedge (network motif) & the weighted
induced subgraph; Left-bottom: Hierarchical clustering structure and five
clusters via InH-partition. The vertices belonging to different clusters are
distinguished by the colors of vertices. Edges with a uni-direction (right to
left) are colored black while other edges are kept blue. Right: Homogeneous
partitioning [39] with four clusters. Grey vertices are not connected by
motifs and thus unclassified.

It is easy to check that the producer, invertebrate and top-level predator

clusters exhibit high functional similarity of species (> 80%). An exact

functional classification of forage and predatory fishes is not known, but our

layered network appears to capture an overwhelmingly large number of prey-

predator relations among these species. Among the 1714 edges, obtained

after removing isolated vertices and detritus species vertices, only five edges

point in the opposite direction from a higher to a lower-level cluster, two of

which go from predatory fishes to forage fishes. Detailed information about

the species and clusters is provided in the Table A.1.

In comparison, the related work of Benson et al. [39] which used homoge-

neous hypergraph clustering and triangular motifs reported a very different

clustering structure. The corresponding clusters covered less than half of the

species (62 out of 128) as many vertices were not connected by the triangle

motif; in contrast, 127 out of 128 vertices were covered by our choice of motif.

We attribute the difference between our results and the results of [39] to the

choices of the network motif. A triangle motif, used in [39], leaves a large

number of vertices unclustered and fails to enforce a hierarchical network

structure. On the other hand, our fan motif with homogeneous weights pro-

duces a giant cluster as it ties all the vertices together, and the hierarchical

decomposition is only revealed when the fan motif is used with inhomoge-

neous weights. In order to identify hierarchical network structures, instead

of hypergraph clustering, one may use topological sorting to rank species

19

based on their carbon flows [44]. Unfortunately, topological sorting cannot

use biological side information and hence fails to automatically determine

the boundaries of the clusters.

3.2.2 Learning the riffled independence structure of ranking
data

Learning probabilistic models for ranking data has attracted significant in-

terest in social and political sciences as well as in machine learning [45, 46].

Recently, a probabilistic model, termed the riffled-independence model, was

shown to accurately describe many benchmark ranked datasets [47]. In the

riffled independence model, one first generates two rankings over two dis-

joint sets of elements independently, and then riffle shuffles the rankings to

arrive at an interleaved order. The structure learning problem in this set-

ting reduces to distinguishing the two categories of elements based on limited

ranking data. More precisely, let Q be the set of candidates to be ranked,

with |Q| = n. A full ranking is a bijection σ : Q→ [n], and for an a ∈ Q, σ(a)

denotes the position of candidate a in the ranking σ. We use σ(a) < (>)σ(b)

to indicate that a is ranked higher (lower) than b in σ. If S ⊆ Q, we use

σS : S → [|S|] to denote the ranking σ projected onto the set S. We also use

S(σ) , {σ(a)|a ∈ S} to denote the subset of positions of elements in S. Let

P(E) denote the probability of the event E. Riffled independence asserts that

there exists a riffled-independent set S ⊂ Q, such that for a fixed ranking σ′

over [n],

P(σ = σ′) = P(σS = σ′S)P(σQ/S = σ′Q/S)P(S(σ) = S(σ′)).

Suppose that we are given a set of rankings Σ = {σ(1), σ(2), ..., σ(m)} drawn

independently according to some probability distribution P. If P has a riffled-

independent set S∗, the structure learning problem is to find S∗. In [47], the

described problem was cast as an optimization problem over all possible sub-

sets of Q, with the objective of minimizing the Kullback-Leibler divergence

between the ranking distribution with riffled independence and the empirical

distribution of Σ [47]. A simplified version of the optimization problem reads

20

as

arg min
S⊂Q
F(S) ,

∑
(i,j,k)∈Ωcross

S,S̄

Ii;j,k +
∑

(i,j,k)∈Ωcross
S̄,S

Ii;j,k, (3.9)

where Ωcross
A,B , {(i, j, k)|i ∈ A, j, k ∈ B}, and where Ii;j,k denotes the esti-

mated mutual information between the position of the candidate i and two

“comparison candidates” j, k. If 1σ(j)<σ(k) denotes the indicator function of

the underlying event, we may write

Ii;j,k ,Î(σ(i); 1σ(j)<σ(k)) (3.10)

=
∑
σ(i)

∑
1σ(j)<σ(k)

P̂(σ(i), 1σ(j)<σ(k)) log
P̂(σ(i), 1σ(j)<σ(k))

P̂(σ(i))P(1σ(j)<σ(k))
,

where P̂ denotes an estimate of the underlying probability. If i and j, k

are in different riffled-independent sets, the estimated mutual information

Î(σ(i); 1σ(j)<σ(k)) converges to zero as the number of samples increases. When

the number of samples is small, one may use mutual information estimators

described in [48, 49, 50].

One may recast the above problem as an InH-partition problem over a

hypergraph where each candidate represents a vertex in the hypergraph,

and Ii;j,k represents the inhomogeneous cost we({i}) for the hyperedge e =

{i, j, k}. Note that as mutual information Î(σ(i); 1σ(j)<σ(k)) is in general

asymmetric, one would not have been able to use H-partitions. The opti-

mization problem reduces to minS vol(∂S). The two optimization tasks are

different, and we illustrate next that the InH-partition outperforms the orig-

inal optimization approach AnchorsPartition (Apar) [47] both on synthetic

data and real data.

Synthetic data. We first compare the InH-partition (InH-Par) method

with the AnchorsPartition (APar) technique proposed in [47] on synthetic

data. Note that APar is assumed to know the correct size of the riffled-

independent sets while InH-partition automatically determines the sizes of

the parts. We set the number of elements to n = 16, and partition them

into a pair (S∗, S̄∗), where |S∗| = q, 1 ≤ q ≤ n. For a sample set size m, we

first independently choose scores si, s̄i ∼Uniform([0,1]) for i ∈ V , and then

generate m rankings via the following procedure: We first use the Plackett-

21

Luce model [51] with parameters si, i ∈ S∗ and s̄i, i ∈ S̄∗, to generate σS∗

and σS̄∗ . Then, we interleave σS∗ and σS̄∗ , which were sampled uniformly

at random without replacement, to form σ. The performance of the method

is characterized via the success rate of full recovery of (S∗, S̄∗). The results

of various algorithms based on 100 independently generated sample sets are

listed in Figure 3.2 a) and b). For almost all m, InH-partition outperforms

APar. Only when q = 4 and the sample size m is large, InH-partition may

offer worse performance than Apar. The explanation for this finding is that

InH-partition performs a normalized cut that tends to balance the sizes of

different classes. With regard to the computational complexity of the meth-

ods, both require one to evaluate the mutual information of all triples of

elements at the cost of O(mn3) operations. To reduce the time complexity

of this step, one may sample each triple independently with probability r.

Results pertaining to triple-sampling with m = 104 are summarized in Fig-

ure 3.2 c) and d). The InH-partition can achieve high success rate 80% even

when only a small fraction of triples (r < 0.2) is available. On the other

hand, APar only works when almost all triples are sampled (r > 0.7).

To further test the performance of InH-partition, instead of using the pre-

viously described si values as the parameters for Plakett-Luce model, we use

the values s3
i instead. This choice of parameters further restricts the posi-

tions of the candidates within S∗ and S̄∗. Hence, the mutual information of

interest is closer to zero and hence harder to estimate. The results for this

setting are shown in part e) and f) of Figure 3.2. As may be seen, in this

setting, the performance of APar is poor while that of InH-partition changes

little.

Real data Here, we first analyzed the Irish House of Parliament elec-

tion dataset (2002) [52]. The dataset consists of 2490 ballots fully ranking

14 candidates. Those candidates came from different parties, listed in Ta-

ble 3.2. Fianna Fáil (F.F.) and Fine Gael (F.G.) are the two largest (and

rival) Irish political parties. Using InH-partition (InH-Par), one can split the

candidates iteratively into two sets (see Figure 3.3) which yield to meaningful

clusters that correspond to large parties: {1, 4, 13} (F.F.), {2, 5, 6} (F.G.),

{7, 8, 9} (Ind.). We ran InH-partition to split the 14 election candidates to

obtain a hierarchical clustering structure as the one shown in Figure 3.4. We

compared InH-partition with Apar based on their performance in detecting

these three clusters using a small training set: We independently sampled

22

10
1

10
2

10
3

10
4

Sample Complexity m

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

Apar

InH-Par

(a)

10
1

10
2

10
3

10
4

Sample Complexity m

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

Apar

InH-Par

(b)

0 0.2 0.4 0.6 0.8 1

Triple-Sampling Probability r

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

Apar

InH-Par

(c)

0 0.2 0.4 0.6 0.8 1

Triple-Sampling Probability r

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

Apar

InH-Par

(d)

10
1

10
2

10
3

10
4

Sample Complexity m

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

Apar

InH-Par

(e)

10
1

10
2

10
3

10
4

Sample Complexity m

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

Apar

InH-Par

(f)

Figure 3.2: Success rate vs Sample Complexity & Triple-sampling Rate.
a),c): q = 4 with scores si; b),d): q = 8 with scores si; e) q = 4 with scores
s3
i ; f): q = 8 with scores s3

i .

m rankings 100 times and executed both algorithms to partition the set of

candidates iteratively. During the partitioning procedure, “party success”

was declared if one exactly detected one of the three party clusters (“F.F.”,

“F.G.” & “Ind.”). “All” was used to designate that all three party clusters

were detected completely correctly. InH-partition outperforms Apar in recov-

ering the cluster Ind. and achieved comparable performance for cluster F.F.,

although it performs a little worse than Apar for cluster F.G.; InH-partition

also offers superior overall performance compared to Apar. We also com-

pared InH-partition with APar in the large sample regime (m = 2490), using

only a subset of triple comparisons (hyperedges) sampled independently with

probability r (This strategy significantly reduces the complexity of both al-

gorithms). The averaged results based on 100 independent tests are depicted

in Figure 3.3 a).

23

Table 3.2: List of candidates from the Meath Constituency Election in 2002
(reproduced from [47, 52]).

Candidate Party

1 Brady, J. Fianna Fáil

2 Bruton, J. Fine Gael

3 Colwell, J. Independent

4 Dempsey, N. Fianna Fáil

5 English, D. Fine Gael

6 Farrelly, J. Fine Gael

7 Fitzgerald, B. Independent

Candidate Party

8 Kelly, T. Independent

9 O’Brien, P. Independent

10 O’Byrne, F. Green Party

11 Redmond, M. Christian Solidarity

12 Reilly, J. Sinn Féin

13 Wallace, M. Fianna Fáil

14 Ward, P. Labour

10
1

10
2

10
3

Sample Complexity m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 R

a
te

(a)

0 0.2 0.4 0.6 0.8 1

Triple-Sampling Probability r

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 R

a
te

InH-Par-F.F.

InH-Par-F.G.

InH-Par-Ind.

InH-Par-All

Apar-F.F.

Apar-F.G.

Apar-Ind.

Apar-All

(b)

Figure 3.3: Clusters detected in the Irish election dataset: a) Success rate
vs Sample Complexity; b) Success rate vs Triple-Sampling Probability.

In addition, we performed the same structure learning task on the sushi

preference ranking dataset [53]. This dataset consists of 5000 full rankings

of ten types of sushi. The different types of sushi evaluated are listed in

24

{1,2,3,4,5,6,7,8,9,10,11,12,13,14}

{1,4,13}
{2,3,5,6,7,8,9,10,11,12,14}

{2,5,6}
{3,7,8,9,10,11,12,14}

{7,8,9}
{3,10,11,12,14}

...

...

...

Fianna Fáil

Fine Gael

Independent

Figure 3.4: Hierarchical partitioning structure of Irish election detected by
InH-Par.

Table 3.3: List of 10 sushi from the sushi preference dataset (reproduced
from [53]).

Sushi Type
1 ebi shrimp
2 anago sea eel
3 maguro tuna
4 ika squid
5 uni sea urchin

Candidate Party
6 sake salmon roe
7 tamago egg
8 toro fatty tuna
9 tekka-maki tuna roll
10 kappa-maki cucumber roll

Table 3.3. We ran InH-partition to split the ten sushi types to obtain a

hierarchical clustering structure as the one shown in Figure 3.5. The figure

reveals two meaningful clusters, {5, 6} (uni,sake) and {3, 8, 9} (tuna-related

sushi): The sushi types labeled by 5 and 6 have the commonality of being ex-

pensive and branded as “daring, luxury sushi,” while sushi types labeled by

3, 8, 9 all contain tuna. InH-partition cannot detect the so-called “vegeterian-

choice sushi” cluster {7, 10}, which was recovered by Apar [47]. This may

be a consequence of the ambiguity and overlap of clusters, as the cluster

{4, 7} may also be categorized as “rich in lecithin”. The detailed compar-

isons between InH-partition and APar are performed based on their ability

to detect the two previously described standard clusters, {5, 6} and {3, 8, 9},
using small training sets. The averaged results based on 100 independent

tests are depicted in Figure 3.6 a). As may be seen, InH-partition outper-

forms APar in recovering both the clusters (uni,sake) and (tuna sushi), and

hence is superior to APar when learning both classes simultaneously. We also

compared InH-partition and APar in the large sample regime (m = 5000)

while using only a subset of triples. The averaged results over 100 sets of in-

dependent samples are shown Figure 3.6 b), again indicating the robustness

of InH-partition to missing triple information.

25

{1,2,3,4,5,6,7,8,9,10}

{5,6}
{1,2,3,4,7,8,9,10}

{3,8,9}
{1,2,4,7,10}

{4,7}
{1,2,10}

...

... ...

sea urchin, salmoe roe

tuna, fatty tuna, tuna roll

squid, egg

Figure 3.5: Hierarchical partitioning structure of sushi preference detected
by InH-Par.

10
1

10
2

10
3

Sample Complexity m

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

InH-Par-uni,sake

InH-Par-tuna-related

InH-Par-All

Apar-uni,sake

Apar-tuna-related

Apar-All

(a)

0 0.2 0.4 0.6 0.8 1

Triple-Sampling Probability r

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

(b)

Figure 3.6: Clusters detected in the sushi preference dataset: a) Success
rate vs Sample Complexity; b) Success rate vs Triple-Sampling Probability.

3.2.3 Subspace segmentation

Subspace segmentation is an extension of traditional data segmentation prob-

lems that has the goal to partition data according to their intrinsically em-

bedded subspaces. Among subspace segmentation methods, those based on

hypergraph clustering exhibit superior performance compared to others [54].

They also exhibit other distinguishing features, such as loose dependence on

the choice of parameters [11], robustness to outliers [31, 33], and clustering

robustness and accuracy [55].

Hypergraph clustering algorithms are exclusively homogeneous: If the in-

trinsic affine space is p-dimensional (p-D), the algorithms use ψ-uniform

(ψ > p + 1, typically set to p + 2) hypergraphs H = (V,E), where the

vertices in V correspond to observed data vectors and the hyperedges in E

are chosen ψ-tuples of vertices. To each hyperedge e in the hypergraph H
one assigns a weight we, typically of the form we = exp(−d2

e/θ
2), where de

describes the deviation needed to fit the corresponding ψ-tuple of vectors

into a p-D affine subspace, and θ represents a tunable parameter obtained

26

by cross validation [11] or computed empirically [55]. A small value of de

corresponds to a large value of we, and indicates that ψ-tuples of vectors

in e tend to be clustered together. As a good fit of the subspace yields a

large weight for the corresponding hyperedge, hypergraph clustering tends

to avoid cutting hyperedges of large weight and thus mostly groups vectors

within one subspace together. The performance of the methods varies due to

different techniques used for computing the deviation de and for sampling the

hyperedges. Some widely used deviations include dH−1
e , defined as the mean

Euclidean distance to the optimal fitted affine subspace [11, 31, 33, 32], and

the polar curvature (PC) [55], both of which lead to a homogeneous partition.

Instead, we propose to use an inhomogeneous deviation defined as

dInH
e ({v}) =Euclidean distance between v and the affine subspace

generated by e/{v}, for all v ∈ e.

This deviation measures the “distance” needed to fit v into the subspace sup-

ported by e/v and will be used to construct inhomogeneous cost functions

we(·) via we({v}) = exp[−dInH
e ({v})2/θ2], as described in what follows. Note

that the choice of a “good” deviation is still an open problem, which may

depend on specific datasets. Hence, to make a comprehensive comparison,

besides dH−1
e and PC, we also made use of another homogeneous deviation,

dH−2
e =

∑
v∈e d

InH
e ({v})/|e| which is the average of all the defined inhomoge-

neous deviations. Comparing the results obtained from dInH
e with dH−2

e will

highlight the improvements obtained from InH-partition, rather than from

the choice of the deviation. The inhomogeneous form of deviation dInH
e (·)

has a geometric interpretation based on the polytopes (p = 1) shown in

Figure 3.7 (with dH−1
e and dH−2

e). There, dInH
e ({v}) is the distance of {v}

from the hyperplane spanned by e/{v}. The induced inhomogeneous weight

we({v}) = exp(−dInH
e ({v})2/θ2) may be interpreted as the cost of separating

{v} away from the other points (vertices) in e.

All hypergraph-partitioning based subspace segmentation algorithms es-

sentially use the NCut procedure described in the main text, but their per-

formances vary due to different approaches for constructing the hypergraphs.

Three steps in the clustering procedure are key to the performance quality:

The first is to quantify the deviation to fit a collection of vectors into an

affine subspace; the second is to choose the parameter θ; the third is to sam-

27

vi vi
vj vj

vk vk

ℓ i

ℓ j

ℓ k

hi

hj

hk

dH−1
e = (`i + `j + `k)/3

dH−2
e = (hi + hj + hk)/3

dInH
e ({vi}) = hi

Figure 3.7: Illustration of the deviation (p = 1) used for subspace
segmentation.

ple ψ-tuples of vectors, i.e., choose the hyperedges of the hypergraph. For

fairness of comparison, in all our experiments we computed an inhomoge-

neous deviation de for the hyperedge e instead of a homogeneous one in the

first step, and kept the other two key steps the same as used in the stan-

dard literature. In particular, we performed hyperedge sampling uniformly

at random for the experiments pertaining to k-line segmentation; we used the

same hyperedge sampling procedure as that of SCC [55] for the experiments

pertaining to motion segmentation. The reason for these two different types

of settings are to assess the contribution of InH methods, rather than the

sampling procedure.

Synthetic data: Our first experiment pertains to segmenting k-lines in

a 3D Euclidean space (D = 3, p = 1, k = 2, 3, 4). The k-lines all pass

through the origin, and their directions, listed in Table 3.4, are such that

the minimal angles between two lines are restricted to 30 degree; 40 points

are sampled uniformly from the segment of each line lying in the unit ball

so there are 40k points in total. Each point is independently corrupted by

3D mean-zero Gaussian noise with covariance matrix θ2
nI. We determined

the parameter θ through cross validation and uniformly at random picked

100 × k2 many triples. We computed the percentage of misclassified points

based on 50 independent tests; the misclassification rate is denoted by e%

and the results are shown in Figure 3.8. The InH-partition only has 50% of

the misclassification errors of H-partition, provided that the noise is small

(θn < 0.01). To see why this may be the case, let us consider a triple of

datapoints {vi, vj, vk} where vi and vj belong to the same cluster, while vk

may belong to a different cluster. The line that goes through vi and vj is

close to the true affine subspace when the noise is small and thus the distance

from the third point vk to this line can serve as a precise indicator whether

28

Table 3.4: The directions of the k-lines.

k =2 k =3 k =4

(0.97,0.26,0.00)
(0.97,-0.26,0.00)

(0.95,0.30,0.00)
(0.95,-0.15,0.26)
(0.95,-0.15,-0.26)

(0.93,0.37,0.00)
(0.93,0.00,0.37)
(0.93,-0.37,0.00)
(0.93,0.00,-0.37)

-3 -2.5 -2 -1.5 -1

log10(σn)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

e
%

d
InH
e

d
H−2
e

d
H−1
e

(a)

-3 -2.5 -2 -1.5 -1

log10(σn)

0

0.1

0.2

0.3

0.4

0.5

0.6

e
%

d
InH
e

d
H−2
e

d
H−1
e

(b)

-3 -2.5 -2 -1.5 -1

log10(σn)

0

0.1

0.2

0.3

0.4

0.5

0.6

e
%

d
InH
e

d
H−2
e

d
H−1
e

(c)

Figure 3.8: Misclassification rate (mean and standard deviation) vs noise
level: a) k = 2; b) k = 3; c) k = 4.

vk lies within the same true affine subspace. When the noise is high, the

InH-partition also performs better when the number of classes is k = 2, but

starts to deteriorate in performance as k increases. The reason behind this

phenomena is as follows: inhomogeneous costs of a hyperedge provide more

accurate information about the subspaces than the homogeneous costs when

at least two points of the hyperedge belong to the same line cluster. This

is due to the definition of the deviation dinH
e ; but hyperedges of this type

become less likely as k increases.

Real data: The second problem we investigated in the context of sub-

space clustering is motion segmentation. Motion segmentation, a widely

used application in computer vision, is the task of clustering point trajec-

tories extracted from a video of a scene according to different rigid-body

motions. The problem can be reduced to a subspace clustering problem as

all the trajectories associated with one motion lie in one specified 3D affine

subspace (p = 3) [56]. We evaluate the performance of the InH-partition

method over the well-known motion segmentation dataset, Hopkins155 [57].

This dataset consists of 155 sequences of two and three motions from three

categories of scenes: Checkerboard, traffic and articulated sequences. Our

experiments show the InH-partition algorithm outperforms the benchmark

29

algorithms based on the use of H-partitions over this dataset including spec-

tral curvature clustering technique (SCC [55]). To make the comparison

fair, we simply replaced the homogeneous distance polar curvature in SCC

with the inhomogeneous distance dInH
e , the homogeneous distances dH−1

e and

dH−2
e , and keep all other steps the same. We also evaluated the performance

of some other methods, including Generalized PCA (GPCA) [58], Local Sub-

space Affinity [59], Agglomerative Lossy Compression (ALC) [60], and Sparse

Subspace Clustering (SSC) [61]. The results based on the average over 50

runs for each video are shown in Table 3.5.

As may be seen, InH-partition outperforms all methods except for SSC

(not based on hypergraph clustering), which shows the superiority of replac-

ing H-hyperedges with inhomogeneous ones. Although InH-partition fails to

outperform SSC, it has significantly lower complexity and is much easier to

use and implement in practice. In addition, some recent algorithms based

on H-partitions may leverage the complex hyperedge-sampling steps for this

application [62], and we believe that the InH-partition method can be further

improved by changing the sampling procedure, and made more appropriate

for inhomogeneous hypergraph clustering as opposed to SSC.

Table 3.5: Misclassification rates e% for the Hopkins 155 dataset. (MN:
mean; MD: median)

Two Motions Three Motions

Method Chck.(78) Trfc.(31) Artc.(11) All(120) Chck.(26) Trfc.(7) Artc.(2) All(115)

MN MD MN MD MN MD MN MD MN MD MN MD MN MD MN MD

GPCA [58] 6.09 1.03 1.41 0.00 2.88 0.00 4.59 0.38 31.95 32.93 19.83 19.55 16.85 16.85 28.66 28.26

LSA [59] 2.57 0.27 5.43 1.48 4.10 1.22 3.45 0.59 5.80 1.77 25.07 23.79 7.25 7.25 9.73 2.33

ALC [60] 1.49 0.27 1.75 1.51 10.70 0.95 2.40 0.43 5.00 0.66 8.86 0.51 21.08 21.08 6.69 0.67

SSC [61] 1.12 0.00 0.02 0.00 0.62 0.00 0.82 0.00 2.97 0.27 0.58 0.00 1.42 1.42 2.45 0.20

SCC [55] 1.77 0.00 0.63 0.14 4.02 2.13 1.68 0.07 6.23 1.70 1.11 1.40 5.41 5.41 5.16 1.58

H+dH−1
e 12.27 5.06 14.91 9.94 12.85 3.66 12.92 6.01 22.13 23.98 21.99 18.12 19.79 19.79 21.97 20.45

H+dH−2
e 4.20 0.43 0.33 0.00 1.53 0.10 2.93 0.06 7.05 2.22 7.02 3.98 6.47 6.47 7.01 2.12

InH-par 1.69 0.00 0.61 0.22 1.22 0.62 1.40 0.04 4.82 0.69 2.46 0.60 4.23 4.23 4.06 0.65

30

CHAPTER 4

SUBMODULAR HYPERGRAPHS:
SPECTRAL GRAPH THEORY AND

SPECTRAL CLUSTERING

In this chapter, we further consider other algorithms to solve the partition-

ing/clustering problem (3.1). Although clique-expansion-based methods per-

form extremely well on all applications described in Chapter 3, clique expan-

sion methods in general have two drawbacks. First, the spectral clustering

algorithm for graphs used in the second step is merely quadratically opti-

mal (see inequality (2.3)). Second, for large hyperedges, clique expansion

may cause large distortions: As shown in Theorem 3.1.1, there will be an

additional constant approximation factor β∗. Therefore, the distortion may

be as large as Ω(2ζ(E)/ζ(E)2) for linear clique expansion and Ω(ζ(E)) for

non-linear clique expansion (e.g. via Gomory-Hu trees).

There have been some proposed strategies to avoid the above two prob-

lems for graph and homogeneous hypergraph clustering. To address the

quadratic optimality issue in graph clustering, Amghibech [63] introduced

the notion of p-Laplacians of graphs and derived Cheeger-type inequalities

for the second smallest eigenvalue of a p-Laplacian, with p > 1, of a graph.

These results motivated Bühler and Hein’s work [64] on spectral clustering

based on p-Laplacians that provided tighter approximations of the Cheeger

constant. Szlam and Bresson [65] showed that the 1-Laplacian allows one to

exactly compute the Cheeger constant, but at the cost of computational hard-

ness [66]. Very little is known about the use of p-Laplacians for hypergraph

clustering and their spectral properties. To address the clique expansion

problem for homogeneous hypergraphs, Hein et al. [9] introduced a cluster-

ing method that avoids expansions and works directly with the total variation

of homogeneous hypergraphs, without investigating the spectral properties of

the operator. The only other line of work trying to mitigate the projection

problem is due to Louis [8], who used a natural extension of 2-Laplacians

for homogeneous hypergraphs, derived quadratically-optimal Cheeger-type

inequalities and proposed a semidefinite programing (SDP) based algorithm

31

whose complexity scales with the size of the largest hyperedge in the hyper-

graph.

In this chapter, we will generalize the above described strategies to apply

to submodular hypergraphs. We first define p-Laplacians for submodular

hypergraphs and generalize the corresponding discrete nodal domain theo-

rems [67, 68] and higher-order Cheeger inequalities. An analytical obstacle in

the development of such a theory is the fact that p-Laplacians of hypergraphs

are operators that act on vectors and produce sets of values. Consequently,

operators and eigenvalues have to be defined in a set-theoretic manner. Then,

based on the newly established spectral hypergraph theory, we propose two

spectral clustering methods that learn the second smallest eigenvalues of 2-

and 1-Laplacians. The algorithm for 2-Laplacian eigenvalue computation is

based on an SDP framework and can provably achieve quadratic optimality

with an O(
√
ζ(E)) approximation constant. The algorithm for 1-Laplacian

eigenvalue computation is based on the inverse power method (IPM) [69]

that only has convergence guarantees. The key novelty of the IPM-based

method is that the critical inner-loop optimization problem of the IPM is ef-

ficiently solved by algorithms recently developed for decomposable submod-

ular minimization [19, 20, 70]. Although without performance guarantees,

given that the 1-Laplacian provides the tightest approximation guarantees,

the IPM-based algorithm – as opposed to the clique expansion method [71]

– performs very well empirically even when the size of the hyperedges is

large. This fact is illustrated on several UC Irvine machine learning datasets

available from [72].

4.1 p-Laplacians for submodular hypergraphs and the

spectra

We start our discussion by defining the notion of a p-Laplacian operator for

submodular hypergraphs. We find the following definitions useful for our

subsequent exposition.

Let sgn(·) be the sign function defined as sgn(a) = 1, for a > 0, sgn(a) =

−1, for a < 0, and sgn(a) = [−1, 1], for a = 0. For all v ∈ V , define the

entries of a vector ϕp over RN according to (ϕp(x))v = |xv|p−1sgn(xv). Let

‖x‖`p,µ = (
∑

v∈V µv|xv|p)1/p and Sp,µ , {x ∈ RN |‖x‖`p,µ = 1}. For a function

32

Φ over RN , let Φ|Sp,µ stand for Φ restricted to Sp,µ.

Definition 4.1.1. The p-Laplacian operator of a submodular hypergraph,

denoted by 4p (p ≥ 1), is defined for all x ∈ RN according to

〈x,4p(x)〉 , Qp(x) =
∑
e∈E

ϑefe(x)p. (4.1)

Hence, 4p(x) may also be specified directly as an operator over RN that reads

as

4p(x) =

{ ∑
e∈E ϑefe(x)p−1∇fe(x) p > 1,∑

e∈E ϑe∇fe(x) p = 1.

Definition 4.1.2. A pair (λ, x) ∈ R× RN/{0} is called an eigenpair of the

p-Laplacian 4p if 4p(x) ∩ λU ϕp(x) 6= ∅.

As fe(1) = 0, we have 4p(1) = 0, so that (0,1) is an eigenpair of the oper-

ator 4p. A p-Laplacian operates on vectors and produces sets. In addition,

since for any t > 0, 4p(tx) = tp−14p(x) and ϕp(tx) = tp−1ϕp(x), (tx, λ) is

an eigenpair if and only if (x, λ) is an eigenpair. Hence, one only needs to

consider normalized eigenpairs: In our setting, we choose eigenpairs that lie

in Sp,µ for a suitable choice for the dimension of the space.

For linear operators, the Rayleigh-Ritz method [73] allows for determining

approximate solutions to eigenproblems and provides a variational character-

ization of eigenpairs based on the critical points of functionals. To generalize

the method, we introduce two even functions,

Q̃p(x) , Qp(x)|Sp,µ , Rp(x) ,
Qp(x)

‖x‖p`p,µ
.

Definition 4.1.3. A point x ∈ Sp,µ is termed a critical point of Rp(x) if

0 ∈ ∇Rp(x). Correspondingly, Rp(x) is termed a critical value of Rp(x).

Similarly, x is termed a critical point of Q̃p if there exists a σ ∈ ∇Qp(x)

such that P (x)σ = 0, where P (x)σ stands for the projection of σ onto the

tangent space of Sp,µ at the point x. Correspondingly, Q̃p(x) is termed a

critical value of Q̃p.

The relationships between the critical points of Q̃p(x) and Rp(x) and the

33

eigenpairs of 4p relevant to our subsequent derivations are listed in Theo-

rem 4.1.4.

Theorem 4.1.4. A pair (λ, x) (x ∈ Sp,µ) is an eigenpair of the operator 4p

1) if and only if x is a critical point of Q̃p with critical value λ, and provided

that p ≥ 1.

2) if and only if x is a critical point of Rp with critical value λ, and provided

that p > 1.

3) if x is a critical point of Rp with critical value λ, and provided that p = 1.

The critical points of Q̃p bijectively characterize eigenpairs for all choices

of p ≥ 1. However, Rp has the same property only if p > 1. This is a

consequence of the nonsmoothness of the set S1,µ, which has been observed

for graphs as well (See the examples in Section 2.2 in [66]).

Once Theorem 4.1.4 has been established, a standard way to analyze the

spectrum of 4p is to study the critical points of Q̃p = Qp(x)|Sp,µ . A crucial

component within this framework is the Lusternik-Schnirelman theory that

allows one to characterize a series of these critical points. As Qp and Sp,µ
are symmetric, one needs to use the notion of a Krasnoselski genus, defined

below. This type of approach has also been used to study the spectrum of p-

Laplacians of graphs, and the readers interested in the mathematical theory

behind the derivations are referred to [66, 67] and references therein for more

details.

Definition 4.1.5. Let A ⊂ RN/{0} be a closed and symmetric set. The

Krasnoselski genus of A is defined as

γ(A) =


0, if A = ∅,
inf{k ∈ Z+|∃ odd continuous h : A→ Rk\{0}}
∞ if for any finite k ∈ Z+, no such h exists.

(4.2)

We now focus on a particular subset of Sp,µ, defined as

Fk(Sp,µ) , {A ⊆ Sp,µ|A = −A, closed, γ(A) ≥ k}.

As Qp may not be differentiable, we apply Chang’s generalization of the

Lusternik-Schnirelman theorem for locally Lipschitz continuous functionals

defined on smooth Banach-Finsler manifolds (corresponding to the case p >

34

1) and those defined on piecewise linear manifolds (corresponding to the case

p = 1).

Definition 4.1.6. We say g : Sp,µ → R is locally Lipschitz: if for each

x ∈ Sp,µ, there exists a neighborhood Nx of x and a constant C depending on

Nx such that |g(x′)− g(x)| ≤ C‖x′ − x‖`2 for any x′ ∈ Sp,µ ∩Nx.

Theorem 4.1.7 (Theorem 3.2 [74] and Theorem 4.9 [66]). Suppose function

g : Sp,µ → R is locally Lipschitz, even, bounded below, then

min
A:Fk(Sp,µ)

max
x∈A

g(x) k = 1, 2, ..., N

characterize the critical values of g.

It is easy to check if Q̃p is locally Lipschitz, even and bounded below. By

invoking the Lusternik-Schnirelman theorem, we claim that there are at least

n critical values of Q̃p equaling

λ
(p)
k = min

A:Fk(Sp,µ)
max
x∈A

Q̃p, k = 1, 2, ..., N. (4.3)

Note that as Fk+1(Sp,µ) ⊆ Fk(Sp,µ), λ
(p)
k+1 ≥ λ

(p)
k . Combining (4.3) and Theo-

rem 4.1.4, {λ(p)
k }k∈[N] are a collection of eigenvalues of p-Laplacian operators

4p.

4.2 Discrete nodal domain theorems for p−Laplacians

Nodal domain theorems are essential for understanding the structure of eigen-

vectors of operators and they have been the subject of intense study in geom-

etry and graph theory alike [75]. The eigenfunctions of a Laplacian operator

may take positive and negative values. The signs of the values induce a

partition of the vertices in V into maximal connected components on which

the sign of the eigenfunction does not change: These components represent

the nodal domains of the eigenfunction and approximate the clusters of the

graphs.

Davies et al. [76] derived the first discrete nodal domain theorem for the

4(g)
2 operator. Chang et al. [68] and Tudisco et al. [67] generalized these

35

theorem for 4(g)
1 and 4(g)

p (p > 1) of graphs. In what follows, we prove that

the discrete nodal domain theorem applies to4p of submodular hypergraphs.

As every nodal domain theorem depends on some underlying notion of

connectivity, we first define the relevant notion of connectivity for submod-

ular hypergraphs. In a graph or a homogeneous hypergraph, vertices on the

same edge or hyperedge are considered to be connected. However, this prop-

erty does not generalize to submodular hypergraphs, as one can merge two

nonoverlapping hyperedges into one without changing the connectivity of the

hyperedges. To see why this is the case, consider two hyperedges e1 and e2

that are nonintersecting. One may transform the submodular hypergraph so

that it includes a hyperedge e = e1 ∪ e2 with weight we = we1 + we2 . This

transformation essentially does not change the submodular hypergraph, but

in the newly obtained hypergraph, according to the standard definition of

connectivity, the vertices in e1 and e2 are connected. This problem may be

avoided by defining connectivity based on the volume of the boundary set.

Definition 4.2.1. Two distinct vertices u, v ∈ V are said to be connected if

for any S such that u ∈ S and v /∈ S, vol(∂S) > 0. A submodular hypergraph

is connected if for any non-empty S ⊂ V , one has vol(∂S) > 0.

According to the following lemma, it is always possible to transform the

weight functions of submodular hypergraph in such a way as to preserve

connectivity.

Lemma 4.2.2. Any submodular hypergraph G = (V,E,w,µ) can be re-

duced to another submodular hypergraph G′ = (V,E ′,w′,µ) without changing

vol(∂S) for any S ⊆ V and ensuring that for any e ∈ E ′, and u, v ∈ e, u and

v are connected.

Definition 4.2.3. Let x ∈ RN . A positive (respectively, negative) strong

nodal domain is the set of vertices of a maximally connected induced subgraph

of G such that {v ∈ V |xv > 0} (respectively, {v ∈ V |xv < 0}). A positive

(respectively, negative) weak nodal domain is defined in the same manner,

except for changing the strict inequalities as {v ∈ V |xv ≥ 0} (respectively,

{v ∈ V |xv ≤ 0}).

The following lemma establishes that for a connected submodular hyper-

graph G, all nonconstant eigenvectors of the operator 4p correspond to

nonzero eigenvalues.

36

Lemma 4.2.4. If G is connected, then all eigenvectors associated with the

zero eigenvalue have constant entries.

We next state new nodal domain theorems for submodular hypergraph

p−Laplacians. The results imply the bounds for the numbers of nodal do-

mains induced from eigenvectors of p-Laplacian do not essentially change

compared to those for graphs [67].

Theorem 4.2.5. Assume that G is a connected submodular hypergraph. Fur-

thermore, let the eigenvalues of 4p obtained by (4.3) be ordered as 0 = λ
(p)
1 <

λ
(p)
2 ≤ · · · ≤ λ

(p)
k−1 < λ

(p)
k = · · · = λ

(p)
k+r−1 < λ

(p)
k+r ≤ · · · ≤ λ

(p)
n , with λ

(p)
k hav-

ing topological multiplicity r. Let x be an arbitrary eigenvector associated

with λ
(p)
k . Then, when p > 1, x induces at most k + r − 1 strong and at

most k weak nodal domains. When p = 1, the number of corresponding weak

nodal domains can be greater than k while not greater than the number of

corresponding strong nodal domains.

The next lemma derives a general lower bound on the number of nodal

domains of connected submodular hypergraphs.

Lemma 4.2.6. Let G be a connected submodular hypergraph. For p > 1,

any nonconstant eigenvector has at least two weak (strong) nodal domains.

Hence, the eigenvectors associated with the second smallest eigenvalue λ
(p)
2

have exactly two weak (strong) nodal domains. For p = 1, the eigenvectors

associated with the second smallest eigenvalue λ
(1)
2 may have only one single

weak (strong) nodal domain.

We define next the following three functions:

µ+
p (x) ,

∑
v∈V :xv>0

µv|xv|p−1, µ0(x) ,
∑

v∈V :xv=0

µv, µ
−
p (x) ,

∑
v∈V :xv<0

µv|xv|p−1.

The following lemma characterizes eigenvectors from another perspective

that might be useful latter.

Lemma 4.2.7. Let G be a connected submodular hypergraph. Then, for any

nonconstant eigenvector x of 4p, one has µ+
p (x)− µ−p (x) = 0 for p > 1, and

|µ+
1 (x)−µ−1 (x)| ≤ µ0(x) for p = 1. Consequently, 0 ∈ arg minc∈R ‖x−c1‖p`p,µ

for any p ≥ 1.

37

The nodal domain theorem characterizes the structure of the eigenvec-

tors of the operator, and the number of nodal domains determines the ap-

proximation guarantees in Cheeger-type inequalities relating the spectra of

graphs and hypergraphs and the Cheeger constant. These observations are

rigorously formalized in the next section.

4.3 Higher-order Cheeger inequalities

In what follows, we analytically characterize the relationship between the

Cheeger constants and the eigenvalues λ
(p)
k of 4p for submodular hyper-

graphs.

Theorem 4.3.1. Suppose that p ≥ 1 and x is an eigenvector of 4p corre-

sponding to the eigenvalue λ
(p)
k , with mk denoting the number of strong nodal

domains of xk. Then,(
1

τ

)p−1(
hmk
p

)p
≤ λ

(p)
k ≤ (min{ζ(E), k})p−1 hk.

For homogeneous hypergraphs, a tighter bound holds that reads as(
2

τ

)p−1(
hmk
p

)p
≤ λ

(p)
k ≤ 2p−1 hk.

It is straightforward to see that setting p = 1 produces the tightest bounds

on the eigenvalues, while the case p = 2 reduces to the classical Cheeger

inequality. This motivates an in-depth study of algorithms for evaluating

the spectrum of p = 1, 2-Laplacians, described next.

4.4 Spectral clustering algorithms based on

p-Laplacians

The Cheeger constant is frequently used as an objective function for (bal-

anced) graph and hypergraph partitioning [7, 64, 65, 69, 9, 71]. Theorem 4.3.1

implies that λ
(p)
k is a good approximation for the k-way Cheeger constant of

submodular graphs. Hence, to perform accurate hypergraph clustering, one

38

has to be able to efficiently learn λ
(p)
k [77, 78]. We outline next how to do so

for k = 2.

In Theorem 4.4.1, we describe an objective function that allows us to

characterize λ
(p)
2 in a computationally tractable manner; the choice of the

objective function is related to the objective developed for graphs in [64, 65].

Minimizing the proposed objective function produces a real-valued output

vector x ∈ RN . Theorem 4.4.3 describes how to round the vector x and obtain

a partition which provably upper bounds c(S). Based on the theorems, we

propose two algorithms for evaluating λ
(2)
2 and λ

(1)
2 . Since λ

(1)
2 = h2, the

corresponding partition corresponds to the tightest approximation of the 2-

way Cheeger constant. The eigenvalue λ
(2)
2 can be evaluated in polynomial

time with provable performance guarantees. The problem of devising good

approximations for values λ
(p)
k , k 6= 2, is still open.

Let Zp,µ(x, c) , ‖x− c1‖p`p,µ and Zp,µ(x) , minc∈R Zp,µ(x, c), and define

Rp(x) ,
Qp(x)

Zp,µ(x)
. (4.4)

Theorem 4.4.1. For p > 1, λ
(p)
2 = infx∈RN Rp(x). Moreover, λ

(1)
2 =

infx∈RN R1(x) = h2.

Definition 4.4.2. Given a nonconstant vector x ∈ RN , and a threshold θ, set

Θ(x, θ) = {v : xv > θ}. The optimal conductance obtained from thresholding

vector x equals

c(x) = inf
θ∈[xmin,xmax)

vol(∂Θ(x, θ))

min{vol(Θ(x, θ)), vol(V/Θ(x, θ))} .

Theorem 4.4.3. For any x ∈ RN that satisfies 0 ∈ arg minc Zp,µ(x, c), i.e.,

such that Zp,µ(x, 0) = Zp,µ(x), one has c(x) ≤ p τ (p−1)/pRp(x)1/p, where

τ = maxv∈V dv/µv.

In what follows, we present two algorithms. The first algorithm describes

how to minimize R2(x), and hence provides a polynomial-time solution for

submodular hypergraph partitioning with provable approximation guaran-

tees, given that the size of the largest hyperedge is a constant. The result is

concluded in Theorem 4.4.5. The algorithm is based on an SDP, and may

be computationally too intensive for practical applications involving large

hypergrpahs of even moderately large hyperedges. The second algorithm is

39

based on IPM [69] and aims to minimize R1(x). Although this algorithm

does not come with performance guarantees, it provably converges (see The-

orem 4.4.6) and has good heuristic performance. Moreover, the inner loop of

the IPM involves solving a version of the proximal-type decomposable sub-

modular minimization problem (see Theorem 4.4.7), which can be efficiently

performed using a number of different algorithms [79, 19, 80, 20, 70].

An SDP Method for Minimizing R2(x)

TheR2(x) minimization problem introduced in Equation (4.4) may be rewrit-

ten as

min
x:Ux⊥1

Q2(x)

‖x‖2
`2,µ

, (4.5)

where we observe that Q2(x) =
∑

e∈E ϑef
2
e (x) =

∑
e∈E ϑe maxy∈E(Be)〈y, x〉2.

This problem is, in turn, equivalent to the nonconvex optimization problem

min
x∈RN

∑
e

ϑe

(
max
y∈E(Be)

〈y, x〉
)2

(4.6)

s.t.
∑
v∈V

µvx
2
v = 1,

∑
v∈V

µvxv = 0.

Following an approach proposed for homogeneous hypergraphs [8], one may

try to solve an SDP relaxation of (4.6) instead. To describe the relaxation,

let each vertex v of the graph be associated with a vector x′v ∈ Rn, n ≥ ζ(E).

The assigned vectors are collected into a matrix of the form X = (x′1, .., x
′
N).

The SDP relaxation reads as

min
X∈Rn×N , η∈R|E|

∑
e

ϑeη
2
e (4.7)

s.t. ‖Xy‖2
2 ≤ η2

e ∀y ∈ E(Be), e ∈ E∑
v∈V

µv‖x′v‖2
2 = 1,

∑
v∈V

µvx
′
v = 0.

Note that E(Be) is of size O(|e|!), and the above problem can be solved

efficiently if ζ(E) is small.

Algorithm 4.1 lists the steps of an SDP-based algorithm for minimizing

R2(x), and it comes with approximation guarantees stated in Lemma 4.4.4.

40

In contrast to homogeneous hypergraphs [8], for which the approximation fac-

tor equals O(log ζ(E)), the guarantees for general submodular hypergraphs

are O(ζ(E)). This is due to the fact that the underlying base polytope Be for

a submodular function is significantly more complex than the corresponding

polytope for the homogeneous case. We conjecture that this approximation

guarantee is optimal for SDP methods.

Algorithm 4.1: Minimization of R2(x) using SDP
Input: A submodular hypergraph G = (V,E,w,µ)
1: Solve the SDP (4.7).
2: Generate a random Gaussian vector g ∼ N(0, In),

where In denotes the identity matrix of order n.
3: Output x = XTg.

Lemma 4.4.4. Let x be as in Algorithm 4.1, and let the optimal value

of (4.7) be SDPopt. Then, with high probability,

R2(x) ≤ O(ζ(E)) SDPopt ≤ O(ζ(E)) minR2.

This result immediately leads to the following theorem.

Theorem 4.4.5. Suppose that x is the output of Algorithm 4.1. Then, c(x) ≤
O(
√
ζ(E)τ h2) with high probability.

We describe next Algorithm 4.2 for optimizingR1(x) which has guaranteed

convergence properties.

Algorithm 4.2: IPM-based minimization of R1(x)
Input: A submodular hypergraph G = (V,E,w,µ)

Find nonconstant x0 ∈ RN s.t. 0 ∈ arg minc ‖x0 − c1‖`1,µ
initialize λ̂0 ← R1(x0), k ← 0

1: Repeat:

2: For v ∈ V , gkv ←
{

sgn(xkv)µv, if xkv 6= 0

−µ+
1 (xk)−µ−1 (xk)

µ0(xk)
µv, if xkv = 0

3: zk+1 ← arg minz:‖z‖≤1Q1(z)− λ̂k〈z, gk〉
4: ck+1 ← arg minc ‖zk+1 − c1‖`1,µ
5: xk+1 ← zk+1 − ck+11

6: λ̂k+1 ← R1(xk+1)

7: Until |λ̂k+1 − λ̂k|/λ̂k < ε
8. Output xk+1

41

Theorem 4.4.6. The sequence {xk} generated by Algorithm 4.2 satisfies

R1(xk+1) ≤ R1(xk).

The computationally demanding part of Algorithm 4.2 is the optimiza-

tion procedure in Step 3. The optimization problem is closely related to

the problem of submodular function minimization (SFM) due to the defin-

ing properties of the Lovász extension. Theorem 4.4.7 describes different

equivalent formulations of the optimization problem in Step 3.

Theorem 4.4.7. If the norm of the vector z in Step 3 is ‖z‖2, the underlying

optimization problem is the dual of the following `2 minimization problem:

min
ye
‖
∑
e∈E

ye − λ̂kgk‖2
2, ye ∈ ϑeBe, ∀ e ∈ E, (4.8)

where the primal and dual variables are related according to z =
λ̂kgk−

∑
e∈E ye

‖λ̂kgk−
∑
e∈E ye‖2

.

If the norm of the vector z in Step 3 is ‖z‖∞, the underlying optimization

problem is equivalent to the following SFM problem:

min
S⊆V

∑
e

ϑewe(S)− λ̂kgk(S), (4.9)

where the the primal and dual variables are related according to zv = 1 if

v ∈ S, and zv = −1 if v /∈ S.

For special forms of submodular weights, different algorithms for the op-

timization problems in Theorem 4.4.7 may be used instead. For graphs and

homogeneous hypergraphs with hyperedges of small size, the min-cut al-

gorithms [81, 6] allow one to efficiently solve the discrete problem (4.9).

Continuous optimization methods such as alternating projections (AP) [80]

and coordinate descent methods (CDM) [20] can be used to solve (4.8) by

“tracking” minimum norm points of base polytopes corresponding to individ-

ual hyperedges, where for general submodular weights, Wolfe’s algorithm [25]

can be used. When the submodular weights have some special properties,

such as that they depend only on the cardinality of the input, there exist

algorithms that operate efficiently even when |e| is extremely large [19].

In our experimental evaluations, we use a random coordinate descent

method (RCDM) [20], which ensures an expected (1 + ε)−approximation by

42

solving an expected number of O(|V |2|E| log 1
ε
) min-norm-point problems.

Note that when performing continuous optimization, one does not need to

solve the inner-loop optimization problem exactly and is allowed to exit the

loop as long as the objective function value decreases. Algorithm 4.3 lists

the step of an RCDM algorithm in which one submodular hyperedge is sam-

pled in one iteration, and the corresponding value of ye is updated. (Clearly,

multiple values of ye can be updated simultaneously if and only if the cor-

responding hyperedges do not intersect, and this parallelization step further

improves the convergence rate of the method.)

Algorithm 4.3: A RCDM for Solving the problem (8)

Input: Submodular hypergraph G = (V,E,w,µ), λ̂k, gk.
0: Initialize y0

e ∈ ϑeBe for e ∈ E, k ← 0
1: In iteration k:
2: Sample one hyperedge e ∈ E uniformly at random.

3: yk+1
e ← arg minye∈ϑeBe ‖ye +

∑
e′∈E/{e} ye′ − λ̂kgk‖2

2

4: Set yk+1
e′ ← yke′ for e′ 6= e.

Output
λ̂kgk−

∑
e∈E ye

‖λ̂kgk−
∑
e∈E ye‖2

4.5 Data clustering with large hyperedges

In what follows, we compare the algorithms for submodular hypergraph clus-

tering described in the previous section to two methods: The IPM for homo-

geneous hypergraph clustering [9] and the clique expansion method (CEM)

for submodular hypergraph clustering [71]. We focus on 2-way graph parti-

tioning problems related to the University of California Irvine (UCI) datasets

selected for analysis in [9], described in Table 4.1. The datasets include

20Newsgroups, Mushrooms and Covertype. In all datasets, ζ(E) was roughly

103, and each of these datasets describes multiple clusters. Since we are inter-

ested in 2-way partitioning, we focused on two pairs of clusters in Covertype,

denoted by (4, 5) and (6, 7), and paired the four 20Newsgroups clusters, one

of which includes Comp. and Sci, and another one which includes Rec. and

Talk. The Mushrooms and 20Newsgroups datasets contain only categorical

features, while Covertype also includes numerical features. We adopt the

same approach as the one described in [9] to construct hyperedges: Each

43

feature corresponds to one hyperedge; hence, each categorical feature is cap-

tured by one hyperedge, while numerical features are first quantized into 10

bins of equal size, and then mapped to hyperedges. To describe the submod-

ular weights, we fix ϑe = 1 for all hyperedges and parametrize we using a

variable α ∈ (0, 0.5]

we(S;α) =
1

2
+

1

2
min

{
1,
|S|
dα|e|e ,

|e/S|
dα|e|e

}
, ∀S ⊆ e.

The intuitive explanation behind our choice of weights is that it allows one to

accommodate categorization errors and outliers: In contrast to the homoge-

neous case in which any partition of a hyperedge has weight one, the chosen

submodular weights allow a smaller weight to be used when the hyperedge is

partitioned into small parts, i.e., when min{|S|, |e/S|} < dα|e|e. In practice,

α is chosen to be relatively small – in all experiments, we set α ≤ 0.04, with

α close to zero producing homogeneous hyperedge weights.

Table 4.1: The UCI datasets used for experimental testing.

Dataset 20Newsgroups Mushroom Covertype45 Covertype67
|V | 16242 8124 12240 37877
|E| 100 112 127 136∑
e∈E |e| 65451 170604 145999 451529

The results are shown in Figure 4.1. As may be observed, both in terms of

the Clustering error (i.e., the total number of erroneously classified vertices)

and the values of the Cheeger constant, IPM-based methods outperform

CEM. This is due to the fact that for large hyperedge sizes, CEM incurs a

high distortion when approximating the submodular weights (O(ζ(E)) [71]).

Moreover, as we(S) depends merely on |S|, the submodular hypergraph CEM

reduces to the homogeneous hypergraph CEM [7], which is an issue that the

IPM-based method does not face. Comparing the performance of IPM on

submodular hypergraphs (IPM-S) with that on homogeneous hypergraphs

(IPM-H), we see that IPM-S achieves better clustering performance on both

20Newsgroups and Covertypes, and offers the same performance as IPM-

H on the Mushrooms dataset. This indicates that it is practically useful

to use submodular hyperedge weights for clustering purposes. A somewhat

unexpected finding is that for certain cases, one observes that when α in-

creases (and thus, when we decreases), the corresponding Cheeger constant

44

increases. This result may be caused by the fact that the IPM algorithm can

get trapped in local minima.

45

0 0.01 0.02 0.03 0.04

α

29

29.5

30

30.5

31

31.5

32

32.5

33

c
lu

s
te

ri
n

g
 e

rr
o

r
%

 (
n

e
w

s
2

0
) IPM-S

CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

2

2.5

3

3.5

4

4.5

5

5.5

6

C
h
e
e
g
e
r

c
o
n
s
ta

n
t
(n

e
w

s
2
0
)

×10
-3

IPM-S
CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

c
lu

s
te

ri
n

g
 e

rr
o

r
%

 (
m

u
s
h

ro
o

m
)

IPM-S
CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

C
h
e
e
g
e
r

c
o
n
s
ta

n
t
%

 (
m

u
s
h
ro

o
m

) ×10
-4

IPM-S
CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

46.5

46.6

46.7

46.8

46.9

47

47.1

47.2

47.3

47.4

c
lu

s
te

ri
n

g
 e

rr
o

r
%

 (
c
o

v
e

rt
y
p

e
4

5
)

IPM-S
CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62

C
h

e
e

g
e

r
c
o

n
s
ta

n
t

(c
o

v
e

rt
y
p

e
4

5
) ×10

-3

IPM-S
CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

9.5

10

10.5

11

11.5

12

12.5

13

13.5

c
lu

s
te

ri
n

g
 e

rr
o

r
%

 (
c
o

v
e

rt
y
p

e
6

7
)

IPM-S
CEM
IPM-H

0 0.01 0.02 0.03 0.04

α

4.6

4.8

5

5.2

5.4

5.6

5.8

C
h
e
e
g
e
r

c
o
n
s
ta

n
t
(c

o
v
e
rt

y
p
e
6
7
) ×10

-4

IPM-S
CEM
IPM-H

Figure 4.1: Experimental clustering results for four UCI datasets, displayed
in pairs of figures depicting the Clustering error and the Cheeger constant
versus α. Fine tuning the parameter α may produce significant
performance improvements in several datasets. For example, on the
Covertype67 dataset, choosing α = 0.028 results in visible drops of the
clustering error and the Cheeger constant. Both the use of 1-Laplacians and
submodular weights may be credited for improving clustering performance.

46

CHAPTER 5

DECOMPOSABLE SUBMODULAR
FUNCTION MINIMIZATION — MIN-CUTS

In this chapter, we consider another problem defined over submodular hy-

pergraphs: Rather than approximate the submodular hypergraph conduc-

tance (3.1), we are to solve a problem by removing the volume of set S used

as the denominator in the conductance c(S). The new problem corresponds

to the min-cut problem over submodular hypergraphs without normaliza-

tion, which follows the form minS
∑

e∈E we(S). However, directly solving this

problem is trivial because we(·) ≥ 0 makes S = ∅ a trivial solution. Typically

a more meaningful problem is to further fix two sets of vertices such that the

solution always puts the two sets in the two different sides of the cut. A more

general setting can be used to encode this consideration, where vertices are

associated with some unary potential µ′ : V → R where µ′v implies the cost

to put a vertex v into the solution set S. Note that this unary potential is

different from non-negative unary potential µ defined in Chapter 2. Then,

the more meaningful problem becomes minS
∑

e∈E we(S)+
∑

v∈S µ
′
v. To view

the problem in a more general way, the unary potential, which is essentially a

modular function, can be also viewed as a submodular function. Considering

the first term is also a collection of submodular functions defined over hyper-

edges, we may view the problem in a more uniform way: We are to minimize

a submodular function F (·) that is defined on the ground set [N]. Moreover,

we have additional structure of F : Suppose F can be written as the sum of

a collection of submodular functions {Fr}r∈[R], i.e., F =
∑

r∈[R] Fr. We term

F as a decomposable submodular function and the minimization problem

as decomposable submodular function minimization problem (DSFM) that

follows:

DSFM: min
S

∑
r∈[R]

Fr(S). (5.1)

DSFM has attracted much research attentions in the recent decade since

47

Stobbe and Krause ’s first work [18]. There are two important motivations:

First, it naturally arises in many applications including image segmentation

and circuit segmentation. Second, the generic submodular function mini-

mization algorithms tend to have extremely high polynomial order in their

complexity, where the current fastest known SFM algorithm has complexity

O(N4 logO(1)N + τN3), where τ denotes the time needed to evaluate the

submodular function [82]. Since in practice each Fr is much “simpler” than

the original F , leveraging such decomposable structures may accelerate the

minimization procedure.

Algorithmic solutions for the DSFM problem fall into two categories, com-

binatorial optimization approaches [79, 83] and continuous function opti-

mization methods [28]. In the latter setting, using the crucial concept the

Lovász extension of the submodular function (2.5) lends the DSFM problem

to a norm-regularized convex optimization framework. Prior work in con-

tinuous DSFM has focused on devising efficient algorithms for solving the

convex problem and deriving matching convergence results. The best known

approaches include the alternating projection (AP) methods [19, 80] and the

coordinate descent (CD) methods [20].

Although these previous works leverage simplifications offered through de-

composibility, they still derive convergence guarantees that are suboptimal,

because they all miss to leverage the basic fact that each decomposed part

Fr may not depend on all the entities in the ground set [N]. Inheriting

from the terminology of the incidence matrix of a hyperedge to describe the

dependence between vertices and hyperedges, we term the dependence be-

tween one decomposed part and one entity as an incidence relation. It is

crucial to utilize incidence relations to further accelerate the algorithms for

DSFM problems. Often, incidences involve relatively small subsets of ele-

ments, which leads to desirable sparsity constraints. This is especially the

case for min-cut problems on graphs and hypergraphs (where each submod-

ular component involves two or several vertices) [81, 6] and MAP inference

with higher-order potentials (where each submodular component involves

variables corresponding to adjacent pixels) [18].

In this chapter, we revisit two benchmark algorithms for continuous DSFM

– AP and CD – and describe how to modify them to exploit incidence

relations that allow for significantly improved computational complexity.

Furthermore, we provide a complete theoretical analysis of the algorithms

48

parametrized by incidence relations with respect to their convergence rates.

AP-based methods that leverage incidence relations achieve better conver-

gence rates than classical AP algorithms both in the sequential and parallel

optimization scenario. The random CD method (RCDM) and accelerated CD

method (ACDM) that incorporate incidence information can be parallelized.

The complexity of sequential CD methods cannot be improved using inci-

dence relations, but the convergence rate of parallel CD methods strongly de-

pends on how the incidence relations are used for coordinate sampling: while

a new specialized combinatorial sampling based on equitable coloring [84] is

optimal, uniformly at random sampling produces a 2-approximation. It also

leads to a greedy method that empirically outperforms random sampling. A

summary of these and other findings is presented in Table 5.1.

Table 5.1: Overview of known and new results: each entry contains the
required number of iterations to achieve an ε-optimal solution (the
dependence on ε is the same for all algorithms and hence omitted). Here,
‖µ‖1 =

∑
i∈[N] µi, where for all i ∈ [N], µi equals the number of submodular

functions that involve element i; K is a parallelization parameter that
equals the number of min-norm points problems that have to be solved
within each iteration.

Prior work This work
Sequential Parallel Sequential Parallel

AP O(N2R2) O(N
2R2

K) O(N‖µ‖1R) O(N‖µ‖1RK)

RCDM O(N2R) - O(N2R) O
((

R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)
R
K

)
ACDM O(NR) - O(NR) O

((
R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)1/2
R
K

)

5.1 Background and problem formulation

We start our exposition by reviewing several recent lines of work for solv-

ing the DSFM problem, and focus on approaches that transform the DSFM

problem into a continuous optimization problem. We let Br and fr denote

the base polytope and the Lovász extention (2.5) of Fr. Then, the DSFM

problem can be solved through continuous optimization, minx∈[0,1]N
∑

r fr(x).

To counter the nonsmoothness of the objective function, a proximal formu-

lation of a generalization of the above optimization problem is considered

49

instead [19],

min
x∈RN

∑
r∈[R]

fr(x) +
1

2
‖x‖2

2. (5.2)

As the problem (5.2) is strongly convex, it has a unique optimal solution,

denoted by x∗. The exact discrete solution to the DSFM problem equals

S∗ = {i ∈ [N]|x∗i > 0}.
For convenience, we denote the product of base polytopes as B = ⊗Rr=1Br,

and write y = (y1, y2, ..., yR) ∈ B. Also, we let A be a simple linear mapping

⊗Rr=1RN → RN , which given a point a = (a1, a2, ..., aR) ∈ ⊗Rr=1RN outputs

Aa =
∑

r∈[R] ar. The AP and CD algorithms for solving (5.2) use the dual

form of the problem, described in the next lemma.

Lemma 5.1.1 ([19]). The dual problem of (5.2) reads as

min
a,y
‖a− y‖2

2 s.t. Aa = 0, y ∈ B. (5.3)

Moreover, problem (5.3) may be written in the more compact form

min
y
‖Ay‖2

2 s.t. y ∈ B. (5.4)

For both problems, the primal and dual variables are related according to x =

−Ay. In what follows, for notational simplicity, we write g(y) = 1
2
‖Ay‖2

2.

The AP [80] and RCD algorithms [20] described below provide solutions

to the problems (5.3) and (5.4), respectively. They both rely on repeated

projections ΠBr(·) onto the base polytopes Br, r ∈ [R]. These projections

are typically less computationally intense than projections onto the complete

base polytope of F as they involve fewer data dimensions. The projection

operation ΠBr(·) requires one to solve a min-norm problem by either exploit-

ing the special forms of Fr or by using the general purpose algorithm of

Wolfe [25]. The complexity of the method is typically characterized by the

number of required projections ΠBr(·).
The AP algorithm. Starting with y = y(0), iteratively compute a se-

quence (a(k), y(k))k=1,2,... such that for all r ∈ [R], a
(k)
r = y

(k−1)
r − Ay(k−1)/R,

y
(k)
r = ΠBr(a

(k)
r), until a stopping criteria is met.

The RCDM algorithm. In each iteration k, chose uniformly at ran-

50

dom a subset of elements in y associated with one atomic function in the

decomposition (5.1), say the one with index rk. Then, compute the sequence

(y(k))k=1,2,... according to y
(k)
rk = ΠBrk

(
−∑r 6=rk y

(k−1)
r

)
, y

(k)
r = y

(k−1)
r , for

r 6= rk.

Finding an ε-optimal solution for both the AP and RCD methods requires

O(N2R log(1
ε
)) iterations. In each iteration, the AP algorithm computes

the projections onto all R base polytopes, while the RCDM only computes

one projection. Therefore, as may be seen from Table 5.1, the sequen-

tial AP solver, which computes one projection in each iteration, requires

O(N2R2 log(1
ε
)) iterations. However, the projections within one iteration of

the AP method can be generated in parallel, while the projections performed

in the RCDM have to be generated sequentially.

5.1.1 Incidence relations and related notations

We next formally introduce one of the key concepts used in this work: in-

cidence relations between elements of the ground set and the component

submodular functions.

We say that an element i ∈ [N] is incident to a submodular function F iff

there exists a S ⊆ [N]/{i} such that F (S ∪ {i}) 6= F (S); similarly, we say

that the submodular function F is incident to an element i iff i is incident

to F . To verify whether an element i is incident to a submodular function

F , one needs to verify that F ({i}) = 0 and that F ([N]) = F ([N]/{i}) since

for any S ⊆ [N]/{i}

F ({i}) ≥ F (S ∪ {i})− F (S) ≥ F ([N])− F ([N]/{i}).

Furthermore, note that if i ∈ [N] is not incident to Fr, then for any yr ∈ Br,
one has yr,i = 0. Let Sr be the set of all elements incident to Fr. For each

element i, denote the number of submodular functions that are incident to i

by µi = |{r ∈ [R] : i ∈ Sr}|. We also refer to µi as the degree of element i.

We find it useful to partition the set of submodular functions into different

groups. Given a group C ⊆ [R] of submodular functions, we define the degree

of the element i within C, µCi , as µCi = |{r ∈ C : i ∈ Sr}|.
We also define a skewed norm involving two vectors w ∈ RN

>0 and z ∈ RN

according to ‖z‖2,w ,
√∑

i∈[N] wiz
2
i . With a slight abuse of notation, for two

51

vectors θ = (θ1, θ2, ..., θR) ∈ ⊗Rr=1RN
>0 and y ∈ ⊗Rr=1RN , we also define the

norm ‖y‖2,θ ,
√∑

r∈[R] ‖yr‖2
2,θr

. Which of the norms we refer to should be

clear from the context. In addition, we let ‖θ‖1,∞ =
∑

i∈[N] maxr∈[R]:i∈Sr θr,i.

For a closed set K ⊆ ⊗Rr=1RN and a positive vector θ ∈ ⊗Rr=1RN
>0, the distance

between y and K is defined as dθ(y,K) = min{‖y− z‖2,θ|z ∈ K}. Also, given

a set Ω ⊆ RN , we let ΠΩ,w(·) denote the projection operation onto Ω with

respect to the norm ‖ · ‖2,w.

Given a vector w ∈ RN
>0, we also make use of an induced vector I(w) ∈

⊗Rr=1RN whose r-th entry satisfies (I(w))r = w. It is easy to check that

‖I(w)‖1,∞ = ‖w‖1. Of special interest are induced vectors based on pairs

of N -dimensional vectors, µ = (µ1, µ2, ..., µN), µC = (µC1 , µ
C
2 , ..., µ

C
N). Fi-

nally, for w,w′ ∈ RN , we denote the element-wise power of w by wα =

(wα1 , w
α
2 , ..., w

α
N), for some α ∈ R, and the element-wise product of w and w′

by w � w′ = (w1w
′
1, w2w

′
2, ..., wNw

′
N).

Next, recall that x∗ is the unique optimal solution of the problem (5.2)

and let Z = {ξ ∈ ⊗Rr=1RN |Aξ = −x∗, ξr,i = 0, ∀i ∈ Sr, ∀r ∈ [R]}. Then, due

to the duality relationship of Lemma 5.1.1, Ξ = Z ∩ B is the set of optimal

solutions {y}.

5.2 Continuous DSFM algorithms with incidence

relations

In what follows, we revisit the AP and CD algorithms and describe how to

improve their performance and analytically establish their convergence rates.

Our first result introduces a modification of the AP algorithm (5.3) that ex-

ploits incidence relations so as to decrease the required number of iterations

from O(N2R) to O(N‖µ‖1). Our second result is an example that shows that

the convergence rates of CD algorithms [83] cannot be directly improved by

exploiting the functions’ incidence relations even when the incidence matrix

is extremely sparse. Our third result is a new algorithm that relies on coordi-

nate descent steps but can be parallelized. In this setting, incidence relations

are essential to the parallelization process.

To analyze solvers for the continuous optimization problem (5.2) that ex-

ploit the incidence structure of the functions, we make use of the skewed

norm ‖ · ‖2,w with respect to some positve vector w that accounts for the fact

52

that incidences are, in general, nonuniformly distributed. In this context,

the projection ΠBr,w(·) reduces to solving a classical min-norm problem after

a simple transformation of the underlying space which does not incur signif-

icant complexity overheads. To see this, note that in order to solve a generic

min-norm point problem, one typically uses either Wolfe’s algorithm (contin-

uous) or a divide-and-conquer procedure (combinatorial). The complexity of

the former is at most quadratic in Fr,max , maxv,S |Fr(S∪{v})−Fr(S)| [85],

while the complexity of the latter merely depends on logFr,max. This is be-

cause of the following Lemma (5.2.1) which describes how the projections

ΠBr,w(·) can be performed via discrete optimization. It is unclear if includ-

ing the weight vector w into the projection procedure increases or decreases

Fr,max. In either case, given that in our derivations all elements of w are con-

tained in [1,maxi∈[N] µi] instead of N or R, we do not expect to see significant

changes in the complexity of the projection operation. Hence, throughout

the remainder of our exposition, we regard the projection operation as an

oracle and measure the complexity of all algorithms in terms of the number

of projections performed.

Lemma 5.2.1. The optimization problem to compute the project ΠBr,w(·),

i.e., minyr∈Br ‖z− yr‖2
2,w, is the dual of the problem minx∈RN fr(x)− 〈x, z〉+

1
2
‖x‖2

2,w−1. A solution with coordinate accuracy ε for the latter setting can be

obtained by solving the discrete problem

min
S
Fr(S)− z(S) + λ

∑
i∈Sr∩S

w−1
i ,

where

λ ∈
[

min
i∈[N]

[−Fr({i}) + z({i})]wi, max
i∈[N]

[Fr([N]/{i})− Fr([N]) + z({i})]wi
]
,

at most min{|Sr|, log 1/ε} times. The parameter λ is chosen based on a binary

search procedure which requires solving the discrete problem O(log 1/ε) times.

Proof. The first statement follows from fr(x) = maxyr∈Br〈yr, x〉 and some

simple algebra. The second claim follows from the divide and conquer algo-

rithm described in Appendix B of [19].

Also, observe that one may avoid computing projections in skewed-norm

spaces by introducing in (5.2) a weighted rather than an unweighted proximal

53

term. This gives another continuous objective that still provides a solution to

the discrete problem (5.1). Even in this case, we can prove that the numbers

of iterations used in the different methods listed Table 5.1 remain the same.

Furthermore, by combining projections in skewed-norm spaces and weighted

proximal terms, it is possible to actually reduce the number of iterations

given in Table 5.1. However, for simplicity, we focus on the objective (5.2)

and projections in skewed-norm spaces. Methods using weighted proximal

terms with and without skewed-norm projections are analyzed in a similar

manner in Section 5.4.

We make frequent use of the following result which generalizes Lemma 4.1

of [83].

Lemma 5.2.2. Let θ ∈ ⊗Rr=1RN
>0, w ∈ RN

>0 be two positive vectors. Let y ∈ B
and let z be in the base polytope of the submodular function F . Then, there

exists a point ξ ∈ B such that Aξ = z and ‖ξ − y‖2,θ ≤
√
‖θ‖1,∞

2
‖Ay − z‖1.

Moreover, ‖ξ − y‖2,θ ≤
√
‖θ‖1,∞‖w−1‖1

2
‖Ay − z‖2,w.

5.2.1 The incidence relation AP (IAP)

The following result establishes the basis of our improved AP method lever-

aging incidence structures.

Lemma 5.2.3. The following problem is equivalent to problem (5.3):

min
a,y
‖a− y‖2

2,I(µ) s.t. y ∈ B, Aa = 0, and ar,i = 0, ∀(r, i) : i /∈ Sr, r ∈ [R].

(5.5)

Let A = {a ∈ ⊗Rr=1RN |Aa = 0, ar,i = 0, ∀(r, i) : i /∈ Sr} and A′ =

{a ∈ ⊗Rr=1RN |Aa = 0}. The AP algorithm for problem (5.5) consists of

alternatively computing projections between A and B, as opposed to those

between A′ and B used in the problem (5.3). However, as already pointed

out, unlike for the classical AP problem (5.3), the distance in (5.5) is not

Euclidean, and hence the projections may not be orthogonal.

The IAP method for solving (5.5) proceeds as follows. We begin with

a = a(0) ∈ A, and iteratively compute a sequence (a(k), y(k))k=1,2,... as follows:

for all r ∈ [R], y
(k)
r = ΠBr,µ(a

(k)
r), a

(k)
r,i = y

(k−1)
r,i − µ−1

i (Ay(k−1))i, ∀ i ∈ Sr.

54

The key difference between the AP and IAP algorithms is that the latter

effectively removes “irrelevant” components of yr by fixing the irrelevant

components of a to 0. In the AP method of Nishihara [80], these components

are never zero as they may be “corrupted” by other components during AP

iterations. Removing irrelevant components results in projecting y into a

subspace of lower dimensions, which significantly accelerates the convergence

of IAP (see illustration in Figure. 5.1).

A′

A

By(0)(y′(0))

y′(1)

y′(2)

y(1)

y∗
a′(1)

a′(2)

a(1)

Figure 5.1: Illustration of the IAP method for solving problem (5.5): The
space A is a subspace of A′, which leads to faster convergence of the IAP
method when compared to AP.

The analysis of the convergence rate of the IAP method follows a similar

outline as that used to analyze (5.3) in [80]. Following Nishihara et al. [80],

we define the following parameter that plays a key role in determining the

rate of convergence of the AP algorithm:

κ∗ , sup
y∈Z∪B/Ξ

dI(µ)(y,Ξ)

max{dI(µ)(y,Z), dI(µ)(y,B)} .

Lemma 5.2.4 ([80]). If κ∗ < ∞, the AP algorithm converges linearly with

rate 1 − 1
κ2
∗
. At the k-th iteration, the algorithm outputs a value y(k) that

satisfies

dI(µ)(y
(k),Ξ) ≤ 2dI(µ)(y

(0),Ξ)

(
1− 1

κ2
∗

)k
.

To apply the above lemma in the IAP setting, one first needs to establish

an upper bound on κ∗. This bound is given in Lemma 5.2.5 below.

Lemma 5.2.5. The parameter κ∗ is upper bounded as κ∗ ≤
√
N‖µ‖1/2 + 1.

By using the above lemma and the bound on κ∗, one can establish the

following convergence rate for the IAP method.

55

Theorem 5.2.6. After O(N‖µ‖1 log(1/ε)) iterations, the IAP algorithm for

solving problem (5.5) outputs a pair of points (a, y) that satisfies dI(µ)(y,Ξ) ≤
ε.

Note that in practice, one often has ‖µ‖1 � NR, which shows that the

convergence rate of the AP method for solving the DSBM problem may be

significantly improved.

5.2.2 Sequential coordinate descent algorithms

Unlike the AP algorithm, the CD algorithms by Ene and Nguyen [20] remain

unchanged given (5.4). Our first goal is to establish whether the convergence

rate of the CD algorithms can be improved using a parameterization that

exploits incidence relations.

The convergence rate of CD algorithms is linear if the objective function is

component-wise smooth and `-strong convex. In our case, g(y) is component-

wise smooth as for any y, z ∈ B that only differ in the r-th block (i.e., yr 6= zr,

yr′ = zr′ for r′ 6= r), one has

‖∇rg(y)−∇rg(z)‖2 ≤ ‖y − z‖2. (5.6)

Here, ∇rg denotes the gradient vector associated with the r-th block.

Definition 5.2.7. We say that the function g(y) is `-strongly convex in

‖ · ‖2,, if for any y ∈ B

g(y∗) ≥ g(y) + 〈∇g(y), y∗ − y〉+
`

2
‖y∗ − y‖2

2, (5.7)

or equivalently, ‖Ay − Ay∗‖2
2 ≥ `‖y∗ − y‖2

2,

where y∗ = arg min
z∈Ξ
‖z − y‖2

2. Moreover, we let

`∗ = sup{` : g(y) is `-strongly convex in ‖ · ‖2}.

Note that the above definition essentially establishes a form of weak-strong

convexity [86]. Then, using standard analytical tools for CD algorithms [87],

we can prove the following result [20].

56

Theorem 5.2.8. The RCDM for problem (5.4) outputs a point y that sat-

isfies E[g(y)] ≤ g(y∗) + ε after O(R
`∗

log(1/ε)) iterations. The ACDM applied

to the problem (5.4) outputs a point y that satisfies E[g(y)] ≤ g(y∗) + ε after

O(R√
`∗

log(1/ε)) iterations.

To precisely characterize the convergence rate, we need to find an accurate

estimate of `∗. Ene et al. [83] derived `∗ ≥ 1
N2 without taking into account

the incidence structure. As sparse incidence side information improves the

performance of the AP method, it is of interest to determine if the same can

be accomplished for the CD algorithms. Example 5.2.1 establishes that this

is not possible in general if one only relies on `∗.

Example 5.2.1. Consider a DSFM problem with a extremely sparse inci-

dence structure with |Sr| = 2. More precisely, let N = 2n + 1, R = 2n,

and ‖µ‖1 =
∑

r∈[R] |Sr| = 4n � NR. Let Fr be incident to the elements

{r, r+1}, for all r ∈ [R], and be such that Fr({r}) = Fr({r+1}) = 1, Fr(∅) =

Fr({r, r + 1}) = 0. Then, `∗ <
7
N2 .

Note that the optimal solution of problem (5.4) for this particular setting

equals y∗ = 0. Let us consider a point y ∈ B specified as follows. First, due to

the given incidence relations, the block yr has two components corresponding

to the elements indexed by r and r + 1. For any r ∈ [R],

yr,r = −yr,r+1 =

{
r
n

r ≤ n,
2n+1−r

n
r ≥ n+ 1.

(5.8)

Therefore, g(y) = 1
n
, ‖y‖2

2 >
4
3
n, which results in `∗ <

3
2n2 ≤ 7

N2 for all n ≥ 3.

Example 5.2.1 only illustrates that an important parameter of CDMs can-

not be improved using incidence information; but this does not necessarily

imply that a sequential RCDM that uses incidence structures cannot offer

better convergence rates than O(N2R). In Figure 5.2, we present additional

experimental evidence that supports our observation, using the setting of

Example 5.2.1: As the accuracy threshold increases, the slope approaches

the value 3, which indicates that the required number of iterations equals

O(N2R).

As a final remark, note that Nishihara et al. [80] also proposed a lower

bound that does not make use of sparse incidence structures and only works

for the AP method.

57

2.5 3 3.5 4 4.5

ln(N)

7

8

9

10

11

12

13

14

15

16

ln
(#

It
e
ra

ti
o
n
s
)

3.054

3.046

3.043

ǫ = 10
-3

ǫ = 10
-6

ǫ = 10
-9

Figure 5.2: Simulations accompanying Example 3.1: ln(the number of
iterations) vs ln(N). We constructed a DSFM problem following
Example 5.2.1 and initialized y according to equation (5.8). We used the
number of iterations k required to attain g(y(k)) ≤ εg(y(0)) as a measure for
the speed of convergence. We ran the simulations for n ∈ [5, 50] and
averaged the results for each n over 10 independent runs. The values next
to the curves are their slopes obtained via a linear regression involving
ln(# Iterations) ∼ ln(N).

5.2.3 New parallel CD methods

In what follows, we propose two CDMs which rely on parallel projections

and incidence relations.

The following observation is key to understanding the proposed approach.

Suppose that we have a nonempty group of blocks C ⊆ R. Let y, h ∈
⊗Rr=1RN . If hr,i is nonzero only for block r ∈ C and i ∈ Sr, then

g(y + h) = g(y) + 〈∇g(y), h〉+
1

2
‖Ah‖2

2

≤ g(y) +
∑
r∈C

〈∇rg(y), hr〉+
∑
r∈C

1

2
‖hr‖2

2,I(µC). (5.9)

Hence, for all r ∈ C, if we perform projections onto Br with respect to

the norm ‖ · ‖2,µC simultaneously in each iteration of the CDM, convergence

is guaranteed as the value of the objective function remains bounded. The

smaller the components of µC , the faster the convergence. Note that the com-

ponents of µC are the numbers of incidence relations of elements restricted to

the set C. Hence, in each iteration, blocks that ought to be updated in par-

allel are those that correspond to submodular functions that have supports

58

with smallest possible intersections.

One can select blocks that are to be updated in parallel in a combinatorially

specified fashion or in a randomized fashion, as dictated by what we call an

α-proper distribution. To describe our parallel RCDM, we first introduce the

notion of an α-proper distribution.

Definition 5.2.9. Let P be a distribution used to sample a group of C blocks.

Define θP = (θP1 , θ
P
2 , ..., θ

P
R) such that for r ∈ [R], θPr , EC∼P

[
µC |r ∈ C

]
.

We say that P is an α-proper distribution, if for any r ∈ [R] and a given

α ∈ (0, 1), we have P(r ∈ C) = α.

We are now ready to describe the parallel RCDM algorithm – Algorithm

5.1; the description of the parallel ACDM is postponed to Section 5.2.4.

Algorithm 5.1: Parallel RCDM for Solving (5.4)
Input: B, α
0: Initialize y(0) ∈ B, k ← 0
1: Do the following steps iteratively until the dual gap < ε:
2: Sample Cik using some α-proper distribution P
3: For r ∈ Cik :
4: y

(k+1)
r ← ΠBr,θPr (y

(k)
r − (θPr)−1 �∇rg(y(k)))

5: Set y
(k+1)
r ← y

(k)
r for r 6∈ Cik , k ← k + 1

6: Output y(k)

Next, we establish strong convexity results for the space ‖ · ‖2,θP by invoking

Lemma 5.2.2.

Lemma 5.2.10. For any y ∈ B, let y∗ = arg minξ∈Ξ ‖ξ − y‖2
2,θP . Then,

‖Ay − Ay∗‖2
2 ≥

2

N‖θP‖1,∞
‖y − y∗‖2

2,θP .

The convergence rate of Algorithm 5.1 is established in the next theorem.

Theorem 5.2.11. At each iteration of Algorithm 5.1, y(k) satisfies

E
[
g(y(k))− g(y∗) +

1

2
d2
θP (yk, ξ)

]
≤
[
1− 4α

(N‖θP‖1,∞ + 2)

]k [
g(y(0))− g(y∗) +

1

2
d2
θP (y0, ξ)

]
.

59

The parameter N‖θP‖1,∞ is obtained by combining the strong convexity

constant and the properties of the sampling distribution P . Small values of

‖θP‖1,∞ ensure better convergence rates, and we next bound this value.

Lemma 5.2.12. For any α-proper distribution P and an element i ∈ [N],

max
r∈[R]:i∈Sr

θPr,i ≥ max{αµi, 1}. Consequently, ‖θP‖1,∞ ≥ max{α‖µ‖1, N}.

Without considering incidence relations, i.e., by setting ‖µ‖1 = NR, one

always has ‖θP‖1,∞ ≥ αNR, which shows that parallelization cannot improve

the convergence rate of the RCDM.

The next lemma characterizes an achievable ‖θP‖1,∞ obtained by choosing

P to be a uniform distribution, which, when combined with Theorem 5.2.11,

proves the result of the last column in Table 5.1.

Lemma 5.2.13. If C is a set of size 0 < K ≤ R obtained by sampling the

K-subsets of [R] uniformly at random, then θPr = K−1
R−1

µ + R−K
R−1

1. Moreover,

‖θP‖1,∞ = K−1
R−1
‖µ‖1 + R−K

R−1
N .

Comparing Lemma 5.2.12 and Lemma 5.2.13, we see that the ‖θP‖1,∞

achieved by sampling uniformly at random is at most a factor of two of

the lower bound since α = K/R. A natural question is if it is possible to

devise a better sampling strategy. This question is further addressed in Sec-

tion 5.2.5, where we related the sampling problem to equitable coloring [84].

By using Hajnal-Szemerédi’s theorem [88], we derived a sufficient condition

under which an α-proper distribution P that achieves the lower bound in

Lemma 5.2.12 can be found in polynomial time. We also described a greedy

algorithm for minimizing ‖θP‖1,∞ that empirically convergences faster than

sampling uniformly at random.

5.2.4 A parallel accelerated coordinate descent method

In the ACDM setting, we used the APPROX framework proposed by Fercoq

and Richtárik in [89] and adapted it to this particular problem. In the

general APPROX framework, the norm in (5.9) is chosen as follows: consider

an arbitrary function φ with the component-wise smoothness and strong

convexity property. For block r, one has |∇rφ(x)−∇rφ(y)| ≤ Lr‖xr− yr‖νr ,
where ‖ ·‖νr is a norm associated with the r-th block. If one wants to process

60

multiple blocks simultaneously, say those in a group C, one first needs to

find a constant LC such that for any h as defined in (5.9), it holds that

φ(y + h) ≤ φ(y) +
∑
r∈C

〈∇rφ(y), hr〉+
∑
r∈C

LC
2
‖hr‖2

2,νr .

The smaller the value of the multiplier LC , the faster the convergence. Typ-

ically, LC lies in [maxr∈C Lr,
∑

r∈C Lr].

Recall the smoothness property of g from equation (5.6). A direct appli-

cation of APPROX to our problem gives

g(y + h) ≤ g(y) +
∑
r∈C

〈∇rg(y), hr〉+
∑
r∈C

maxi∈[N] µ
C
i

2
‖hr‖2

2.

As (maxi∈[N] µ
C
i) ≥ µCj for all j ∈ [N], we obtain convergence rates worse

than those implied by inequality (5.9). To actually obtain the guarantees

in (5.9), one needs to dispose with the ‖·‖2 norm at the block level and break

the blocks into components corresponding to the individual elements. The

elements are evaluated independently through the use of the norm ‖ · ‖2,µC .

Algorithm 5.2: Parallel ACDM for Solving (5.4)
Input: B, α, some constant c > 0
0: Initialize y(0) ∈ B, k ← 0

1: c′ ←
⌈

(1 + c)

√
2N‖θP ‖1,∞

α
+ c

⌉
2: Do the following steps iteratively until the dual gap < ε:
3: If k = lc′ for some l ∈ Z, z(k) ← y(k), λk ← 1
4: p(k) ← (1− λk)y(k) + λkz

(k)

5: Sample Cik using some α-proper distribution P
6: z(k+1) ← z(k)

7: For r ∈ Cik :
8: z

(k+1)
r ← ΠBr,θPr (z

(k)
r − α

λk
(θPr)−1 �∇rg(p(k)))

9: y(k+1) ← p(k) + λk
α

(z(k+1) − z(k))

10: λk+1 ←
√
λ4
k+4λ2

k−λ
2
k

2

11: k ← k + 1
12: Output y(k)

Similar to the APPROX method [89], the parallel ACDM can also be

implemented to avoid full-dimensional vector operations (see Section A.4.9).

The following theorem characterizes the convergence property of Algorithm

61

5.2.

Theorem 5.2.14. Given c > 0, let c′ =

⌈
(1 + c)

√
2N‖θP ‖1,∞

α
+ c

⌉
. Consider

the iterations k = lc′ for l ∈ Z≥0. Then, y(k) of Algorithm 5.4 satisfies

E
[
g(y(k) − g(y∗)

]
≤ 1

(1 + c)l
[
g(y(0))− g(y∗)

]
.

5.2.5 Minimization of ‖θP‖1,∞

Algorithm 5.3: A Greedy Algorithm to minimize ‖θP‖1,∞
Input: {Sr}r∈[R], K
0: Initialize the partition C = {Ci}1≤i≤m, Ci ← ∅, vectors {µCi}1≤i≤m,
µCi ∈ RN , and µmax ∈ RN , µmax ← 0.

1: For r from 1 to R:
2: For i from 1 to m:
3: If |Ci| < K:
4: 4µCi ← 0
5: For v in Sr, if µCiv is equal to µmax

v , 4µCi ←4µCi + 1
6: else: 4µCi ←∞
7: i∗ ← arg mini4µCi
8: Ci∗ ← Ci∗ ∪ {r}
9: For v in Sr, µ

Ci∗
v ← µCi∗v + 1, µmax

v ← max{µmax
v , µCi∗v }.

10: Output C.

We first define 4∗ , maxr∈[R] |{r′ ∈ [R]|Sr′ ∩ Sr 6= ∅}|, which we use in

our subsequent derivations.

As shown in Theorem 5.2.11 and Theorem 5.2.14, ‖θP‖1,∞ plays an im-

portant role in the convergence rate of CDMs. Hence, we are interested in

identifying the optimal sampling strategy P that minimizes ‖θP‖1,∞.

For this purpose, consider a partition of [R] into m = d 1
α
e parts {Ci}1≤i≤m,

such that |Ci| ∈ {K − 1, K}. We refer to such a partition as a balanced

partition. In this case, every block r is in exactly one component Ci and

‖θP‖1,∞ =
∑

v∈[N] maxi∈[m] µ
Ci
v . As a result, the problem of minimizing

‖θP‖1,∞ is closely related to the so called equitable coloring problem first

proposed by Meyer [84].

Definition 5.2.15 (Meyer [84]). Given a graph, an equitable coloring is an

assignment of colors to the vertices that satisfies the following two properties:

62

no two adjacent vertices share the same color and the number of vertices in

any two color classes differs by at most one. Moreover, the minimum number

of colors in any equitable coloring is termed the equitable coloring number.

Hajnal-Szemerédi’s theorem [88] established one of the most important

results in equitable graph coloring: a graph is equitably k-colorable if k is

strictly greater than the maximum vertex degree. This bound is tight. We

can construct a graph based on the incidence structure of DSFM problem

so that a vertex corresponds to a component submodular function and two

vertices are connected iff the corresponding submodular functions are inci-

dent to at least one common point. An equitable coloring of this graph can

be used to assign submodular functions of the same color class to a set Ci in

C. This guarantees that µCiv ≤ 1 for all Ci and all v ∈ [N]. Note that the

maximal degree of this graph is4∗. By directly applying Hajnal-Szemerédi’s

theorem, we have the following lemma.

Lemma 5.2.16. There exists a balanced-partition distribution P such that

‖θP‖1,∞ = N , provided that d 1
α
e ≥ 4∗ + 1.

As in many applications, such as image segmentation [18], the value of

4∗ is small, and hence using a balanced-partition instead of one obtained

through sampling uniformly at random may produce significantly better re-

sults. Unfortunately, finding the equitable coloring number is an NP-hard

problem; still, a polynomial time algorithm for finding 4∗ + 1 equitable

colorings was described in [90], with complexity O(4∗R2). We describe a

greedy algorithm that outputs a balanced-partition distribution and aims to

minimize ‖θP‖1,∞ in Algorithm 5.3. According to our experimental results,

the sampling strategy P found by Algorithm 5.3 works better than sampling

uniformly at random.

5.3 Experiments on images and networks segmentation

In what follows, we illustrate the performance of the newly proposed DSFM

algorithms on a benchmark datasets used for MAP inference in image seg-

mentation [18] and used for semi-supervised learning over graphs and hyper-

graphs.

63

0 100 200 300 400 500 600

#Iterations× α

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

s
m

o
o

th
 g

a
p

 (
α

 =
 0

.1
,

o
c
t)

RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 50 100 150 200 250 300

#Iterations × α

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

d
is

c
re

te
 g

a
p

 (
α

 =
 0

.1
,

o
c
t)

RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 100 200 300 400 500 600

#Iterations× α

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

s
m

o
o

th
 g

a
p

 (
α

 =
 0

.1
,

s
m

a
llp

la
n

t) RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 100 200 300 400 500 600

#Iterations × α

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

d
is

c
re

te
 g

a
p

 (
α

 =
 0

.1
,

s
m

a
llp

la
n

t) RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 0.05 0.1 0.15 0.2

α

300

400

500

600

700

800

900

1000

1100

1200

#
It

e
ra

ti
o

n
s
 ×

 α
 (
ν

s
 <

 1
0

-2
,

o
c
t) RCDM-G

RCDM-U
ACMD-U

0 0.05 0.1 0.15 0.2

α

45

50

55

60

65

70

75

#
It

e
ra

ti
o

n
s
 ×

 α
 (
ν

d
 <

 1
0

-3
,

o
c
t) RCDM-G

RCDM-U
ACMD-U

0 0.05 0.1 0.15 0.2

α

200

300

400

500

600

700

800

900

1000

#
It

e
ra

ti
o

n
s
 ×

 α

(ν
s
 <

 1
0

2
,

s
m

a
llp

la
n

t)

RCDM-G
RCDM-U
ACMD-U

0 0.05 0.1 0.15 0.2

α

100

200

300

400

500

600

700

#
It

e
ra

ti
o

n
s
 ×

 α
 (
ν

d
 <

 1
0

-3
,

s
m

a
llp

la
n

t)

RCDM-G
RCDM-U
ACMD-U

Figure 5.3: Image segmentation example. First row: Gap vs the number of
iterations ×α. Second row: The number of iterations ×α vs α. Here, α is
the parallelization parameter, while K = αR equals the number of
projections that have to be computed in each iteration.

In all the experiments, we evaluated the convergence rate of the algorithms

by using the smooth duality gap νs and the discrete duality gap νd. The

primal problem solution equals x = −Ay so that the smooth duality gap can

be computed according to νs =
∑

r fr(x) + 1
2
‖x‖2 − (−1

2
‖Ay‖2). Moreover,

as the level set Sλ = {v ∈ [N]|xv > λ} can be easily found based on x, the

discrete duality gap can be written as νd = minλ F (Sλ)−
∑

v∈[N] min{−xv, 0}.
MAP inference. We used two images – oct and smallplant – adopted

from [19].1 The images comprise 640 × 427 pixels so that N = 273, 280.

The decomposable submodular functions are constructed following a stan-

dard procedure. The first class of functions arises from the 4-neighbor grid

graph over the pixels. Each edge corresponds to a pairwise potential between

two adjacent pixels i, j that follows the formula exp(−‖vi − vj‖2
2), where vi

is the RGB color vector of pixel i. We split the vertical and horizontal edges

into rows and columns that result in 639 + 426 = 1065 components in the

decomposition. Note that within each row or each column, the edges have no

overlapping pixels, so the projections of these submodular functions onto the

base polytopes reduce to projections onto the base polytopes of edge-like sub-

modular functions. The second class of submodular functions contain clique

potentials corresponding to the superpixel regions; specifically, for region r,

Fr(S) = |S|(|Sr|− |S|) [91]. These functions give another 500 decomposition

components. We apply the divide and conquer method in [19] to compute

1Downloaded from the website of Professor Stefanie Jegelka:
http://people.csail.mit.edu/stefje/code.html

64

the projections required for this type of submodular functions. Note that in

each experiment, all components of the submodular function are of nearly the

same size, and thus the projections performed for different components incur

similar computational costs. As the projections represent the primary com-

putational units, for comparative purposes we use the number of iterations

(similarly to [19, 20]).

We compared five algorithms: RCDM with a sampling distribution P

found by the greedy algorithm (RCDM-G), RCDM with uniform sampling

(RCDM-U), ACDM with uniform sampling (ACDM-U), AP based on (5.5)

(IAP) and AP based on (5.3) (AP). Figure 5.3 depicts the results. In the

first row, we compared the convergence rates of different algorithms for a

fixed parallelization parameter α = 0.1. The values on the horizontal axis

correspond to # iterations ×α, the total number of projections performed

divided by R. The results are averaged over 10 independent experiments.

We observe that the CD-based methods outperform AP-based methods, and

that ACDM-U is the best performing CD-based method. IAP significantly

outperforms AP. Similarly, RCDM-G outperforms RCDM-U. We also inves-

tigated the relationship between the number of iterations and the parameter

α. We recorded the number of iterations needed to achieve a smooth and

discrete gap below a certain given threshold. The results are shown in the

second row of Figure 5.3. We did not plot the curves for the AP-based meth-

ods as they are essentially horizontal lines. Among the CD-based methods,

ACDM-U performs best. RCDM-G offers a much better convergence rate

than RCDM-U since the sampling probability P produced by the greedy al-

gorithm leads to a smaller value of ‖θP‖1,∞ compared to uniform sampling.

The reason behind this finding is that the supports of the components in the

decomposition are localized, which makes the sampling P obtained from the

greedy algorithm highly effective. For RCDM-U, the total number of itera-

tions increases almost linearly with α (= K/R), which confirms the results

of Lemma 5.2.13.

Note that in the above examples of MAP inference, another way to decom-

pose the submodular functions is available: as there are three natural layers

of non-overlapping incidence sets, we can merge all vertical edges, all hori-

zontal edges, and all superpixel regions into three components respectively.

Then, each of this component is incident to all pixels, and the derived results

in this work will reduce to those of the former works [19, 20]. However, such

65

0 100 200 300 400 500

#Iterations× α

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

s
m

o
o
th

 g
a
p
 (
α

 =
 0

.1
,
K

a
ra

te
) RCDM-G

RCDM-U
ACDM-U
IAP
AP

0 100 200 300 400 500

#Iterations × α

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d
is

c
re

te
 g

a
p

 (
α

=
 0

.1
,

K
a

ra
te

)

RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 0.1 0.2 0.3 0.4

α

30

35

40

45

50

55

60

65

70

#
It

e
ra

ti
o

n
s
 ×

 α
 (

s
m

o
o

th
)

RCDM-G
RCDM-U
ACMD-U

0 0.1 0.2 0.3 0.4

α

10

15

20

25

30

35

40

45

50

55

60

#
It

e
ra

ti
o

n
s
 ×

 α
 (

d
is

c
re

te
)

RCDM-G
RCDM-U
ACMD-U

Figure 5.4: Zachary’s Karate Club. Left two: Gap vs the number of
iterations ×α. Right two: The number of iterations ×α vs α. Here, α is the
parallelization parameter, while K = αR equals the number of projections
that have to be computed in each iteration.

a way to decompose submodular function strongly depends on the particular

structure and thus is not general for DSFM problems. The following example

on semi-supervised learning over graphs does not contain natural layers for

decomposition.

Semi-supervised learning. We tested our algorithms over the dataset of

Zachary’s karate club [92]. This dataset is used as a benchmark example for

evaluating semisupervised learning algorithms over graphs [93]. It includes

N = 34 vertices and R = 78 submodular functions in the decomposition,

each corresponding to one edge in the network. The objective function of

both semi-supervised learning problems may be written as

min
x
τ
∑
r∈[R]

fr(x) +
1

2
‖x− x0‖2

2, (5.10)

where τ is a parameter that needs to be tuned, and x0 ∈ {−1, 0, 1}N , so that

the nonzero components correspond to the labels that are known a priori. In

our case, as we are only concerned with the convergence rate of the algorithm,

we fix τ = 0.1. In the experiments for Zachary’s karate club, we set x0(1) = 1,

x0(34) = −1 and let all other components of x0 be equal to zero.

Figure 5.4 shows the results of the experiments pertaining to Zachary’s

karate club. In the left two subfigures, we compared the convergence rates of

different algorithms for a fixed parallelization parameter α = 0.1. The values

on the horizontal axis correspond to # iterations ×α, the total number of

projections performed divided by R. In the right two subfigures, we con-

trolled the numbers of projections executed within one iteration by tuning

the parameter α and recorded the number of iterations needed to achieve

smooth/discrete gaps below 10−3. The values depicted on the vertical axis

66

0 50 100 150 200

#Iterations× α

10
-15

10
-10

10
-5

10
0

10
5

s
m

o
o
th

 g
a
p
 (
α

 =
 0

.0
2
,
2
0
n
e
w

s
) RCDM-G

RCDM-U
ACDM-U
IAP
AP

0 50 100 150 200

#Iterations × α

10
-15

10
-10

10
-5

10
0

10
5

d
is

c
re

te
 g

a
p
 (
α

=
 0

.0
2
,
2
0
n
e
w

s
) RCDM-G

RCDM-U
ACDM-U
IAP
AP

0 50 100 150 200

#Iterations× α

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

s
m

o
o
th

 g
a
p
 (
α

 =
 0

.1
,
2
0
n
e
w

s
) RCDM-G

RCDM-U
ACDM-U
IAP
AP

0 50 100 150 200

#Iterations × α

10
-15

10
-10

10
-5

10
0

10
5

d
is

c
re

te
 g

a
p
 (
α

 =
 0

.1
,
2
0
n
e
w

s
) RCDM-G

RCDM-U
ACDM-U
IAP
AP

Figure 5.5: 20Newsgrounp: Smooth/discrete gap vs the (number of
iterations ×α).

correspond to # iterations ×α, describing the total number of projections

needed to achieve the given accuracy. In all cases, we see a similar tendency to

that of the MAP inference. As may be seen, AP-based methods require more

projections than CD-based methods, but IAP consistently outperforms AP,

which is consistent with our theoretical results. Among the CD-based meth-

ods, ACDM-U offers the best performance in general, and RCDM-G slightly

outperforms RCDM-U, since the greedy algorithm used for sampling pro-

duces a smaller ‖θP‖1,∞ than uniform sampling. As the AP-based methods

are completely parallelizable, increasing the parameter α does not increase

the total number of projections. However, for RCDM-U, the total number

of iterations required increases almost linearly with α, which is supported

by the result in Lemma 3.12. The performance curve for RCDM-G exhibits

large oscillations due to the discrete problem component, needed for finding

a balanced partition.

We also evaluate the proposed approaches over the 20Newsgroups from the

University of California Irvine (UCI) data repository. This dataset is used

as a benchmark example for evaluating semisupervised learning algorithms

over hypergraphs [9, 94]. Here, for simplicity, we focused on binary classi-

fication tasks and thus paired the four 20Newsgroups classes, so that one

group includes “Comp.” and “Sci”, and the other one includes “Rec.” and

“Talk”. The 20Newsgroups dataset consists of categorical features and we

adopt the same approach as the one described in [9] to construct hyperedges:

each feature corresponds to one hyperedge and contributes one submodular

function to the decomposition. Hence, 20Newsgroups contains N = 16242

elements and R = 100 submodular functions.

In the experiments for 20Newsgroups, we uniformly at random picked 200

elements and set their corresponding components in x0 of equation (5.10)

to the true labels and set all other entries to zero. Figure 5.5 shows the

67

results of the experiments pertaining to 20Newsgroup. We compared the

convergence rate of different algorithms for different values of the parameter

α ∈ {0.02, 0.1}. The value on the horizontal axis, # iterations ×α, equals

the total number of projections, scaled by R. The results are averaged over

10 independent experiments. Once again, we observe that CD-based meth-

ods outperform AP-based methods. ACDM-U offers the best performance

among all CD-based methods and IAP significantly outperforms AP. Simi-

larly, RCDM-G has better performance than RCDM-U, due to the use of the

greedy algorithm for the sampling procedure.

5.4 Using weighted proximal terms for acceleration

The AP and RCDM solvers discussed in the main text are designed to solve

the convex optimization (5.2), but also produce a solution to the discrete

optimization problem (5.1). To solve the discrete optimization problem (5.1),

another convex optimization formulation may be considered instead:

min
x∈RN

∑
r∈[R]

fr(x) +
1

2
‖x‖2

2,w, (5.11)

where the choice of w ∈ RN
>0 will be described later. By using the arguments

in [95] or in Chapter 8.1-8.2 of [28], we know that the solution of the discrete

optimization problem (5.1) can be obtained as S = {i ∈ [N]|x∗i > 0}, where

x∗ is a solution of (5.11).

Next, we describe how a proper choice of w allows one to avoid compute

oblique projections in the AP and parallel CDM algorithms. If oblique pro-

jections are allowed, a good choice for w may also decrease the computational

complexities listed in Table 5.1. The results obtained based on weighted

proximal terms are summarized in Table 5.2.

We now analyze the new objective (5.11) in more detail. The proof tech-

niques used in the main text carry over to the setting involving weighted

proximal terms.

By using a dual strategy similar to those described in Lemma 5.1.1 and

Lemma 5.2.3, we arrive at the dual formulation of problem (5.11) described

in the next lemma. Note that the derivation of (5.12) takes into account the

underlying incidence relations.

68

Table 5.2: New complexity results based on weighted proximal terms: here,
complexity refers to the required number of iterations needed to achieve an
ε−optimal solution (the dependence on ε is the same for all algorithms and
hence omitted). As before, K is the parallelization parameter and it equals
the number of min-norm points problems that are solved within each
iteration; K = 1 reduces to the sequential case.

Using Orthogonal Projection ΠBr(·)
The Value of w Complexity

AP w = µ O(N‖µ‖1
R
K

)
RCDM w = R−K

R−1
1 + K−1

R−1
µ O

((
R−K
R−1

N2 + K−1
R−1

N‖µ‖1

)
R
K

)
ACDM w = R−K

R−1
1 + K−1

R−1
µ O

((
R−K
R−1

N2 + K−1
R−1

N‖µ‖1

) 1
2 R
K

)
Using Oblique Projection ΠBr,w1/2(·)

The Value of w Complexity

AP w = µ
1
2 O(‖µ 1

2‖2
1
R
K

)

RCDM w =
(
R−K
R−1

1 + K−1
R−1

µ
) 1

2 O

(∥∥∥(R−KR−1
1 + K−1

R−1
µ
) 1

2

∥∥∥2

1

R
K

)
ACDM w =

(
R−K
R−1

1 + K−1
R−1

µ
) 1

2 O
(∥∥∥(R−KR−1

1 + K−1
R−1

µ
) 1

2

∥∥∥
1

R
K

)
Lemma 5.4.1. The dual problem of (5.11) reads as

min
a,y
‖a− y‖2

2,I(w−1�µ) s.t. y ∈ B, Aa = 0,

and ar,i = 0, ∀(r, i) : i /∈ Sr, r ∈ [R]. (5.12)

Moreover, problem (5.3) may be written in a more compact form as

min
y
‖Ay‖2

2,w−1 s.t. y ∈ B. (5.13)

For both problems, the primal and dual variables are related according to

x = −w−1 � Ay.

5.4.1 The incidence relations AP (IAP) method for
solving (5.12)

The steps of the IAP method are listed in Algorithm 5.4.

The convergence properties of Algorithm 5.4 can be characterized similarly

as those of IAP for solving (5.5). The latter relies on a finite upper bound

for κ∗ , sup
y∈Z∪B/Ξ

dI(w−1�µ)(y,Ξ)

max{dI(w−1�µ)(y,Z),dI(w−1�µ)(y,B)} .

69

Algorithm 5.4: The IAP Method for Solving (5.12)

0: For all r, initialize y
(0)
r ∈ Br, and k ← 0

1: In iteration k:
2: For all r ∈ [R]:

3: a
(k+1)
r,i ← y

(k)
r,i − µ−1

i (Ay(k))i for all i ∈ Sr
4: y

(k+1)
r ← ΠBr,w−1�µ(a

(k+1)
r)

Lemma 5.4.2. One has κ∗ ≤
√
‖w−1�µ‖1‖w‖1

2
+ 1. When w = µ, κ∗ ≤√

N‖µ‖1
2

+ 1.

Proof. The result follows using the same strategy as the one used to prove

Lemma 5.2.5. Note that when using Lemma 5.2.2, one should set θ to I(w−1�
µ) and replace w by w−1.

By setting w = µ, Step 4 of Algorithm 5.4 reduces to orthogonal projec-

tions. In this case, based on Lemma 5.4.2, Algorithm 5.4 requiresO(N‖µ‖1 log 1
ε
)

iterations to achieve an ε-optimal solution. By setting w = µ
1
2 for all i ∈ [R],

Step 4 of Algorithm 5.4 reduces to the projections Π
Br,w

1
2
(·). In this case,

Algorithm 5.4 requires O

(∥∥∥µ 1
2

∥∥∥2

log 1
ε

)
iterations to achieve an ε-optimal

solution. The latter result is slightly better because
∥∥∥µ 1

2

∥∥∥2

≤ N‖µ‖1.

5.4.2 A parallel RCD method for solving (5.13)

As discussed in Section 5.2.3, RCDM strongly depends on an α-proper dis-

tribution P that characterizes the parallel coordinate sampling strategy. In

what follows, we choose P to be a uniform distribution. From Lemma 5.2.13,

we know that when P is uniform, one has θPr = K−1
R−1

µ+ R−K
R−1

1 for all r ∈ [R],

where K denotes the number of projections computed in parallel as part of

each iteration. In Algorithm 5.2, θPr defines the normed space over which to

minimize g(y). As our goal is to minimize gw(y) = 1
2
‖Ay‖2

2,w−1 , the vector

used to define the normed space is

ν = w−1 � θPr = w−1 � (
K − 1

R− 1
µ+

R−K
R− 1

1).

The parallel RCDM procedure in this setting is described in Algorithm 5.5.

70

Algorithm 5.5: Parallel RCDM for Solving (5.13)
Input: B, K
0: Initialize y(0) ∈ B, k ← 0
1: Do the following steps iteratively until the dual gap < ε:
2: Uniformly sample Cik ⊆ [R] so that |Cik | = K.
3: For r ∈ Cik :
4: y

(k+1)
r ← ΠBr,ν(y

(k)
r − (ν−1)�∇rgw(y))

5: Set y
(k+1)
r ← y

(k)
r for r 6∈ Cik

6: k ← k + 1
7: Output y(k)

Similarly to what was done in Lemma 5.2.10, we can establish weak strong

convexity of gw(y) with respect to the norm ‖ ·‖2,ν by invoking Lemma 5.2.2.

Lemma 5.4.3. For any y ∈ B, let y∗ = arg minξ∈Ξ ‖ξ − y‖2
2,ν. Then,

‖Ay − Ay∗‖2
2,w−1 ≥ 2

‖w‖1‖ν‖1

‖y − y∗‖2
2,ν .

Therefore, using a strategy similar to the one outlined in the proof of

Theorem 5.2.11, the convergence rates of Algorithm 5.5 can be derived as

summarized in the next theorem.

Theorem 5.4.4. At each iteration of Algorithm 5.5, y(k) satisfies

E
[
gw(y(k))− gw(y∗) +

1

2
d2
I(ν)(y

k, ξ)

]
≤
[
1− 4K

R(‖w‖1‖ν‖1 + 2)

]k [
gw(y(0))− gw(y∗) +

1

2
d2
I(ν)(y

0, ξ)

]
.

By setting w = K−1
R−1

µ+ R−K
R−1

1, we reduce the projections in Step 4 of Algo-

rithm 5.5 to orthogonal projections. In this case, based on Theorem 5.4.4, Al-

gorithm 5.5 requires O
((

K−1
R−1

N‖µ‖1 + R−K
R−1

N2
)
R
K

log 1
ε

)
iterations to achieve

an ε-optimal solution.

By setting w =
(
K−1
R−1

µ+ R−K
R−1

)1/2
for all i ∈ [R], the projections in Step

4 of Algorithm 5.5 reduce to oblique projections Π
Br,w

1
2
(·). In this case,

Algorithm 5.5 requires O

(∥∥∥(K−1
R−1

µi + R−K
R−1

)1/2
∥∥∥2

1
log 1

ε

)
iterations to achieve

an ε-optimal solution, which is slightly better than the previous case. The

accelerated methods can be analyzed in the same manner.

71

5.4.3 Simulations

We now describe simulation results that empirically evaluate Algorithms 5.4

and 5.5. The DSFM problem is designed as follows. We consider N = 100

vertices. The unary potentials of different elements are iid standard Gaussian

variables. We construct a network over these vertices based on the Barabási-

Albert model (BA) [96], initialized with a single edge between vertices 1 and

2. Each edge in the network gives a pairwise potential for the corresponding

vertices. We use the BA model so that the number of incidence relations

corresponding to different vertices varies to a large extent. As we are using

weighted proximal terms, the continuous objectives are not consistent for

different w. However, here, we are only interested in generating solutions for

the discrete problem (5.1) and thus regard the discrete gap νd as the relevant

metric for characterizing convergence properties. The following results are

obtained from 100 independent experiments.

In IAP (Algorithm 5.4), we set w ∈ {1, µ, µ1/2}, corresponding to three

cases: unweighted proximal term + oblique projections, weighted proximal

term + orthogonal projections, weighted proximal term + oblique projec-

tions, respectively. In RCDM-U (Algorithm 5.5), we set w ∈ {1, K−1
R−1

µ +
R−K
R−1

1, (K−1
R−1

µ + R−K
R−1

1)1/2}, corresponding to the same three cases. We con-

trol the number of parallel projection operations in each iteration by choosing

K ∈ {10, 20, 30, 40, 50}. Figure 5.6 shows the convergence curve of the dis-

crete gap for different solvers and different choices of w. We only plotted

results for K = 10, 50 as other values of K produce similar patterns. For

both IAP and RCDM-U, when w corresponds to the weighted proximal term

+ orthogonal projections case, we obtain the best convergence rates. The

value w = 1, corresponding to the case unweighted proximal term + oblique

projections, results in the worst convergence rates. Albeit somewhat incon-

sistent with the results listed in Table 5.2, the simulations simply imply that

using weighted proximal terms can reduce the complexity of the algorithms

at hand and that the weighted proximal term with orthogonal projections in

the inner loop may represent the best choice in practice.

In Table 5.3, we also list the number of iterations needed by different

solvers to obtain a solution for the discrete problem (5.1). Again, the w

corresponding to the weighted proximal term + orthogonal projections case

results in the smallest number of iterations, while the w corresponding to the

72

0 50 100 150

#interation× K/R

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g

1
0
(d

is
c
re

te
 g

a
p
)

K=10

IAP w = 1
IAP w = µ

IAP w = (µ)1/2

0 50 100 150

#interation× K/R

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g

1
0
(d

is
c
re

te
 g

a
p
)

K=50

IAP w = 1
IAP w = µ

IAP w = (µ)1/2

0 5 10 15 20 25 30 35

#interations× K/R

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g

1
0
(d

is
c
re

te
 g

a
p

)

K=10

RCDM-U w = 1

RCDM-U w = K−1
R−1µ+ K−1

R−1 1

RCDM-U w = (K−1
R−1µ+ K−1

R−1 1)
1/2

0 20 40 60 80

#interations× K/R

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g

1
0
(d

is
c
re

te
 g

a
p

)

K=50

RCDM-U w = 1

RCDM-U w = K−1
R−1µ+ K−1

R−1 1

RCDM-U w = (K−1
R−1µ+ K−1

R−1 1)
1/2

Figure 5.6: Simulations for Algorithm 5.4 and 5.5: log10 (discrete gap) vs
(number of iterations ×K/R).

Table 5.3: The number of iterations ×K/R needed to find an optimal
solution to the discrete problem (5.1). MN: mean; MD: median.

Solvers w
K = 10 K = 20 K = 30 K = 40 K = 50

MN MD MN MD MN MD MN MD MN MD

IAP
1 109 103 109 103 109 103 109 103 109 103
µ 43 34 43 34 43 34 43 34 43 34

µ1/2 59 50 59 50 59 50 59 50 59 50

RCDM-U
1 27 22 34 28 43 38 51 46 54 49

K−1
R−1

µ+ R−K
R−1

1 22 17 25 20 29 24 32 24 33 25(
K−1
R−1

µ+ R−K
R−1

1
)1/2

25 19 28 23 33 28 37 31 38 32

unweighted proximal term + oblique projections case results in the largest

number of iterations. Note that as K increases, the number of iterations

×K/R in IAP does not change as IAP is fully parallelizable, while the number

of operations in RCDM-U slightly increases due to the overlapping incidence

sets of different submodular functions.

73

CHAPTER 6

QUADRATIC DECOMPOSABLE
SUBMODULAR FUNCTION

MINIMIZATION — PAGERANKS

In the previous chapter, we considered how to efficiently solve the min-cut

problems over submodular hypergraphs. Although the min-cut type of so-

lutions have been found very successful in many applications such as image

segmentation, they have some drawbacks. The combinatorial solutions are

discrete, which cannot yield soft values that are necessary in many other real

life applications like information retrieval and recommendation algorithm de-

sign. These applications need soft values to rank the entities in the pool and

send ranking lists as reponse. Actually, more than the combinatorial solu-

tions, the solutions in continuous space, i.e., x in (5.2), tend to be discrete in

their values because the regularizer based on Lovász extensions impose the

sparsity within the difference of values of x. Such drawbacks motivate the

work in this chapter, which considers computing the PageRank type of solu-

tions that still capture topology induced by submodular hypergraphs while

they may be suitable for ranking-related tasks. Recall that PageRank vec-

tors in the graph case can be obtained by solving an optimization problem

with quadratic terms as regularizers. We propose a new convex optimization

problem that uses quadratic terms of Lovász extensions as regularizers and

give it the name quadratic decomposable submodular function minimization

(QDSFM).

To specify the QDSFM problem, consider that we still have a submodular

hypergraph whose hyperedges are associated with a collection of submodular

functions {Fr}r∈[R] defined over the ground set [N], and denote their Lovász

extensions and base polytopes by {fr}r∈[R] and {Br}r∈[R], respectively. Let

Sr ⊆ [N] denote the set of variables incident to Fr and assume that the

functions Fr are normalized and nonnegative, i.e., that Fr(∅) = 0 and Fr ≥ 0.

These two mild constraints are satisfied by almost all submodular functions

that arise in practice.

The QDSFM problem may be formally stated as follows:

74

QDSFM: min
x∈RN

‖x− a‖2
W +

∑
r∈[R]

[fr(x)]2 , (6.1)

where a ∈ RN is a given vector and W ∈ RN×N is a positive diagonal matrix.

Note that the QDSFM problem is convex because the Lovász extensions fr

are convex and nonnegative. In fact, it is also strongly convex, implying that

there exists a unique optimal solution, denoted by x∗.

Recall in the previous chapter, we introduced the continuous version of

DSFM problems (5.2). The key difference between QDSFM and DSFM

is that the regularizers of QDSFM are quadratic forms of Lovász exten-

sions. QDSFM appears naturally in a wide spectrum of applications, includ-

ing learning on graphs and hypergraphs, and in particular, semi-supervised

learning and PageRank analysis, to be detailed later. Moreover, it has

been demonstrated both theoretically [97] and empirically [98, 9] that us-

ing quadratic regularizers in (6.1) offers significantly improved predictive

performance for semi-supervised learning when compared to DSFM. Despite

the importance of the QDSFM problem, it has not received the same level

of attention as the DSFM problem, both from the theoretic and algorithm

perspective. To the best of our knowledge, only a few reported works [9, 99]

have provided solutions for specific instances of QDSFMs with sublinear con-

vergence guarantees. For the general QDSFM problem, no analytical results

are currently known.

This chapter takes a substantial step towards solving the QDSFM problem

in its most general form by developing a family of algorithms with linear con-

vergence rates and small iteration cost, including the randomized coordinate

descent (RCD) and alternative projection (AP) algorithms. Our contribu-

tions are as follows.

1. First, we derive a new dual formulation for the QDSFM problem since

an analogue of the dual transformation for the DSFM problem is not

applicable. Interestingly, the dual QDSFM problem requires one to find

the best approximation of a hyperplane via a product cone as opposed

to a product polytope, encountered in the dual DSFM problem.

2. Second, we develop linearly convergent RCD and AP algorithms for

solving the dual QDSFM. Because of the special underlying conic struc-

75

ture, a new analytic approach is needed to prove the weak strong-

convexity of the dual QDSFM, which essentially guarantees linear con-

vergence.

3. Third, we develop generalized Frank-Wolfe (FW) and min-norm-point

methods for efficiently computing the conic projection required in each

step of RCD and AP and provide a 1/k-rate convergence analysis.

These FW-type algorithms and their corresponding analysis do not

rely on the submodularity assumption and apply to general conic pro-

jections, and are hence of independent interest.

4. Forth, we introduce a novel application of QDSFM problems, in terms

of a PageRank (PR) process for hypergraphs. The underlying PR state

vectors can be efficiently computed by solving QDSFM problems. We

also show that many important properties of the PR process for graphs

carry over to the hypergraph case, including mixing and local hyper-

graph partitioning results.

5. Finally, we evaluate our methods on semi-supervised learning over hy-

pergraphs using synthetic and real datasets, and demonstrate superior

performance both in convergence rate and prediction accuracy com-

pared to existing general-purpose methods.

6.1 Dual formulation

Despite being convex, the objective is in general nondifferentiable. This im-

plies that only sublinear convergence can be obtained when directly applying

the subgradient method. To address this issue, we revert to the dual formu-

lation of the QDSFM problem. A natural idea is to mimic the approach

used for DSFM by exploiting the characterization of the Lovász extension,

fr(x) = maxyr∈Br〈yr, x〉, ∀r. However, this leads to a semidefinite program-

ing problem for the dual variables {yr}r∈[R], which is too expensive to solve for

large problems. Instead, we establish a new dual formulation that overcomes

this obstacle.

The dual formulation hinges upon the following simple, yet key observa-

76

tion:

[fr(x)]2 = max
φr≥0

φrfr(x)− φ2
r

4
= max

φr≥0
max

yr∈φrBr
〈yr, x〉 −

φ2
r

4
. (6.2)

Let y = (y1, y2, ..., yR) and φ = (φ1, φ2, ..., φR). For each r, we define a convex

cone

Cr = {(yr, φr)|φr ≥ 0, yr ∈ φrBr},

which represents the feasible set of the variables (yr, φr). Furthermore, we

denote the product cone by

C =
⊗
r∈[R]

Cr := {(y, φ) : φr ≥ 0, yr ∈ φrBr,∀r ∈ [R]}.

Invoking equation (6.2), we arrive at the following two dual formulations for

the original QDSFM problem in Lemma (6.1.1).

Lemma 6.1.1. The following optimization problem is dual to (6.1):

min
y,φ

g(y, φ) := ‖
∑
r∈[R]

yr − 2Wa‖2
W−1 +

∑
r∈[R]

φ2
r, s.t. (y, φ) ∈ C. (6.3)

By introducing Λ = (λr) ∈
⊗

r∈[R] RN , the previous optimization problem

takes the form

min
y,φ,Λ

∑
r∈[R]

[
‖yr −

λr√
R
‖2
W−1 + φ2

r

]
, s.t. (y, φ) ∈ C,

∑
r∈[R]

λr = 2Wa. (6.4)

The primal variables in both cases may be computed as x = a−1
2
W−1

∑
r∈[R] yr.

The proof of Lemma 6.1.1 is presented in Section A.5.1. The dual formu-

lations for the DSFM problem were described in Lemma 2 of [19]. Similarly

to the DSFM problem, the dual formulations (6.3) and (6.4) are simple,

nearly separable in the dual variables, and may be solved by algorithms such

as those used for solving dual DSFM, including the Douglas-Rachford split-

ting method (DR) [19], the alternative projection method (AP) [80] and the

random coordinate descent method (RCD) [20].

However, there are also some notable differences. Our dual formulations

for the QDSFM problem are defined on a product cone constructed from the

base polytopes of the submodular functions. The optimization problem (6.4)

77

essentially asks for the best approximation of an affine space in terms of the

product cone, whereas in the DSFM problem one seeks an approximation in

terms of a product polytope. In the next section, we propose to solve the

dual problem (6.3) using the random coordinate descent method (RCD), and

to solve (6.4) using the alternative projection method (AP), both tailored to

the conic structure. The conic structures make the convergence analysis and

the computations of projections for these algorithms challenging.

Before proceeding to the algorithms, we first provide a relevant geometric

property of the product cone
⊗

r∈[R]Cr, characterized in the following lemma.

This property is essential in establishing the linear convergence of RCD and

AP algorithms.

Lemma 6.1.2. Consider a feasible solution of the problem (y, φ) ∈⊗r∈[R] Cr

and a nonnegative vector φ′ = (φ′r) ∈
⊗

r∈[R] R≥0. Let s be an arbitrary point

in the base polytope of
∑

r∈[R] φ
′
rFr, and let W (1),W (2) be two positive diagonal

matrices. Then, there exists a y′ ∈⊗r∈[R] φ
′
rBr satisfying

∑
r∈[R] y

′
r = s and

‖y− y′‖2
I(W (1)) + ‖φ−φ′‖2 ≤ µ(W (1),W (2))

‖∑
r∈[R]

yr − s‖2
W (2) + ‖φ− φ′‖2

 ,
where

µ(W (1),W (2)) = max

∑
i∈[N]

W
(1)
ii

∑
j∈[N]

1/W
(2)
jj ,

9

4
ρ2
∑
i∈[N]

W
(1)
ii + 1

 , (6.5)

and ρ = maxyr∈Br,∀r∈[R]

√∑
r∈[R] ‖yr‖2

1.

The proof of Lemma 6.1.2 is relegated to Section A.5.1.

6.2 Linearly convergent algorithms for solving the

QDSFM problem

Next, we introduce and analyze the random coordinate descent method

(RCD) for solving the dual problem (6.3), and the alternative projection

method (AP) for solving (6.4). Both methods exploit the separable struc-

ture of the feasible set. It is worth mentioning that our results may be easily

extended to apply to the Douglas-Rachford splitting method, as well as to

78

Algorithm 6.1: The RCD method for Solving (6.3)

0: For all r, initialize y
(0)
r ← 0, φ

(0)
r and k ← 0

1: In iteration k:
2: Uniformly at random pick an r ∈ [R].

3: (y
(k+1)
r , φ

(k+1)
r)← ΠCr(2Wa−∑r′ 6=r y

(k)
r′ ;W−1)

4: Set y
(k+1)
r′ ← y

(k)
r′ for r′ 6= r

accelerated and parallel variants of the RCD method which were used to

solve DSFM problems [19, 20, 70].

We define the projection Π onto a convex cone Cr as follows: for a point

b in RN and a positive diagonal matrix W ′ in RN×N , we set

ΠCr(b;W
′) = arg min

(yr,φr)∈Cr
‖yr − b‖2

W ′ + φ2
r.

Throughout the remainder of this section, we treat the projections as pro-

vided by an oracle. Later in Section 6.3, we provide some efficient methods

for computing the projections.

6.2.1 The randomized coordinate descent algorithm

Consider the dual formulation (6.3). For each coordinate r, optimizing over

the dual variables (yr, φr) is equivalent to computing a projection onto the

cone Cr. This gives rise to the RCD method of Algorithm 6.1.

The objective g(y, φ) described in (6.3) is not strongly convex in general.

However, with some additional work, Lemma 6.1.2 can be used to establish

the weak strong convexity of g(y, φ); this essentially guarantees a linear con-

vergence rate of the RCD algorithm. To proceed, we need some additional

notation. Denote the set of solutions of (6.3) by

Ξ = {(y, φ)|
∑
r∈[R]

yr = 2W (a− x∗), φr = inf
yr∈θBr

θ, ∀r}. (6.6)

This representation is a consequence of the relationship between the optimal

primal and dual solutions stated in Lemma 6.1.1. For convenience, we denote

the optimal value of the objective function of interest over (y, φ) ∈ Ξ by

79

g∗ = g(y, φ), and also define a distance function

d((y, φ),Ξ) =
√

min
(y′,φ′)∈Ξ

‖y − y′‖2
I(W−1) + ‖φ− φ′‖2.

Lemma 6.2.1 (Weak Strong Convexity). Suppose that (y, φ) ∈ ⊗r∈[R] Cr

and that (y∗, φ∗) ∈ Ξ minimizes ‖y − y′‖2
I(W−1) + ‖φ− φ′‖2 over (y′, φ′) ∈ Ξ,

i.e., (y∗, φ∗) is the projection of (y, φ) onto Ξ. Then,

‖
∑
r∈[R]

(yr − y∗r)‖2
W−1 + ‖φ− φ∗‖2 ≥ d2((y, φ),Ξ)

µ(W−1,W−1)
. (6.7)

Lemma 6.2.1 can be proved by applying Lemma 6.1.2 with φ′ = φ∗, s =

2W (a−x∗), W (1),W (2) = W−1 and the definition of y∗. Note that the claim

in (6.7) is significantly weaker than the usual strong convexity condition. We

show that such a condition is sufficient to ensure linear convergence of the

RCD algorithm and provides the results in the following theorem.

Theorem 6.2.2 (Linear Convergence of RCD). Running k iterations of Al-

gorithm 6.1 produces a pair (y(k), φ(k)) that satisfies

E
[
g(y(k), φ(k))− g∗ + d2((y(k), φ(k)),Ξ)

]
≤
[
1− 2

R[1 + µ(W−1,W−1)]

]k [
g(y(0), φ(0))− g∗ + d2((y(0), r(0)),Ξ)

]
.

Theorem 6.2.2 asserts that at most O(Rµ(W−1,W−1) log 1
ε
) iterations are

required to obtain an ε-optimal solution in terms of expectation for the

QDSFM problem. The proofs of Lemma 6.2.1 and Theorem 6.2.2 are post-

poned to Section A.5.2.

6.2.2 The alternative projection algorithm

The AP method can be used to solve the dual problem (6.4), which is of the

form of a best-approximation problem, by alternatively performing projections

between the product cone and a hyperplane. Furthermore, for some incidence

relations, Sr may be a proper subset of [N], which consequently requires the

ith component of yr, i.e., yr,i to be zero if i 6∈ Sr. Enforcing λr,i = 0 for

i 6∈ Sr allows the AP method to avoid redundant computations and have

80

Algorithm 6.2: The AP Method for Solving (6.8)

0: For all r, initialize y
(0)
r ← 0, φ

(0)
r ← 0, and k ← 0

1: In iteration k:

2: α(k+1) ← 2W−1
∑

r y
(k)
r − 4a.

3: For all r ∈ [R]:

4: λ
(k+1)
r,i ← y

(k)
r,i − 1

2
(Ψ−1Wα(k+1))i for i ∈ Sr

5: (y
(k+1)
r , φ

(k+1)
r)← ΠCr(λ

(k+1)
r ; ΨW−1)

better convergence rates. This phenomenon has also been observed for the

DSFM problem in [70]. To avoid redundant computations, we use the AP

approach to solve the following dual problem:

min
y,φ,Λ

∑
r∈[R]

[
‖yr − λr‖2

ΨW−1 + φ2
r

]
, (6.8)

s.t. (y, φ) ∈ C,
∑
r∈[R]

λr = 2Wa, and λr,i = 0 for all i 6∈ Sr.

Here, Ψ ∈ RN×N is a positive diagonal matrix in which Ψii = |{r ∈ [R]|i ∈
Sr}| equals the number of submodular functions that i is incident to.

Lemma 6.2.3. Problem (6.8) is equivalent to problem (6.3).

The proof of Lemma 6.2.3 is presented in Section A.5.3. The AP method

for solving (6.8) is listed in Algorithm 6.2. Observe that Step 5 is a projection

onto cones defined based on the positive diagonal matrix equal to ΨW−1

which differs from the one used in the RCD method. Note that compared to

the RCD algorithm, AP requires one to compute projections onto all cones

Cr in each iteration. Thus, in most cases, AP has larger computation cost

than the RCD algorithm. On the other hand, AP naturally lends itself to

parallelization since the projections can be decoupled and implemented very

efficiently.

Before going on, we first prove the uniqueness of optimal φ in the following

lemma.

Lemma 6.2.4. The optimal value of φ to problem (6.8) is unique.

Proof. We know (6.8) is equivalent to (6.3). Suppose there are two op-

timal solutions (ȳ, φ̄) and (ỹ, φ̃). As the optimal x∗ is unique,
∑

r∈[R] ȳr =∑
r∈[R] ỹr = 2W (a−x∗) =

∑
r∈[R]

ȳr+ỹr
2

. If φ̄ 6= φ̃, we have
∑

r∈[R]

(
φ̄r+φ̃r

2

)2

<

81

∑
r∈[R] φ̄

2
r =

∑
r∈[R] φ̃

2
r, which makes g(ȳ+ỹ

2
, φ̄+φ̃

2
) smaller than g(ȳ, φ̄) =

g(ỹ, φ̃) and thus causes contradiction.

To determine the convergence rate of the AP method, we adapt the re-

sult of [80] on the convergence rate of APs between two convex bodies. In

our setting, the two convex bodies of interest are the the cone C and the

hyperplane

Z = {(y, φ)|
∑
r∈[R]

yr = 2W (a− x∗), φr = φ∗r, yr,i = 0,∀ i 6∈ Sr},

where φ∗ = (φ∗r)r∈[R] is the unique optimal solution of (6.8).

Lemma 6.2.5 ([80]). Let Ξ be as defined in (6.6). In addition, define the

distance function

dΨW−1((y, φ),Ξ) =
√

min
(y′,φ′)∈Ξ

‖y − y′‖2
I(ΨW−1) + ‖φ− φ′‖2.

In the k-th iteration of Algorithm 6.5, the pair (y(k), φ(k)) satisfies

dΨW−1((y(k), φ(k)),Ξ) ≤ 2dΨW−1((y(0), φ(0)),Ξ)(1− 1

κ2
∗
)k,

where

κ∗ = sup
(y,φ)∈C∪Z/Ξ

dΨW−1((y, φ),Ξ)

max{dΨW−1((y, φ), C), dΨW−1((y, φ),Z)} .

The next Lemma establishes a finite upper bound on κ∗. This guaratees

linear convergence rates for the AP algorithm.

Lemma 6.2.6. One has κ2
∗ ≤ 1 + µ(ΨW−1,W−1).

The proof of Lemma 6.2.6 may be found in Section A.5.3.

Lemma 6.2.6 implies running the AP algorithm withO(µ(ΨW−1,W−1) log 1
ε
)

iterations guarantees that dΨW−1((y(k), φ(k)),Ξ) ≤ ε. Moreover, as Ψii ≤ R,

the iteration complexity of the AP method is smaller than that of the RCD

algorithm. However, each iteration of the AP solver requires performing pro-

jections on all cones Cr, r ∈ [R], while each iteration of the RCD method re-

quires computing only one projection onto a single cone. Other methods used

as generic QDSFM solvers in semi-supervised learning on hypergraphs [9]

82

such as the DR and primal-dual hybrid gradient descent (PDHG) [100], also

require computing a total of R projections during each iteration. Thus, from

the perspective of iteration cost, RCD is significantly more efficient, espe-

cially when R is large and computing Π(·) is costly. This phenomenon is also

observed in practice, as illustrated by the experiments in Section 6.5.1.

The following corollary summarizes the previous discussion and will be

used in our subsequent derivations in Section 6.4.1.

Corollary 6.2.7. Suppose that W = βD, where β is a hyper-parameter, and

D is a diagonal matrix such that

Dii =
∑

r∈[R]: i∈Sr

max
S⊆V

[Fr(S)]2.

Recall that Ψii = |{r ∈ [R]|i ∈ Sr}|. Then, Algorithm 6.1 (RCD) requires an

expected number of

O(N2Rmax{1, 9β−1} max
i,j∈[N]

Dii

Djj

log
1

ε
)

iterations to return a solution (y, φ) that satisfies d((y, φ),Ξ) ≤ ε. Algorithm

6.2 (AP) requires a number of

O(N2Rmax{1, 9β−1} max
i,j∈[N]

Ψjj

R

Dii

Djj

log
1

ε
)

iterations to return a solution (y, φ) that satisfies dΨW−1((y, φ),Ξ) ≤ ε.

The proof of Corollary 6.2.7 is provided in Section A.5.4. Note that the

term N2R also appears in the expression for the complexity of the RCD

method and the AP method for solving the DSFM problem [83]. The term

max{1, 9β−1} implies that whenever β is small, the convergence rate is slow.

In Section 6.4.1, we provide a case-specific analysis showing that β is related

to the mixing time of and underlying Markov process in the PageRank ap-

plication. Depending on the application domain, other interpretations of β

exist, but will not be discussed here to avoid topical clutter. Finally, we

point out that the term maxi,j∈[N]
Dii
Djj

in the expression for the RCD method

and the term maxi,j∈[N]
Ψjj
R

Dii
Djj

for the AP method arise from degree-based

normalization.

83

6.3 Computing the conic projections

In this section, we describe efficient routines for computing a projection onto

the conic set ΠCr(·). As the procedure works for all values of r ∈ [R], we drop

the subscript r for simplicity of notation. Let C = {(y, φ)|y ∈ φB, φ ≥ 0},
where B denotes the base polytope of the submodular function F . Recall

that the conic projection onto C is defined as

ΠC(a; W̃) = arg min
(y,φ)

h(y, φ) , ‖y − a‖2
W̃

+ φ2 s.t. (y, φ) ∈ C. (6.9)

Let h∗ and (y∗, φ∗) be the optimal value of the objective function and the

optimal solution, respectively. When performing projections, one only needs

to consider the variables incident to F , and set all other variables to zero.

For simplicity, we assume that all variables in [N] are incident to F . The

results can easily extend to the case that the incidences are of a general form.

Unlike the QDSFM problem, solving the DSFM involves the computation

of projections onto the base polytopes of submodular functions. Two algo-

rithms, the Frank-Wolfe (FW) method [24] and the Fujishige-Wolfe minimum

norm algorithm (MNP) [101], are used for this purpose. Both methods as-

sume inexpensive linear minimization oracles on polytopes and guarantee a

1/k-convergence rate. The MNP algorithm is more sophisticated yet empir-

ically more efficient. Nonetheless, neither of these methods can be applied

directly to conic projections. To this end, we modify these two methods by

adjusting them to the conic structure in (6.9) and show that they still achieve

a 1/k-convergence rate. We refer to the procedures as the conic FW method

and the conic MNP method, respectively.

6.3.1 The conic MNP algorithm

Detailed steps of the conic MNP method are given in Algorithm 6.3. The

conic MNP algorithm keeps track of an active set S = {q1, q2, ...} and searches

for the best solution in its conic hull. Denote the cone of an active set S by

cone(S) = {∑qi∈S αiqi|αi ≥ 0} and its linear set by lin(S) = {∑qi∈S αiqi|αi ∈
R}. Similar to the original MNP algorithm, Algorithm 6.3 also includes

two level-loops: the MAJOR and MINOR loop. In the MAJOR loop, one

greedily adds a new active point q(k) to the set S obtained from the linear

84

Algorithm 6.3: The Conic MNP Method for Solving (6.9)

Input: W̃ , a, B and a small positive constant δ.

Maintain φ(k) =
∑

qi∈S(k) λ
(k)
i

Choose an arbitrary q1 ∈ B.

Set S(0) ← {q1}, λ(0)
1 ←

〈a,q1〉W̃
1+‖q1‖2

W̃

, y(0) ← λ
(0)
1 q1, k ← 0

1. Iteratively execute (MAJOR LOOP):
2. q(k) ← arg minq∈B〈∇yh(y(k), φ(k)), q〉W̃
3. If 〈y(k) − a, q(k)〉W̃ + φ(k) ≥ −δ, break;
4. Else S(k) ← S(k) ∪ {q(k)}.
5. Iteratively execute (MINOR LOOP):

6. α← arg minα ‖
∑

q
(k)
i ∈S(k) αiq

(k)
i − a‖2

W̃
+ (
∑

q
(k)
i ∈S

αi)
2,

7. z(k) ←∑
q
(k)
i ∈S

αiq
(k)
i

8. If αi ≥ 0 for all i, break;

9. Else θ = mini:αi<0 λ
(k)
i /(λ

(k)
i − αi), λ

(k+1)
i ← θαi + (1− θ)λ(k)

i ,
10. y(k+1) ← θz(k) + (1− θ)y(k),
11. S(k+1) ← {i : λ(k+1) > 0}, k ← k + 1
12. y(k+1) ← z(k), λ(k+1) ← α, S(k+1) ← {i : λ(k+1) > 0}, k ← k + 1

minimization oracle w.r.t. the base polytope (Step 2). By the end of the

MAJOR loop, we obtain y(k+1) that minimizes h(y, φ) over cone(S) (Step

3-12). The MINOR loop is activated when lin(S) contains some point z that

guarantees a smaller value of the objective function than the optimal point

in cone(S), provided that some active points from S may be removed. It is

important to point out that compared to the original MNP method, Steps 2

and 6 as well as the termination Step 3 are specialized for the conic structure.

Compared to the linearly convergent Away-steps Frank-Wolfe algorithm [102],

the size of the active set S in the (conic) MNP algorithm is always bounded

by R rather than the number of extreme points of the polytope. Furthermore,

compared to fully corrective non-negative matching pursuit [103], the (conic)

MNP method does not require solving an inner loop nonnegative quadratic

program. In practice, the MNP method exhibits empirical performance su-

perior to that of alternative Frank-Wolfe variants; corresponding convergence

rates have been recently established in [85].

Theorem 6.3.1 below shows that the conic MNP algorithm preserves the

1/k-convergence rate of the original MNP method.

Theorem 6.3.1. Let B be an arbitrary polytope in RN and let C = {(y, φ)|y ∈
φB, φ ≥ 0} be the cone induced by the polytope. For some positive diagonal

85

Algorithm 6.4: The Conic FW Algorithm for Solving (6.9)

Input: W̃ , a, B and a small positive δ
Initialize y(0) ← 0, φ(0) ← 0 and k ← 0
1. Iteratively execute the following steps:
2. q(k) ← arg minq∈B〈∇yh(y(k), φ(k)), q〉
3. If 〈y(k) − a, q(k)〉W̃ + φ(k) ≥ −δ, break.

4. Else: (γ
(k)
1 , γ

(k)
2)← arg minγ1≥0,γ2≥0 h(γ1y

(k) + γ2q
(k), γ

(k)
1 φ(k) + γ

(k)
2)

5. y(k+1) ← γ
(k)
1 y(k) + γ

(k)
2 q(k), φ(k+1) ← γ

(k)
1 φ(k) + γ

(k)
2 , k ← k + 1.

matrix W̃ , define Q = maxq∈B ‖q‖W̃ . Algorithm 6.3 produces a sequence

of pairs (y(k), φ(k))k=1,2,... such that h(y(k), φ(k)) decreases monotonically. It

terminates when k = O(N‖a‖W̃ max{Q2, 1}/δ), with

h(y(k), φ(k)) ≤ h∗ + δ‖a‖W̃ .

Note that the result is essentially independent of the submodularity as-

sumption and applies to general cones induced by arbitrary polytopes. Prov-

ing Theorem 6.3.1 requires a careful modification of the arguments in [85] to

handle the conic structure. We provide a detailed proof in Section A.5.5.

6.3.2 The conic Frank-Wolfe algorithm

We now introduce the conic FW method, which is summarized in Algorithm

6.4. Note that Steps 2, 4 are specialized for cones. The main difference

between the FW and MNP methods is the size of active set: FW only main-

tains two active points, while MNP may maintain as many as N points. A

similar algorithm was developed in [104] for solving a more general objec-

tive. For completeness, we establish a 1/k-convergence rate for the conic

FW algorithm in Theorem 6.3.2.

Theorem 6.3.2. Let B be an arbitrary polytope in RN and let C = {(y, φ)|y ∈
φB, φ ≥ 0} denote its corresponding cone. For some positive diagonal ma-

trix W̃ , define Q = maxq∈B ‖q‖W̃ . Then, the point (y(k), φ(k)) generated by

Algorithm 6.4 satisfies

h(y(k), φ(k)) ≤ h∗ +
2‖a‖2

W̃
Q2

k + 2
.

The proof of Theorem 6.3.2 is deferred to Section A.5.6.

86

6.3.3 Time complexity of the conic MNP and FW methods

Let EO stand for the time needed to query the function value of F (·). The

linear program in Step 2 of both the MNP and FW algorithms requires

O(N logN+N×EO) operations if implemented as a greedy method. Step 6

of the MNP method requires solving a quadratic program with no constraints,

and the solution may be obtained in closed form using O(N |S|2) operations.

The remaining operations in the MNP method introduce a O(N) complex-

ity term. Hence, the execution of each MAJOR or MINOR loop requires

O(N logN + N × EO + N |S|2) operations. In the FW method, the opti-

mization problem in Step 4 is relatively simple, since it reduces to solving

a nonnegative quadratic program with only two variables and consequently

introduces a complexity term O(N). Therefore, the complexity of the FW

algorithm is dominated by Step 2, which requires O(N logN + N × EO)

operations.

Although the conic FW is computationally efficient in each iteration, the

conic MNP method empirically requires fewer iterations in order to achieve

a high-quality approximation (see, for example, the experimental results in

Section 6.3.4). Moreover, the conic MNP method can compute exact pro-

jections in finite time, thereby paralleling a similar property of the MNP

method pertaining to polytopes [101]. Because of the conic structure used in

our setting, the optimal projections may be expressed as linear combinations

of the extreme points of the polytopes. As the number of such combina-

tions is finite, the conic MNP can find the exact projection in finitely many

iterations. Note that for the conic FW method, this may not be the case.

This is further evidenced from the numerical experiments in Section 6.3.4,

where using the conic MNP method as the projection routine leads to better

accuracy than using the conic FW method.

6.3.4 Numerical illustration: convergence of QRCD-MNP and
QRCD-FW

We next illustrate the convergence behaviors of the RCD algorithm when

applying the conic MNP method and the conic FW method as subroutine

for computing the conic projection, referred to as QRCD-MNP and QRCD-

FW, respectively. We generate a synthetic QDSFM problem (6.1) as follows.

87

-2 0 2 4 6 8

cputime(s)

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g

1
0
(g

a
p
)

θ = 0.25

QRCDM-MNP

-1 0 1 2 3 4 5

cputime(s)

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g

1
0
(g

a
p
)

θ = 0.5

QRCDM-MNP

-1 0 1 2 3 4

cputime(s)

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g

1
0
(g

a
p
)

θ = 1

QRCDM-MNP

-50 0 50 100 150

cputime(s)

-5

-4

-3

-2

-1

0

1

2

3

lo
g

1
0
(g

a
p
)

θ = 0.25

QRCDM-FW

-20 0 20 40 60 80 100 120

cputime(s)

-5

-4

-3

-2

-1

0

1

2

3

lo
g

1
0
(g

a
p
)

θ = 0.5

QRCDM-FW

-20 0 20 40 60 80

cputime(s)

-5

-4

-3

-2

-1

0

1

2

3

lo
g

1
0
(g

a
p

)

θ = 1

QRCDM-FW

Figure 6.1: Convergence of QRCD-MNP and QRCD-FW for general
submodular functions.

We fix N = 100, R = 100, and Wii = 1, for all i ∈ [N]. We generate

each incidence set Sr by choosing uniformly at random a subset of [N] of

cardinality 10, and set the entries of a to be iid standard Gaussian. We

consider the following submodular functions: for r ∈ [R], S ⊆ Sr

Fr(S) =
min{|S|, |Sr/S|}θ

(|Sr|/2)θ
, θ ∈ {0.25, 0.5, 1}.

The number of RCD iterations is set to 300R = 3 × 104. The convergence

results are shown in Figure 6.1. QRCD-FW requires longer CPU-time to

converge than QRCD-MNP. Moreover, QRCD-FW cannot achieve high ac-

curacy because of the inaccurate inner-loop projections.

6.4 Applications to PageRank

We now introduce one important application of the QDSFM problem —

PageRank (PR). Our treatment of the PR process relies on diffusion processes

over hypergraphs [105, 23]. We demonstrate that the underlying PR vector

can be efficiently computed via our proposed QDSFM solvers. We also show

that the newly introduced PR retains important properties of the standard

PR over graphs, pertaining to mixing and local partitioning [106].

88

6.4.1 Background: PageRank(PR)

PR is a well-known algorithm over graphs, first introduced in the context

of webpage search [21]. Given a graph G = (V,E), with V = [N] and E

denoting the edge set over V , let A and D denote the adjacency matrix and

diagonal degree matrix of G, respectively. PR essentially reduces to finding

a fixed point p ∈ RN via the iterative procedure

p(t+1) = αp(0) + (1− α)AD−1p(t),

where p(0) ∈ RN is a fixed vector and α ∈ (0, 1). By using different explo-

ration vectors p(0), PR can be adapted to different graph-based applications.

For example, for ranking of Web pages [21], p(0) may be a uniformly at ran-

dom chosen vertex. For finding local graph partitioning around a vertex

i [106], p(0) is typically set to ei, i.e., a zero-one vector with a single 1 in its

i-th component.

It is easy to verify that p is a solution to the problem

min
p

α

1− α‖p− p
(0)‖2

D−1 + (D−1p)T (D − A)(D−1p) = ‖x− a‖2
W + 〈x, L(x)〉,

(6.10)

where x = D−1p, a = D−1p(0), W = α
1−αD and L = D − A.

Recent work illuminating the role of high-order functional relations among

vertices in networks [39, 71, 107] brought forward the need to study PR-type

of problems for hypergraphs [108, 109].1 There exist several definitions of

the PR algorithm for hypergraphs. For example, the approach in [108] re-

lies on what is termed a multilinear PR [110] and is limited to the setting

of uniform hypergraphs, in which all hyperedges have the same cardinality.

In addition, computing a multilinear PR requires tensor multiplication and

has complexity exponential in the size of the hyperedges. The PR formula-

tion in [109] requires one to first project hypergraphs onto graphs and then

run standard graph-based PR. The projection step usually causes large dis-

tortions when the hyperedges are large and leads to low-quality hypergraph

partitioning [9, 111].

Using equation (6.10), we define a new formulation for PR on hypergraphs

1Hypergraphs are natural extensions of graphs in which edges are replaced by hyper-
edges, representing subsets of vertices in V of size ≥ 2.

89

Table 6.1: The term 〈x, L(x)〉 for different combinatorial structures. In the
third column, whenever the stated conditions are not satisfied, it is
assumed that Fr = 0. For directed hypergraphs, Hr and Tr are subsets of
Sr which we subsequently term the head and the tail set. For Hr = Tr = Sr,
one recovers the setting for undirected hypergraphs.

A single component of
〈x, L(x)〉

The combinatorial
structure

The submodular function

wr(xi − xj)2, Sr = {i, j} A graph [98, 13] Fr(S) =
√
wij if

|S ∩ {i, j}| = 1
wr maxi,j∈Sr (xi − xj)2 A hypergraph [9] Fr(S) =

√
wr if

|S ∩ Sr| ∈ [1, |Sr| − 1]
wr max

(i,j)∈Hr×Tr

(xi − xj)2+ A directed hypergraph [99] Fr(S) =
√
wr if

|S ∩Hr| ≥ 1,
|([N]/S) ∩ Tr| ≥ 1

General [fr(x)]2 A submodular
hypergraph [111]

Any symmetric
submodular function

that leverages nonlinear Laplacian operators L(·) for (un)directed hyper-

graphs [105, 23] and submodular hypergraphs [111, 112]. The new PR may

be applied to both uniform and non-uniform hypergraphs with arbitrarily

large hyperedges. The stationary point is the solution to a QDSFM problem,

where the term 〈x, L(x)〉 in (6.10) is represented by a sum of Lovás extensions

of submodular functions defined over hyperedges (see Table 6.1). During the

review of this article, many other interesting works based on this hypergraph

Laplacian operator have appeared: [113] looked into polynomial-time algo-

rithms to compute the inverse of this Laplacian operator; [114] considered

the derived heat-kernel PageRank; [115] attempted to sparsify hypergraphs

while keeping the spectrum of this Laplacian operator.

To demonstrate the utility of this particular form of PageRank, we show

that the PR vector obtained as a solution of the QDSFM can be used to

find a cut of a directed hypergraph (as well as undirected hypergraph) with

small conductance, which is an important invariant for local partitioning and

community detection [108, 109]. The results essentially generalize the mixing

results for PR over graphs derived in [106] and [116].

Our main technical contribution is handling new technical challenges that

arise due to the non-linearity of the operators involved. In what follows, we

mainly focus on directed hypergraphs. Tighter and more general results may

be obtained for submodular hypergraphs [111, 112], which will be left for the

future study.

90

6.4.2 Terminology: boundary, volume, conductance

In Chapter 2, we have the definition for general submodular hypergraphs.

Here, we specify our attention to directed hypergraphs. To be more clear,

we reintroduce the following notations. Let G = (V,E) be a hypergraph

with V = [N] and hyperedge in E equated with the incidence sets {Sr}r∈[R].

More precisely, each hyperedge represents an incidence set Sr associated with

a triplet (wr, Hr, Tr), where wr is a scalar weight and Hr and Tr ⊆ Sr are

the head and tail sets defined in Table 6.1. The pair (Hr, Tr) defines a

submodular function Fr with incidence set Sr according to Fr(S) = 1 if

|S ∩ Hr| ≥ 1 and |S̄ ∩ Tr| ≥ 1 (where S̄ stands for the complement of

S), and Fr(S) = 0 otherwise. The corresponding Lovász extension reads

as fr(x) = max(i,j)∈Hr×Tr(xi − xj). If Sr contains only two vertices for all

values r ∈ [R], the hypergraph clearly reduces to a graph; and similarly, if

Hr = Tr = Sr, directed hypergraphs reduce to undirected hypergraphs. We

also define the degree of a vertex i as

di =
∑
r:i∈Sr

wr,

and let D denote the diagonal matrix of degree values. The volume of a set

S ⊆ V is defined as

vol(S) =
∑
i∈S

di.

Furthermore, let m =
∑

i∈V di = vol(V) and define the boundary of a set S

and its volume as

∂S = {r ∈ [R]|S ∩Hr 6= ∅, S̄ ∩ Tr 6= ∅}, vol(∂S) =
∑
r∈∂S

wr =
∑
r∈[R]

wrFr(S).

Using the boundary and volume, we also define the conductance of the set S

as

Φ(S) =
vol(∂S)

min{vol(S), vol(S̄)} .

The boundary, volume and conductance are all standard and well-studied

graph-theoretic concepts, but generalized above to accommodate hypergraphs.

91

Additionally, we also make use of a distribution πS over V , (πS)i = di
vol(S)

.

6.4.3 The PageRank process as QDSFM optimization

Next, we formally define the PR process for directed hypergraphs and show

how it relates to the QDSFM problem. We borrow the definition of a diffusion

process (DP) over directed hypergraphs proposed in [105, 23] to describe our

PageRank (PR) process. To this end, we first need to define a Markov

operator as follows.

Suppose that p ∈ RN is a potential over [N] and let x = D−1p. For all

hyperedges Sr, we let S↓r (x) = arg mini∈Tr xi and S↑r (x) = arg maxj∈Hr xj.

1. For each hyperedge Sr, and for each pair of vertices (i, j) ∈ S↑r (x) ×
S↓r (x) that satisfy xi > xj, we introduce a positive scalar a

(ij)
r such that∑

(i,j)∈S↑r (x)×S↓r (x) a
(ij)
r = wr. For pairs of vertices (i, j) not satisfying the

above constraint, we set a
(ij)
r = 0.

2. Using the above described pairwise weights, we create a symmetric

matrix A such that Aij =
∑

r∈[R] a
(ij)
r and Aii = di −

∑
i,j∈V,j 6=iAij.

Then, the Markov operator M(p) based on A is defined according to

M(p) = Ax = AD−1p.

The Markov operator M(p) is closely related to the Lovász extension fr,

which may be seen as follows. Let ∇fr(x) be the subdifferential set of fr at x.

We once again recall that as Fr is submodular, fr(x) = arg maxy∈Br〈y, x〉 [28].

This gives rise to the following result.

Lemma 6.4.1. For any p ∈ RN and x = D−1p, it holds that p −M(p) ∈∑
r∈[R]wrfr(x)∇fr(x).

92

Proof. Consider a vertex i ∈ V . Then,

(p−M(p))i

= pi − Aii
pi
di
−

∑
j:∈V,j 6=i

Aij
pj
dj

=
∑

j:∈V,j 6=i

Aij(xi − xj) =
∑
r∈[R]

∑
j:∈V,j 6=i

a(ij)
r (xi − xj)

1)
=

∑
r:∈[R],i∈S↑r

wrfr(x)
∑
j:∈S↓r

a(ij)
r /wr +

∑
r:∈[R],i∈S↓r

wrfr(x)
∑
j:∈S↑r

(−a(ij)
r)/wr,

where 1) holds due to the definitions of a
(ij)
r and fr(x). It only remains to

show that for a r ∈ [R], the vector v

vi =


∑

j:∈S↓r a
(ij)
r /wr i ∈ S↑r ,

−∑j:∈S↑r a
(ij)
r /wr i ∈ S↓r ,

0 otherwise

satisfies v ∈ ∇fr(x). Since
∑

(i,j)∈S↑r×S↓r a
(ij)
r = wr and a

(ij)
r ≥ 0, we know

that v ∈ Br. Moreover, since 〈v, x〉 = fr(x), the claim clearly holds.

The statement of Lemma 6.4.1 describes a definition of a Laplacian oper-

ator for submodular hypergraphs consistent with previous definitions [111].

We write the underlying Laplacian operator as L(x) = (D−A)x = p−M(p).

When p = πV , the components of x are equal and hence M(p) = AD−1p =

DD−1p = p. Therefore, πV may be viewed as an analogue of a stationary

distribution.

Given an initial potential p0 ∈ RN and an α ∈ (0, 1], the PR process is

described by the following ordinary differential equation:

The PR process
dpt
dt

= α(p0 − pt) + (1− α)(M(pt)− pt).

The choice of α = 0 reduces the PR process to the DP defined in [105, 23].

Tracking the PR process at every time point t is as difficult as tracking DP,

which in turn requires solving a densest subset problem [105, 23]. However,

we only need to examine and evaluate the stationary point which corresponds

93

to the PR vector. The PR vector pr(α, p0) satisfies the equation

α(p0 − pr(α, p0)) + (1− α)(M(pr(α, p0))− pr(α, p0)) = 0. (6.11)

From Lemma 6.4.1, we know that pr(α, p0) can be obtained by solving a

QDSFM. Let xpr = D−1pr(α, p0). Then

α(p0 −Dxpr)− (1− α)
∑
r∈[R]

wrfr(xpr)∇fr(xpr) 3 0

⇔ xpr = arg min
x
‖x− x0‖2

W +
∑
r∈[R]

[f ′r(x)]2, (6.12)

where x0 = D−1p0,W = α
1−αD and f ′r =

√
wrfr.

6.4.4 Complexity of computing PageRank over directed
hypergraphs

We now analyze the computation complexity of computing PageRank over di-

rected hypergraphs using QSDFM solvers. First, due to the specific structure

of the Lovász extension f ′r in (6.12), we devise an algorithm of complexity

O(|Sr| log |Sr|) that exactly computes the required projections onto the in-

duced cones. This projection algorithm is much more efficient than the conic

FW and MNP methods that apply to general polytopes. We focus on pro-

jections with respect to one particular value r; since the scaling wr does not

affect the analysis, we henceforth omit the subscript r and the superscript ′

and simply use f instead of f ′r.

The key idea is to revert the projection ΠC(a; W̃) back to its primal form.

In the primal setting, optimization becomes straightforward and only requires

careful evaluation of the gradient values. First, following a similar strategy

as described in Lemma 6.1.1, it is easy to show that

min
z
‖z − b‖2

W + [f(z)]2

is the dual of the problem (6.9), where W = W̃−1, b = 1
2
W−1a, and f is

the Lovász extension corresponding to the base polytope B. Then, one has

y = a− 2Wz, φ = 2〈y, z〉W−1 .

Next, recall that for a directed hyperedge, we introduced head and tail

94

Algorithm 6.5: Projection for a Directed Hyperedge
Input: W , b, H, T
1. Sort {bi}i∈H and {bj}j∈T .
2. Initialize γ ← maxi∈H bi and δ ← minj∈T bj.
3. If γ ≤ δ, return z = b.
4. Iteratively execute:
5. wH ←

∑
i∈SH(γ) Wv, wT ←

∑
j∈ST (δ) Wv

6. γ1 ← maxi∈H/SH(γ) bv, δ1 ← δ + (γ − γ1)wH/wT
7. δ2 ← minj∈T/ST (δ) bv, γ2 ← γ − (δ2 − δ)wT/wH
8. k∗ ← arg mink∈{1,2} δk
9. If γk∗ ≤ δk∗ or 4γk∗ ≤ 0, break
10. (γ, δ)← (γk∗ , δk∗)

11. (γ, δ)← (wT , wH) 4γ
wTwH+wT+wH

12. Set zi to γ, if i ∈ SH(γ), to δ, if i ∈ ST (δ), and to bi otherwise.

sets H,T , respectively, and f(z) = maxi∈H zi − minj∈T zj. Clearly, when

H, T both equal to the corresponding incidence set, the directed hypergraph

reduces to an undirected hypergraph. To solve this optimization problem,

define two intermediate variables γ = maxi∈H zi and δ = minj∈T zj. Denote

the derivates with respect to γ and δ as4γ and4δ, respectively. The optimal

values of γ and δ satisfy

4γ = γ − δ +
∑

i∈SH(γ)

Wi(γ − bi), 4δ = δ − γ +
∑

j∈ST (δ)

Wj(δ − bj),

where SH(γ) = {i|i ∈ H, bi ≥ γ} and ST (δ) = {j|j ∈ T, bj ≤ δ}. The optimal

values of γ and δ are required to simultaneously satisfy 4γ = 0 and 4δ = 0.

Algorithm 6.5 can be used to find such values of γ and δ. The “search” for

(γ, δ) starts from (maxi∈H bi,minj∈T bj), and one gradually decreases γ and

increases δ while keeping 4γ = −4δ (see Steps 5-10 in Algorithm 6.5). The

complexity of Algorithm 6.5 is dominated by the sorting step, which requires

O(|Sr| log |Sr|) operations, as wH , wT , 4γ, and 4δ can all be efficiently

tracked within the inner loops.

Combining the projection method in Algorithm 6.5 and Corollary 6.2.7

with parameter choice β = α
1−α , we arrive at the following result summariz-

ing the overall complexity of running the PageRank process on (un)directed

hypergraphs.

Corollary 6.4.2. The PageRank problem on (un)directed hypergraphs can be

95

obtained by solving (6.12). A combination of Algorithm 6.1 (RCD) and Algo-

rithm 6.5 returns an ε-optimal solution in expectation with total computation

complexity:

O

N2 max

{
1, 9

1− α
α

}
max
i,j∈[N]

Dii

Djj

∑
r∈[R]

|Sr| log |Sr| log
1

ε

 .

A combination of Algorithm 6.2 (AP) and Algorithm 6.5 returns an ε-optimal

solution with total computation complexity:

O

N2 max

{
1, 9

1− α
α

}
max
i,j∈[N]

ΨjjDii

Djj

∑
r∈[R]

|Sr| log |Sr| log
1

ε

 .

6.4.5 Analysis of partitions based on PageRank

We are now ready to analyze hypergraph partitioning procedures based on

our definition of PageRank. We first prove that our version of PageRank,

similarly to the standard PageRank over graphs [106], satisfies the mixing

result derived based on Lováz-Simonovits curves [117]. This result may be

further used to prove that Personalized PageRank leads to partitions with

small conductance.2 The main parts of our proof are inspired by Andersen’s

proof for PageRank over graphs [106]. The novelty of our approach is that

we need several specialized steps to handle the nonlinearity of the Markov

operator M(·), as in the standard graph setting the Markov operator is linear.

We postpone the proofs of all our results to Section A.5.7, but introduce all

relevant concepts and terminology in what follows.

First, we define sweep cuts that are used to partition hypergraphs based

on a distribution p. The sweep cut based on a given potential vector p ∈ RN

is used to partition the hypergraph. Recall that x = D−1p and sort the

components of x so that

xi1 ≥ xi2 ≥ · · · ≥ xiN . (6.13)

2Personalized PageRank is a PR process with initial distribution p0 = 1i, for some
vertex i ∈ V .

96

Let Spj = {xi1 , xi2 , ..., xiN} and evaluate

j∗ = arg min
j∈[N]

Φ(Spj).

Then, (Spj∗ , S̄pj∗) is what we refer to as the sweep cut used for partitioning

the hypergraph. Moreover, let Φp = Φ(Spj∗). We are now ready to prove a

mixing result for the PR process in terms of Φpr(α,p0).

Second, we introduce the Lováz-Simonovits curve to characterize the dis-

tribution of a potential. Given a potential vector p ∈ RN and x = D−1p,

suppose that the order of the components in x follows equation (6.13). Let

vol(Sp0) = 0. Define a piecewise linear function Ip(·) : [0,m] → [0, 1] accord-

ing to

Ip(z) = p(Spj−1) +
z − vol(Spj−1)

dvj
pvj , for vol(Spj−1) ≤ k ≤ vol(Spj), j ∈ [N].

It is easy to check that Ip(z) is continuous and concave in z. Moreover, for

any set S ⊆ [N], we have p(S) ≤ Ip(vol(S)). We further write Vp = {j :

xij > xij+1
} and refer to {vol(Spj)}j∈Vp as the (exact) break points of Ip.

The following Lemma establishes an upper bound on the break points.

Lemma 6.4.3. Let p = pr(α, p0), x = D−1p and j ∈ Vp. Then,

Ip(vol(Spj)) ≤ α

2− αp0(Spj)

+
1− α
2− α [Ip(vol(Spj)− vol(∂Spj)) + Ip(vol(Spj) + vol(∂Spj)].

Furthermore, for k ∈ [0,m],

Ip(k) ≤ p0(k) ≤ Ip0(k).

Remark 6.4.1. In comparison with the undirected graph case (Lemma 5 [106]),

where the result holds for arbitrary S ⊆ V , our claim is true only for Spj for

which j ∈ Vp. However, this result suffices to establish all relevant PR results.

Using the upper bound on the break points in Ip, we can now construct a

curve that uniformly bounds Ip using Φp.

Theorem 6.4.4. Let p = pr(α, p0) be the previously defined PR vector, and

let Φp be the minimal conductance achieved by a sweep cut. For any integer

97

t ≥ 0 and any k ∈ [0,m], the following bound holds:

Ip(k) ≤ k

m
+

α

2− αt+

√
min{k,m− k}
mini:(p0)i>0 di

(
1− Φ2

p

8

)t
.

For graphs [106], Theorem 6.4.4 may be used to characterize the graph

partitioning property of sweep cuts induced by a personalized PageRank

vector. Similarly, for general directed hypergraphs, we establish a similar

result in Theorem 6.4.5.

Theorem 6.4.5. Let S be a set of vertices such that vol(S) ≤ 1
2
M and

Φ(S) ≤ α
c
, for some constants α, c. If there exists a distribution P for sam-

pling vertices v ∈ S such that Ei∼P [pr(α, 1i)(S̄)] ≤ c
8
pr(α, πS)(S̄), then with

probability at least 1
2
,

Φpr(α,1i) = O(

√
α log

vol(S)

di
),

where i is sampled according to P .

Remark 6.4.2. Note that in Theorem 6.4.5, we require that the sampling

distribution P satisfy Ei∼P [pr(α, 1i)(S̄)] ≤ c
8
pr(α, πS)(S̄). For graphs, when

we sample a vertex i with probability proportional to its degree di, this con-

dition is naturally satisfied, with c = 8. However, for general (un)directed

hypergraphs, the sampling procedure is non-trivial and harder to handle due

to the non-linearity of the random-walk operator M(·). We relegate a more

in-depth study of this topic as a future direction.

6.5 Applications to semi-supervised learning

Another important application of QDSFM is semi-supervised learning (SSL).

SSL is a learning paradigm that allows one to utilize the underlying structure

or distribution of unlabeled samples whenever the information provided by

labeled samples is insufficient for learning an inductive predictor [118, 119].

A standard setup for a K-class transductive learner is as follows: given N

data points {zi}i∈[N], along with labels for the first l (� N) samples {yi|yi ∈
[K] }i∈[l], the learner is asked to infer the labels of all the remaining data

98

points i ∈ [N]/[l]. The widely-used SSL problem with least square loss

requires one to solve K regularized problems. For each class k ∈ [K], one

sets the scores of data points within the class to

x̂(k) = arg min
x(k)

β‖x(k) − a(k)‖2 + Ω(x(k)),

where a(k) describes the information provided by the known labels, i.e.,

a
(k)
i = 1 if yi = k, and 0 otherwise, β denotes a hyperparameter and Ω

is a smoothness regularizer. The labels of the data points are estimated as

ŷi = arg max
k
{x̂(k)

i }.

In typical graph and hypergraph learning problems, Ω is chosen to be a

Laplacian regularizer constructed using {zi}i∈[N]; it is this regularization

term that ties the above learning problems to PageRank (again, refer to Ta-

ble 6.1). With Laplacian regularization, one has that each edge/hyperedge

corresponds to one functional component in the QDSFM problem. The vari-

ables themselves may be normalized with respect to their degrees, in which

case the normalized Laplacian is used instead. For example, in graph learn-

ing, one of the terms in Ω assumes the form wij(xi/
√
di − xj/

√
dj)

2, where

di and dj correspond to the degrees of the vertex variables i and j, respec-

tively. Using some simple algebra, it can be shown that the normalization

term is accounted for by the matrix W used in the definition of the QDSFM

problem (6.1).

6.5.1 Experiment setup

We numerically evaluate our SSL learning framework for hypergraphs on

both real and synthetic datasets. For the particular problem at hand, the

QDSFM problem can be formulated as follows:

min
x∈RN

β‖x− a‖2 +
∑
r∈[R]

max
i,j∈Sr

(
xi√
Wii

− xj√
Wjj

)2, (6.14)

where ai ∈ {−1, 0, 1} indicates if the corresponding variable i has a negative,

missing, or positive label, respectively, β is a parameter that balances out

the influence of observations and the regularization term, {Wii}i∈[N] defines

99

a positive measure over the variables and may be chosen to be the degree

matrix D, with Dii = |{r ∈ [R] : i ∈ Sr}|. Each part in the decomposition

corresponds to one hyperedge. We compare eight different solvers falling

into three categories: (a) our proposed general QDSFM solvers, QRCD-SPE,

QRCD-MNP, QRCD-FW and QAP-SPE ; (b) alternative specialized solvers

for the given problem (6.14), including PDHG [9] and SGD [99]; (c) SSL

solvers that do not use QDSFM as the objective, including DRCD [20] and

InvLap [7]. The first three methods all have outer-loops that execute RCD,

but with different inner-loop projections computed via the exact projection

algorithm for undirected hyperedges (see Algorithm 6.5 in Section 6.4.4), or

the generic MNP and FW. As it may be time consuming to find the precise

projections via MNP and FW, we always fix the number of MAJOR loops

of the MNP and the number of iterations of the FW method to 100|Sr|
and 100|Sr|2, respectively. Empirically, these choices provide an acceptable

trade-off between accuracy and complexity. The QAP-SPE method uses

AP in the outer-loop and exact inner-loop projections (see Algorithm 6.5 in

Section 6.4.4). PDHG and SGD are the only known solvers for the specific

objective (6.14). PDHG and SGD depend on certain parameters that we

choose in standard fashion: for PDHG, we set σ = τ = 1√
1+maxiDii

and for

SGD, we set ηk = 1
kβmaxiWii

.

DRCD is a state-of-the-art solver for DSFM and also uses a combination

of outer-loop RCD and inner-loop projections. InvLap first transforms hy-

peredges into cliques and then solves a Laplacian-based linear problem. All

the aforementioned methods, except InvLap, are implemented in C++ in a

nonparallel fashion. InvLap is executed via matrix inversion operations in

Matlab, and may be parallelized. The CPU times of all methods are recorded

on a 3.2GHz Intel Core i5. The results are summarized for 100 independent

tests. When reporting the results, we use the primal gap (“gap”) to charac-

terize the convergence properties of different solvers.

6.5.2 Synthetic data

We generated a hypergraph with N = 1000 vertices that belong to two equal-

sized clusters. We uniformly at random generated 500 hyperedges within each

cluster and 1000 hyperedges across the two clusters. Note that in higher-order

100

clustering, we do not need to have many hyperedges within each cluster to

obtain good clustering results. Each hyperedge includes 20 vertices. We

also uniformly at random picked l = 1, 2, 3, 4 vertices from each cluster to

represent labeled datapoints. With the vector x obtained by solving (6.14),

we classified the variables based on the Cheeger cut rule [9]: suppose that
xi1√
Wi1i1

≥ xi2√
Wi2i2

≥ · · · ≥ xiN√
WiN iN

, and let Sj = {i1, i2, ..., ij}. We partition

[N] into two sets (Sj∗ , S̄j∗), where

j∗ = arg min
j∈[N]

Φ(Sj) ,
|Sr ∩ Sj 6= ∅, Sr ∩ S̄j 6= ∅}|

max{∑r∈[R] |Sr ∩ Sj|,
∑

r∈[R] |Sr ∩ S̄j|}
.

The classification error is defined as (# of incorrectly classified vertices)/N .

In the experiment, we used Wii = Dii, ∀ i, and tuned β to be nearly opti-

mal for different objectives with respect to the classification error rates: for

QDSFM as the objective, using QRCD-SPE, QAP-SPE, PDHG, and SGD as

the methods of choice, we set β = 0.02; for DSFM as the objective, including

the DRCD method, we set β = 1; for InvLap, we set β = 0.001.

The left subfigure of Figure 6.2 shows that QRCD-SPE converges much

faster than all other methods when solving the problem (6.14) according

to the gap metric (we only plotted the curve for l = 3 as all other val-

ues of l produce similar patterns). To avoid clutter, we moved the results

for QRCD-MNP and QRCD-FW to the right two subfigures in Figure 6.2,

as these methods are typically 100 to 1000 times slower than QRCD-SPE.

Table 6.2 lists the performance of different methods with comparable CPU-

times. Note that when QRCD-SPE converges (with primal gap 10−9 achieved

after 0.83s), the obtained x leads to a much smaller classification error than

other methods. QAP-SPE, PDHG and SGD all have large classification er-

rors as they do not converge within short CPU time-frames. QAP-SPE and

PDHG perform only a small number of iterations, but each iteration com-

putes the projections for all the hyperedges, which is more time-consuming.

The poor performance of DRCD implies that the DFSM is not a good ob-

jective for SSL. InvLap achieves moderate classification errors, but still does

not match the performance of QRCD-SPE. Furthermore, note that InvLap

uses Matlab, which is optimized for matrix operations, and is hence fairly

efficient. However, for experiments on real datasets, where one encounters

fewer but significantly larger hyperedges, InvLap does not offer performance

101

0 0.2 0.4 0.6 0.8

cputime(s)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
(g

a
p

)

l=3

QRCDM-SPE
QAP-SPE
PDHG
SGD

-20 0 20 40 60 80 100

cputime(s)

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
(g

a
p

)

l=3

QRCDM-MNP

-200 0 200 400 600 800 1000

cputime(s)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
(g

a
p

)

l=3

QRCDM-FW

Figure 6.2: Convergence results on synthetic datasets: gap vs CPU-time of
different QDSFM solvers (with an average ± standard deviation).

Table 6.2: Prediction results on synthetic datasets: classification error rates
& Average 100 c(Sj∗) for different solvers (MN: mean, MD: median).

Obj. Solvers
Classification error rate (%) Average 100c(Sj∗)

#iterations cputime(s)l=1 l=2 l=3 l=4
l=1 l=2 l=3 l=4

MN MD MN MD MN MD MN MD

Q
D

S
F

M QRCD-
SPE

2.93 2.55 2.23 0.00 1.47 0.00 0.78 0.00 6.81 6.04 5.71 5.41 4.8× 105 0.83

QAP-
SPE

14.9 15.0 12.6 13.2 7.33 8.10 4.07 3.80 9.51 9.21 8.14 7.09 2.7× 102 0.85

PDHG 9.05 9.65 4.56 4.05 3.02 2.55 1.74 0.95 8.64 7.32 6.81 6.11 3.0× 102 0.83

SGD 5.79 4.15 4.30 3.30 3.94 2.90 3.41 2.10 8.22 7.11 7.01 6.53 1.5× 104 0.86

O
th

. DRCD 44.7 44.2 46.1 45.3 43.4 44.2 45.3 44.6 9.97 9.97 9.96 9.97 3.8× 106 0.85
InvLap 8.17 7.30 3.27 3.00 1.91 1.60 0.89 0.70 8.89 7.11 6.18 5.60 — 0.07

as good as that for synthetic data. The column “Average 100c(Sj∗)” also il-

lustrates that the QDSFM objective is a good choice for finding approximate

balanced cuts of hypergraphs.

We also evaluated the influence of parameter choices on the convergence

of QRCD methods. According to Theorem 6.2.2, the required number of

RCD iterations for achieving an ε-optimal solution for (6.14) is roughly

O(N2Rmax(1, 9/(2β)) maxi,j∈[N] Wii/Wjj log 1/ε) (see Section A.5.8). We

mainly focus on testing the dependence on the parameters β and maxi,j∈[N]
Wii

Wjj
,

as the term N2R is also included in the iteration complexity of DSFM and

was shown to be necessary given certain submodular structures [70]. To test

the effect of β, we fix Wii = 1 for all i, and vary β ∈ [10−3, 103]. To test the

effect of W , we fix β = 1 and randomly choose half of the vertices and set

their Wii values to lie in {1, 0.1, 0.01, 0.001}, and set the remaining ones to

1. Figure 6.3 show our results. The logarithm of gap ratios is proportional

to log β−1 for small β, and log maxi,j∈[N]
Wii

Wjj
, which is not as sensitive as

predicted by Theorem 6.2.2. Moreover, when β is relatively large (> 1), the

dependence on β levels out.

102

-4 -2 0 2 4

log
10

(β
-1

)

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

1
0
(g

a
p

(2
e
5
) /g

a
p

(0
))

-1 0 1 2 3 4

log
10

(W
max

/W
min

)

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

1
0
(g

a
p

(2
e

5
) /g

a
p

(0
))

Figure 6.3: Parameter sensitivity: the rate of a primal gap of QRCD after
2× 105 iterations with respect to different choices of the parameters β &
maxi,j∈[N] Wii/Wjj.

0 0.5 1 1.5 2

cputime(s)

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
(g

a
p
)

mushroom

QRCDM-SPE
QAP-SPE
PDHG
SGD

0 0.2 0.4 0.6 0.8

cputime(s)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
(g

a
p

)

covertype45

QRCDM-SPE
QAP-SPE
PDHG
SGD

0 0.5 1 1.5 2 2.5 3

cputime(s)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
(g

a
p
)

covertype67

QRCDM-SPE
QAP-SPE
PDHG
SGD

Figure 6.4: Convergence of different solvers for QDFSM over three different
real datasets.

6.5.3 Real data

We also evaluated the proposed algorithms on three UCI datasets: Mush-

room, Covertype45, Covertype67, used as standard test datasets for SSL on

hypergraphs [7, 9, 99]. Each dataset corresponds to a hypergraph model de-

scribed in [9]: entries correspond to vertices, while each categorical feature

is modeled as one hyperedge; numerical features are first quantized into 10

bins of equal size, and then mapped to hyperedges. Compared to synthetic

data, in the real datasets, the size of most hyperedges is significantly larger

(≥ 1000) while the number of hyperedges is small (≈ 100). See Table 6.3

for a detailed description of the parameters of the generated hypergraphs.

Previous work has shown that smaller classification errors can be achieved

by using QDSFM as an objective instead of DSFM or InvLap [9]. In our

experiment, we focused on comparing the convergence of different solvers for

QDSFM. We set β = 100 and Wii = 1, for all i, and set the number of

observed labels to 100, which is a proper setting according to [9]. Figure 6.4

shows the results. Again, the proposed QRCD-SPE and QAP-SPE methods

103

Table 6.3: The UCI datasets used for experimental testing.

Dataset Mushroom Covertype45 Covertype67
N 8124 12240 37877
R 112 127 136∑

r∈[R] |Sr| 170604 145999 451529

both converge faster than PDHG and SGD, while QRCD-SPE performs the

best. Note that we did not plot the results for QRCD-MNP and QRCD-

FW as these methods converge extremely slowly due to the large sizes of

the hyperedges. InvLap requires 22, 114 and 1802 seconds to run on the

Mushroom, Covertype45 and Covertype67 datasets, respectively. Hence, the

method does not scale well with the problem size.

104

APPENDIX A

SUPPLEMENTARY PROOFS,
DERIVATIONS AND TABLES

A.1 Proof of some preliminary results

We find the following properties of the Lovász extension of normalized sym-

metric submodular functions useful in the derivations to follow.

Lemma A.1.1. Consider two vectors x, x′ ∈ RN . If F is a symmetric

submodular function with F ([N]) = 0, and f(x) is the corresponding Lovász

extension, then for any scalar c ∈ R,

1) f(cx) = |c|f(x).

2) ∇f(cx) = sgn(c)∇f(x), where sgn denotes the sign function defined in

the main text.

3) 〈∇f(x),1〉 = 0.

Proof. Given the definition of the Lovász extension and its subgradient, for

any c > 0 we have f(cx) = cf(x) and ∇f(cx) = ∇f(x). As F is a symmetric

submodular function, f(x) = f(−x) is even, which establishes the first claim.

Also, since f(x) is even, ∇f(x) is odd, and thus, for some c < 0, we have

∇f(cx) = ∇f((−c) − x) = ∇f(−x) = −∇f(x). For c = 0, ∇f(0) =

B = [−1, 1]B = {ab : a ∈ [−1, 1], b ∈ B}, since F is a symmetric submodular

function. Hence, the second claim holds as well. The third claim follows

from 〈∇f(x),1〉 = F ([N]) = 0.

Definition A.1.2. Let x, x′ ∈ RN . If xu > xv ⇒ x′u > x′v for all u, v ∈ [N],

we write x ⇀ x′.

Lemma A.1.3. Assume that F is a submodular function defined on [N]

and that f is its corresponding Lovász extension. If x ⇀ x′, then ∇f(x′) ⊆
∇f(x). Furthermore, 〈∇f(x′), x〉 = f(x).

105

Proof. Consider a point y′ ∈ ∇f(x′). According to Lemma 2.1, we know that

y′ ∈ arg maxy∈B〈y, x′〉. Suppose that a nonincreasing order of components in

x′ reads as x′i1 ≥ x′i2 ≥ · · · ≥ x′iN . By the duality result of Proposition 3.2

in [28], it is known that y′ is an optimal solution to the above optimization

problem if and only if
∑k

j=1 y
′
ij

= F ({i1, ..., ik}) whenever x′ik > x′ik+1
or

k = N . As x ⇀ x′,
∑k

j=1 y
′
ij

= F ({i1, ..., ik}) whenever xik > xik+1
or k = N,

and thus y′ is also an optimal solution for maxy∈B〈y, x〉, i.e., ∇f(x′) ⊆ ∇f(x).

Hence, 〈∇f(x′), x〉 ∈ 〈∇f(x), x〉 = f(x), which concludes the proof.

A.2 Proof for Chapter 3

A.2.1 Proof of Theorem 3.1.1

Here, we use G as the subscript to denote the variables that are associated

with the projected graph G. First, since Vol(∂S) ≤ VolG(∂S) and Vol(S) =

VolG(S) for any S ⊆ V , we have

c(S∗) =
Vol(S∗)

max{Vol(S∗),Vol(S̄∗)} ≤
VolG(S

∗)

max{Vol(S∗),Vol(S̄∗)} = cG(S
∗).

Moreover, as VolG(∂S) ≤ β∗Vol(∂S), we have

h2,G = min
S⊆V

cG(S) ≤ min
S⊆V

β∗c(S) = β∗h2

du,G =
∑
e∈E

∑
v∈e/{u}

ϑew
(e)
uv ≤

∑
e∈E

β∗ϑewe({u}) ≤ β∗du.

Further, combining the above results with those that characterize the spectral

partitioning algorithm for graphs (2.2)(2.3), we have

c(S∗) ≤ cG(S
∗) ≤ 2

√
τGh2,G = 2

√
max
u∈V

du,G
µu

h2,G ≤ 2β∗

√
max
u∈V

du
µu
h2 = 2β∗

√
τh2.

106

A.2.2 Proof of Theorem 3.1.2

First, recall that w
∗(e)
vṽ denotes the projection weight of equation (3.7), for

the case that we(·) is submodular:

w
∗(e)
vṽ =

∑
S∈2e/{∅,e}

[
we(S)

2|S|(|e| − |S|)1|{v,ṽ}∩S|=1 (A.1)

− we(S)

2(|S|+ 1)(|e| − |S| − 1)
1|{v,ṽ}∩S|=0 −

we(S)

2(|S| − 1)(|e| − |S|+ 1)
1|{v,ṽ}∩S|=2

]
.

We start by proving that for a fixed pair of vertices v and ṽ, the weights w
∗(e)
vṽ

are nonnegative provided that the we(·) are submodular. Note that the sum

on the right-hand side of (A.1) is over all proper subsets S. The coefficients

of we(S) are positive if and only if S contains exactly one of the endpoints

v and ṽ. The idea behind the proof is to construct bijections between the

subsets with positive coefficients and those with negative coefficients and

cancel negative and positive terms.

We partition the power set 2e into four parts, namely

S1 , {S ∈ 2e : v ∈ S, ṽ 6∈ S},
S2 , {S ∈ 2e : v 6∈ S, ṽ ∈ S},
S3 , {S ∈ 2e : v 6∈ S, ṽ 6∈ S},
S4 , {S ∈ 2e : v ∈ S, ṽ ∈ S}.

Choose any S1 ∈ S1 and construct the unique sets S2 = S1/{v} ∪ {ṽ} ∈
S2, S3 = S1/{v} ∈ S3, S4 = S1 ∪ {ṽ} ∈ S4. Consequently, each set may

be reconstructed from another set in the group, and we denote this set of

bijective relations by S1 ↔ S2 ↔ S3 ↔ S4. Let s = |S1|. Due to the way

the sets S1 and S2 are chosen, the corresponding coefficients of we(S1) and

we(S2) in (3.7) are both equal to

1

2s(|e| − s) .

We also observe that the corresponding coefficients of we(S3) and we(S4) are

− 1

2s(|e| − s) .

107

Note that the submodularity property

we(S1) + we(S2) ≥ we(S3) + we(S4)

allows us to cancel out the negative terms in the sum (A.1). This proves the

claimed result.

Next, we prove that the optimization problem (3.2) has a feasible solution.

Recall that Ge = (V (e), E(e), w(e)) is the subgraph obtained by projecting

e. Set w(e) = w∗(e). For simplicity of notation, we denote the volume of the

boundary of S over Ge as

VolGe(∂S) =
∑

v∈S,ṽ∈e/S

w
(e)
vṽ , for S ∈ 2e.

The existence of a feasible solution of the optimization problem may be

verified by checking that for any S ∈ 2e/{∅, e}, and for a given β(e), we have

the following bounds on the volume of the boundary of S:

we(S) ≤ VolGe(∂S) ≤ β(e)we(S).

Due to symmetry, we only need to perform the verification for sets S of

different cardinalities |S| ≤ |e|/2. This verification is performed on a case-

by-case bases, as we could not establish a general proof for arbitrary degree

|e| ≥ 2. In what follows, we show that the claim holds true for all |e| ≤ 7;

based on several special cases considered, we conjecture that the result is also

true for all values of |e| greater than seven.

For notational simplicity, we henceforth assume that the vertices in e are

labeled by elements in {1, 2, 3, ..., |e|}.
First, note that by combining symmetry and submodularity, we can easily

show that

we(S1) + we(S2) = we(S1) + we(S̄2)

≥we(S1 ∪ S̄2) + we(S1 ∩ S̄2) = we(S2/S1) + we(S1/S2).

We iteratively use this equality in our subsequent proofs, following a specific

108

notational format for all relevant inequalities:

vi1 , ..., vir ∈ S1, vj1 , ..., vjs ∈ S2, Weight inequality =⇒ Volume inequality.

The above line asserts that for all ordered subsets (vi1 , ..., vir) and (vj1 , ..., vjs)

chosen from S1 and S2 without replacement, respectively, we have that the

Weight inequalities follow based on the properties of we(·). These Weight in-

equalities are consequently inserted into the formula for the volume VolGe(S)

to arrive at the Volume inequality for VolGe(S).

For |e| = 2, the projection (A.1) is just a “self-projection”: It is easy to

check that for any singleton S, VolGe(∂S) = we(S) and hence β(e) = 1. We

next establish the same claim for larger hyperedge sizes |e|.

|e| = 3, β(e) = 1

By using the symmetry property of we(·) we have

w
∗(e)
12 =

1

2
(we({1}) + we({2}))− we({3}).

Therefore, VolGe(∂{1}) = w
∗(e)
12 + w

∗(e)
13 = we({1}) and hence β(e) = 1.

|e| = 4, β(e) = 3/2

By using the symmetry property of we(·) we have

w
∗(e)
12

=
1

3
(we({1}) + we({2}))−

1

4
(we({3}) + we({4}))

+
1

4
we({1, 3}) + we({1, 4}))−

1

3
we({1, 2}).

The basic idea behind the proof of the equalities to follow is to carefully

select subsets for which the submodular inequality involving we(·) may be

used to eliminate the terms corresponding to the volumes VolGe(∂S).

109

Case S = {1}:

VolGe(∂{1})

=we({1})−
1

6
(we({2}) + we({3}) + we({4}))

+
1

6
(we({1, 2}) + we({1, 3}) + we({1, 4}))

v1 = 1, v2, v3 ∈ {2, 3, 4}, we({v1, v2}) + we({v1, v3}) ≥ we({v2}) + we({v3})
=⇒ VolGe(∂{1}) ≥ we({1}).

v1 = 1, v2 ∈ {2, 3, 4}, we({v1, v2}) ≤ we({v1}) + we({v2})

=⇒ VolGe(∂{1}) ≤
3

2
we({1}).

Case S = {1, 2}:

VolGe(∂{1, 2})

=
1

6
(we({1}) + we({2}) + we({3}) + we({4}))

+we({1, 2})−
1

6
(we({1, 3}) + we({1, 4}))

v1 ∈ {1, 2}, v2 ∈ {3, 4}, we({v1}) + we({v2}) ≥ we({v1, v2})
=⇒ VolGe(∂{1, 2}) ≥ we({1, 2}).

v1, v2 ∈ {1, 2}, v3 ∈ {3, 4}, we({v1}) + we({v3}) ≤ we({v1, v2}) + we({v2, v3})

=⇒ VolGe(∂{1, 2}) ≤
4

3
we({1, 2}).

110

|e| = 5, β(e) = 2

By using the symmetry property of we(·) we have

w
∗(e)
12

=
1

4
(we({1}) + we({2}))−

1

6
(we({3}) + we({4}) + we({5}))−

1

4
we({1, 2})

+
1

6
(we({1, 3}) + we({1, 4}) + we({1, 5}) + we({2, 3})

+we({2, 4}) + we({2, 5}))−
1

6
(we({3, 4}) + we({3, 5}) + we({4, 5})).

Case S = {1}:

VolGe(∂{1})

=we({1})−
1

4
(we({2}) + we({3}) + we({4}) + we({5}))

+
1

4
(we({1, 2}) + we({1, 3}) + we({1, 4}) + we({1, 5})).

v1 = 1, v2, v3 ∈ {2, 3, 4, 5}, we({v1, v2}) + we({v1, v3}) ≥ we({v2}) + we({v3})
=⇒ VolGe(∂{1}) ≥ we({1}).

v1 = 1, v2 ∈ {2, 3, 4, 5}, we({v1, v2}) ≤ we({v1}) + we({v2})
=⇒ VolGe(∂{1}) ≤ 2we({1}).

Case S = {1, 2}:

VolGe(∂{1, 2})

=
1

4
(we({1}) + we({2}))−

1

6
(we({3}) + we({4}) + we({5})) + we({1, 2})

− 1

12
(we({1, 3}) + we({1, 4}) + we({1, 5}) + we({2, 3}) + we({2, 4}) + we({2, 5}))

+
1

3
(we({3, 4}) + we({3, 5}) + we({4, 5})).

111

v1, v2, v3 ∈ {3, 4, 5}, we({v2}) + we({v3}) ≤ we({v1, v2}) + we({v1, v3})
v1 ∈ {1, 2}, v2 ∈ {3, 4, 5}, we({v1, v2}) ≤ we({v1}) + we({v2})

=⇒ VolGe(∂{1, 2}) ≥ we({1, 2}).

v1 ∈ {1, 2}, v2, v3 ∈ {3, 4, 5}, we({v1, v2}) + we({v1, v3}) ≥ we({v2}) + we({v3})
v1, v2 ∈ {1, 2}, v3, v4, v5 ∈ {3, 4, 5}, we({v3, v4}) ≤ we({v1, v2}) + we({v5})

=⇒ VolGe(∂{1, 2}) ≤ 2we({1, 2}).

|e| = 6, β(e) = 4

By using the symmetry property of we(·) we have

w
∗(e)
12

=
1

5
(we({1}) + we({2}))−

1

8
(we({3}) + we({4}) + we({5}) + we({6}))

− 1

5
we({1, 2})

+
1

8
(we({1, 3}) + we({1, 4}) + we({1, 5}) + we({1, 6}) + we({2, 3}) + we({2, 4})

+ we({2, 5}) + we({2, 6}))

−1

9
(we({3, 4}) + we({3, 5}) + we({3, 6}) + we({4, 5}) + we({4, 6}) + we({5, 6}))

−1

9
(we({1, 2, 3}) + we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6}))

+
1

8
(we({1, 3, 4}) + we({1, 3, 5}) + we({1, 3, 6}) + we({1, 4, 5})

+ we({1, 4, 6}) + we({1, 5, 6})).

112

Case S = {1}:

VolGe(∂{1})

=we({1})−
3

10
(we({2}) + we({3}) + we({4}) + we({5}) + we({6}))

+
3

10
(we({1, 2}) + we({1, 3}) + we({1, 4}) + we({1, 5}) + we({1, 6}))

− 1

12
(we({2, 3}) + we({2, 4}) + we({2, 5}) + we({2, 6}) + we({3, 4})

+ we({3, 5}) + we({3, 6}) + we({4, 5}) + we({4, 6}) + we({5, 6}))

+
1

12
(we({1, 2, 3}) + we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6})

+ we({1, 3, 4}) + we({1, 3, 5}) + we({1, 3, 6})
+ we({1, 4, 5}) + we({1, 4, 6}) + we({1, 5, 6}))

v1 = 1, v2, v3 ∈ {2, 3, 4, 5, 6}, we({v1, v2}) + we({v1, v3}) ≥ we({v2}) + we({v3})
v1 = 1, v2, v3, v4, v5 ∈ {2, 3, 4, 5, 6},

we({v1, v2, v3}) + we({v1, v4, v5}) ≥ we({v2, v3}) + we({v4, v5})
=⇒ VolGe(∂{1}) ≥ we({1}).

v1 = 1, v2 ∈ {2, 3, 4, 5, 6}, we({v1, v2}) ≤ we({v1}) + we({v2})
v1 = 1, v2, v3 ∈ {2, 3, 4, 5, 6}, we({v1, v2, v3}) ≤ we({v1}) + we({v2, v3})

=⇒ VolGe(∂{1}) ≤
10

3
we({1}).

113

Case S = {1, 2}:

VolGe(∂{1, 2})

=
3

10
(we({1}) + we({2}))−

7

20
(we({3}) + we({4}) + we({5}) + we({6}))

+we({1, 2})−
1

30
(we({1, 3}) + we({1, 4}) + we({1, 5}) + we({1, 6}) + we({2, 3})

+ we({2, 4}) + we({2, 5}) + we({2, 6}))

+
1

18
(we({3, 4}) + we({3, 5}) + we({3, 6}) + we({4, 5}) + we({4, 6}) + we({5, 6}))

+
5

12
(we({1, 2, 3}) + we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6}))

− 1

18
(we({1, 3, 4}) + we({1, 3, 5}) + we({1, 3, 6})

+ we({1, 4, 5}) + we({1, 4, 6}) + we({1, 5, 6}))

v1 ∈ {1, 2}, v2 ∈ {3, 4, 5, 6}, we({v1, v2}) ≤ we({v1}) + we({v2})
v1 = 1, v2 = 2, v3, v4 ∈ {3, 4, 5, 6},

we({v3}) + we({v4}) ≤ we({v1, v2, v3}) + we({v1, v2, v4})
v1 = 1, v2, v3 ∈ {3, 4, 5, 6},

we({v1, v2, v3}) ≤ we({v1}) + we({v2, v3})
=⇒ VolGe(∂{1, 2}) ≥ we({1, 2}).

v1 = 1, v2 = 2, v3 ∈ {3, 4, 5, 6}, we({v3}) ≥ we({v1, v2, v3})− we({v1, v2})
v1, v2 ∈ {1, 2}, v3 ∈ {3, 4, 5, 6},

we({v1, v3}) ≥ we({v1}) + we({v1, v2, v3})− we({v1, v2})
v1, v2 ∈ {1, 2}, v3, v4, v5, v6 ∈ {3, 4, 5, 6},

we({v1, v3, v4}) ≥ we({v5, v6}) + we({v1})− we({v1, v2})
=⇒ VolGe(∂{1, 2}) ≤ 3we({1, 2}).

114

Case S = {1, 2, 3}:

VolGe(∂{1, 2, 3})

=− 3

20
(we({1}) + we({2}) + we({3}) + we({4}) + we({5}) + we({6}))

+
5

12
(we({1, 2}) + we({1, 3}) + we({2, 3}+ we({4, 5}) + we({4, 6}) + we({5, 6}))

−13

90
(we({1, 4}) + we({1, 5}) + we({1, 6}) + we({2, 4}) + we({2, 5}) + we({2, 6})

+ we({3, 4}) + we({3, 5}) + we({3, 6}))

+we({1, 2, 3}) +
1

18
(we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6}) + we({1, 3, 4})

+ we({1, 3, 5}) + we({1, 3, 6}) + we({1, 4, 5}) + we({1, 4, 6}) + we({1, 5, 6}))

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6 ∈ {4, 5, 6},
we({v2}) + we({v3}) ≤ we({v1, v2}) + we({v1, v3}),
we({v5}) + we({v6}) ≤ we({v4, v5}) + we({v4, v6})

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6 ∈ {4, 5, 6},
we({v1, v2}) + we({v4, v5}) ≤ we({v3, v6})

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6 ∈ {4, 5, 6},
we({v1, v2, v4}) + we({v1, v4, v5}) ≤ we({v1, v4}) + we({v3, v6})

=⇒ VolGe(∂{1, 2, 3}) ≥ we({1, 2, 3}).

115

v1, v2 ∈ {1, 2, 3}, v4, v5 ∈ {4, 5, 6},
we({v1, v4, v5}) ≤ we({v1, v4}) + we({v1, v5})− we({v1}),
we({v1, v2, v4}) ≤ we({v1, v4}) + we({v2, v4})− we({v4})

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6 ∈ {4, 5, 6},
we({v1, v4}) ≥ we({v1}) + we({v5, v6})− we({v1, v2, v3})

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6 ∈ {4, 5, 6},
we({v1}) + we({v2}) ≥ we({v1, v2}),
we({v1}) ≥ we({v2, v3})− we({v1, v2, v3}),
we({v4}) + we({v5}) ≥ we({v4, v5}),
we({v4}) ≥ we({v5, v6})− we({v4, v5, v6})

=⇒ VolGe(∂{1, 2, 3}) ≤ 4we({1, 2, 3}).

116

|e| = 7, β(e) = 6

By using the symmetry property of we(·) we have

w
∗(e)
12

=
1

6
(we({1}) + we({2}))−

1

10
(we({3}) + we({4}) + we({5}) + we({6}) + we({7}))

−1

6
we({1, 2}) +

1

10
(we({1, 3}) + we({1, 4}) + we({1, 5}) + we({1, 6}) + we({1, 7})

+ we({2, 3}) + we({2, 4}) + we({2, 5}) + we({2, 6}) + we({2, 7}))

− 1

12
(we({3, 4}) + we({3, 5}) + we({3, 6}) + we({3, 7}) + we({4, 5}) + we({4, 6})

+ we({4, 7}) + we({5, 6}) + we({5, 7}) + we({6, 7}))

− 1

10
(we({1, 2, 3}) + we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6}) + we({1, 2, 7}))

+
1

12
(we({1, 3, 4}) + we({1, 3, 5}) + we({1, 3, 6}) + we({1, 3, 7}) + we({1, 4, 5})

+ we({1, 4, 6}) + we({1, 4, 7}) + we({1, 5, 6}) + we({1, 5, 7}) + we({1, 6, 7})
+ we({2, 3, 4}) + we({2, 3, 5}) + we({2, 3, 6}) + we({2, 3, 7}) + we({2, 4, 5})
+ we({2, 4, 6}) + we({2, 4, 7}) + we({2, 5, 6}) + we({2, 5, 7}) + we({2, 6, 7}))

− 1

12
(we({3, 4, 5}) + we({3, 4, 6}) + we({3, 4, 7})

+ we({3, 5, 6}) + we({3, 5, 7}) + we({3, 6, 7})
+ we({4, 5, 6}) + we({4, 5, 7}) + we({4, 6, 7}) + we({5, 6, 7})).

117

Case S = {1}:

VolGe(∂{1})

=we({1})−
1

3
(we({2}) + we({3}) + we({4}) + we({5}) + we({6}) + we({7}))

+
1

3
(we({1, 2}) + we({1, 3}) + we({1, 4}) + we({1, 5}) + we({1, 6}) + we({1, 7}))

− 2

15
(we({2, 3}) + we({2, 4}) + we({2, 5}) + we({2, 6}) + we({2, 7}) + we({3, 4})

+ we({3, 5}) + we({3, 6}) + we({3, 7}) + we({4, 5}) + we({4, 6})
+ we({4, 7}) + we({5, 6}) + +we({5, 7}) + we({6, 7}))

+
2

15
(we({1, 2, 3}) + we({1, 2, 4}) + we({1, 2, 5})

+ we({1, 2, 6}) + we({1, 2, 7}) + we({1, 3, 4})
+ we({1, 3, 5}) + we({1, 3, 6}) + we({1, 3, 7}) + we({1, 4, 5}) + we({1, 4, 6})
+ we({1, 4, 7}) + we({1, 5, 6})) + we({1, 5, 7}) + +we({1, 6, 7})

v1 = 1, v2, v3 ∈ {2, 3, 4, 5, 6, 7},
we({v1, v2}) + we({v1, v3}) ≥ we({v2}) + we({v3})

v1 = 1, v2, v3, v4, v5 ∈ {2, 3, 4, 5, 6, 7},
we({v1, v2, v3}) + we({v1, v4, v5}) ≥ we({v2, v3}) + we({v4, v5})

=⇒ VolGe(∂{1}) ≥ we({1}).

v1 = 1, v2 ∈ {2, 3, 4, 5, 6, 7}, we({v1, v2}) ≤ we({v1}) + we({v2})
v1 = 1, v2, v3 ∈ {2, 3, 4, 5, 6, 7}, we({v1, v2, v3}) ≤ we({v1}) + we({v2, v3})

=⇒ VolGe(∂{1}) ≤ 5we({1}).

118

Case S = {1, 2}:

VolGe(∂{1, 2})

=
1

3
(we({1}) + we({2}))−

7

15
(we({3}) + we({4}) + we({5}) + we({6}) + we({7}))

+we({1, 2})−
1

10
(we({3, 4}) + we({3, 5}) + we({3, 6}) + we({3, 7}) + we({4, 5})

+ we({4, 6}) + we({4, 7}) + we({5, 6}) + we({5, 7}) + we({6, 7}))

+
7

15
(we({1, 2, 3}) + we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6}+ we({1, 2, 7}))

− 1

30
(we({1, 3, 4}) + we({1, 3, 5}) + we({1, 3, 6}) + we({1, 3, 7}) + we({1, 4, 5})

+ we({1, 4, 6}) + we({1, 4, 7}) + we({1, 5, 6}) + we({1, 5, 7}) + we({1, 6, 7})
+ we({2, 3, 4}) + we({2, 3, 5}) + we({2, 3, 6}) + we({2, 3, 7}) + we({2, 4, 5})
+ we({2, 4, 6}) + we({2, 4, 7}) + we({2, 5, 6}) + we({2, 5, 7}) + we({2, 6, 7}))

+
1

6
(we({3, 4, 5}) + we({3, 4, 6}) + we({3, 4, 7})

+ we({3, 5, 6}) + we({3, 5, 7}) + we({3, 6, 7})
+ we({4, 5, 6}) + we({4, 5, 7}) + we({4, 6, 7}) + we({5, 6, 7}))

v1, v2 ∈ {1, 2}, v3, v4, v5, v6, v7 ∈ {3, 4, 5, 6, 7},
we({v2, v6, v7}) ≤ we({v1}) + we({v3, v4, v5})

v1 = 1, v2 = 2, v3, v4, v5, v6, v7 ∈ {3, 4, 5, 6, 7},
we({v6, v7}) ≤ we({v1, v2, v3}) + we({v3, v4, v5})− we({v3})

v1 = 1, v2 = 2, v3, v4 ∈ {3, 4, 5, 6, 7},
we({v3}) + we({v4}) ≤ we({v1, v2, v3}) + we({v1, v2, v4})

=⇒ VolGe(∂{1, 2}) ≥ we({1, 2}).

119

v1 = 1, v2 = 2, v3 ∈ {3, 4, 5, 6},
we({v3}) ≥ we({v1, v2, v3})− we({v1, v2})

v1 = 1, v2 = 2, v3, v4, v5, v6, v7 ∈ {3, 4, 5, 6},
we({v3, v4}) ≥ we({v5, v6, v7})− we({v1, v2})

v1, v2 ∈ {1, 2}, v3, v4, v5, v6, v7 ∈ {3, 4, 5, 6},
we({v1, v3, v4}) ≥ we({v5, v6, v7}) + we({v1})− we({v1, v2})

=⇒ VolGe(∂{1, 2}) ≤ 5we({1, 2}).

Case S = {1, 2, 3}:

VolGe(∂{1, 2, 3})

=− 2

15
(we({1}) + we({2}) + we({3}))

−2

5
(we({4}) + we({5}) + we({6}) + we({7}))

+
7

15
(we({1, 2}) + we({1, 3}) + we({2, 3})

−1

6
(we({1, 4}) + we({1, 5}) + we({1, 6}) + we({1, 7}) + we({2, 4}) + we({2, 5})

+ we({2, 6}) + we({2, 7}) + we({3, 4}) + we({3, 5}) + we({3, 6}) + we({3, 7}))

+
1

10
(we({4, 5}) + we({4, 6}) + we({4, 7}) + we({5, 6}) + we({5, 7}) + we({6, 7}))

+we({1, 2, 3}) +
2

15
(we({1, 2, 4}) + we({1, 2, 5}) + we({1, 2, 6}) + we({1, 2, 7})

+ we({1, 3, 4}) + we({1, 3, 5}) + we({1, 3, 6}) + we({1, 3, 7})
+ we({2, 3, 4}) + we({2, 3, 5}) + we({2, 3, 6}) + we({2, 3, 7})

− 1

30
(we({1, 4, 5}) + we({1, 4, 6}) + we({1, 4, 7})

+ we({1, 5, 6}) + we({1, 5, 7}) + we({1, 6, 7})
+ we({2, 4, 5}) + we({2, 4, 6}) + we({2, 4, 7})
+ we({2, 5, 6}) + we({2, 5, 7}) + we({2, 6, 7})
+ we({3, 4, 5}) + we({3, 4, 6}) + we({3, 4, 7})
+ we({3, 5, 6}) + we({3, 5, 7}) + we({3, 6, 7}))

+
1

2
(we({4, 5, 6}) + we({4, 5, 7}) + we({4, 6, 7}) + we({5, 6, 7}))

120

v1, v2, v3 ∈ {1, 2, 3}, we({v1}) + we({v2}) ≤ we({v1, v3}) + we({v2, v3}),
v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6, v7 ∈ {4, 5, 6, 7},

we({v4}) ≤ we({v1, v2, v4}) + we({v4, v5, v6})− we({v3, v7}),
v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6, v7 ∈ {4, 5, 6, 7},

we({v3, v7}) ≤ we({v1, v2}) + we({v4, v5, v6}),
v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6, v7 ∈ {4, 5, 6, 7},

we({v1, v4, v5}) ≤ we({v2, v3}) + we({v6.v7}),
=⇒ VolGe(∂{1, 2, 3}) ≥ we({1, 2, 3}).

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6, v7 ∈ {4, 5, 6, 7},
we({v1, v4, v5}) ≥ we({v2, v3}) + we({v4, v5})− we({v1, v2, v3}),

v1, v2, v3 ∈ {1, 2, 3}, v4, v5, v6, v7 ∈ {4, 5, 6, 7},
we({v1, v4}) ≥ we({v1}) + we({v5, v6, v7})− we({v1, v2, v3}),

v1, v2 ∈ {1, 2, 3}, v3 ∈ {4, 5, 6, 7}, we({v3}) ≥ we({v1, v2, v3})− we({v1, v2}),
v1, v2, v3 ∈ {1, 2, 3}, we({v1}) ≥ we({v2, v3})− we({v1, v2, v3}),

=⇒ VolGe(∂{1, 2, 3}) ≤ 6we({1, 2, 3}).

A.2.3 Proof of Theorem 3.1.3

Suppose that {T ovṽ}{vṽ∈E(e)} and βo represent the optimal solution of the

optimization problem (3.8). To prove that the values of βo are equal to those

listed in Table 3.1, we proceed as follows. The result of the optimization

procedure over {Tvṽ}{vṽ∈E(e)} produces the weights (coefficients) of the linear

mapping. The optimization problem (3.8) may be rewritten as

min
{Tvṽ}{v,ṽ}∈Eo

β (A.2)

s.t. we(S) ≤
∑

v∈S,ṽ∈e/S

Tvṽ(we) ≤ βwe(S),

∀ S ∈ 2e and submodular we(·),

which is essentially a linear programming. However, as there are uncountably

many choices for the submodular functions we(·), the above optimization

121

problem has uncountably many constraints. However, given a finite collection

of inhomogeneous cost functions Ω = {w(1)
e (·), w(2)

e (·), ...} all of which are

submodular, the linear program

min
{Tvṽ}{v,ṽ}∈Eo

β (A.3)

s.t. w(r)
e (S) ≤

∑
v∈S,ṽ∈e/S

Tvṽ(w(r)
e) ≤ βw(r)

e (S),

for all S ∈ 2e and w(r)
e (·) ∈ Ω

can be efficiently computed and yields an optimal βΩ that provides a lower

bound for βo. Therefore, we just need to identify the sets Ω for different

values of |e| that meet the values of β(e) listed in Table 3.1.

The proof involves solving the linear program (A.3). We start by identify-

ing some structural properties of the problem.

Proposition A.2.1. Given |e|, the optimization problem (3.8) over {Tvṽ}{vṽ∈E(e)}

involves 3[|e|
2

]− 1 variables, where [a] denotes the largest integer not greater

than a.

Proof. The linear mapping Tvṽ may be written as

Tvṽ(we) =
∑
S∈2e

φ(vṽ, S)we(S),

where φ(vṽ, S) represent the coefficients that we wish to optimize, and which

depend on the edge vṽ and the subset S. Although we have
(|e|

2

)
× 2|e|

coefficients, the coefficients are not independent from each other. To see

what kind of dependencies exist, define the set of all permutations of the

vertices of e π : e→ {1, 2, ..., |e|}; clearly, there are |e|! such permutations π.

Also, define π(S) = {π(v)|v ∈ S} for S ⊆ e. If a set function w(·) over all

the subsets of {1, 2, ..., |e|} satisfies the conditions

w(∅) = 0,

w(S) = w(S̄),

w(S1) + w(S2) ≥ w(S1 ∩ S2) + w(S1 ∪ S2),

for S, S1, S2 ⊆ {1, 2, ..., |e|}, then one may construct |e|! many inhomogeneous

cost functions w
(π)
e (·) such that for all distinct π one has w

(π)
e (·) = w(π(·)).

122

As all the weights w
(π)
e are submodular and appear in the constraints of

the optimization problem (A.2), the coefficients φ(vṽ, S) will be invariant

under the permutations π; thus, they will depend only on two parameters,

|{v, ṽ} ∩ S| and |S|. We replace φ with another function φ̃ to capture this

dependence

φ(vṽ, S) = φ(π(v)π(ṽ), π(S)) = φ̃(|{v, ṽ} ∩ S|, |S|).

Moreover, as we(S) is symmetric, i.e., as we(S) = we(S̄), we also have

φ̃(|{v, ṽ} ∩ S̄|, |S̄|) = φ̃(|{v, ṽ} ∩ S|, |S|).

Hence, for any given |e|, the set of the coefficients of the linear function may

be written as

Φ = {φ̃(r, s)|(r, s) ∈ {0, 1, 2} × {1, 2, 3, ..., |e| − 2, |e| − 1}/{(2, 1), (0, |e| − 1)},
s.t. φ̃(0, s) = φ̃(2, |e| − s) , φ̃(1, s) = φ̃(1, |e| − s)},

which concludes the proof.

Using Proposition A.2.1, we can transform the optimization problem (A.3)

into the following form:

min
Φ

β

s.t. w(r)
e (S) ≤

∑
v∈S,ṽ∈e/S

∑
S′⊆e

φ̃(|{v, ṽ} ∩ S ′|, |S ′|)w(r)
e (S ′) ≤ βw(r)

e (S),

∀S ∈ 2e,∀w(r)
e (·) ∈ Ω.

For a given |e|, we list the sets Ω = {w(1)
e , w

(2)
e , ...} in Table. A.2. The above

linear program yields optimal values of βΩ equal to those listed in Table 3.1.

As already pointed out, the cases |e| = 2, 3 are simple to verify, and hence we

concentrate on the sets Ω for |e| ≥ 4. The case |e| = 7 is handled similarly

but requires a large verification table that we omitted for succinctness.

123

A.2.4 Proof of Theorem 3.1.4

For two pairs of vertices vṽ, uũ ∈ E(e), count the number of S ∈ 2e/{∅, e}’s
with |S| = k and uũ ∈ ∂S that satisfy the following conditions:

1) v, ṽ ∈ {u, ũ} and v ∈ S, ṽ ∈ S̄: The number is
(|e|−2
k−1

)
.

2) v, ṽ ∈ {u, ũ} and v, ṽ ∈ S̄: The number is 0.

3) v ∈ {u, ũ}, ṽ /∈ {u, ũ} and v ∈ S, ṽ ∈ S̄: The number is
(|e|−3
k−1

)
.

4) v ∈ {u, ũ}, ṽ /∈ {u, ũ} and v, ṽ ∈ S̄: The number is
(|e|−3
k−1

)
.

5) v /∈ {u, ũ}, ṽ ∈ {u, ũ} and v ∈ S, ṽ ∈ S̄: The number is
(|e|−3
k−2

)
.

6) v /∈ {u, ũ}, ṽ ∈ {u, ũ} and v, ṽ ∈ S̄: The number is
(|e|−3
k−1

)
.

7) v, ṽ /∈ {u, ũ} and v ∈ S, ṽ ∈ S̄: The number is 2
(|e|−4
k−2

)
.

8) v, ṽ /∈ {u, ũ} and v, ṽ ∈ S̄: The number is 2
(|e|−4
k−1

)
.

Moreover, some identities in the following can be demonstrated:

|e|−1∑
k=1

(|e| − 3

k − 1

)
1

k(|e| − k)

a)
=

|e|−1∑
k=2

(|e| − 3

k − 2

)
1

k(|e| − k)

b)
=

|e|−2∑
k=1

(|e| − 3

k − 1

)
1

(k + 1)(|e| − k − 1)
,

|e|−1∑
k=1

(|e| − 4

k − 2

)
1

k(|e| − k)

c)
=

|e|−2∑
k=1

(|e| − 4

k − 1

)
1

(k + 1)(|e| − k − 1)
,

where the equalities are by substitution: a) k → |e| − k, b) k → k + 1, c)

k → |e| − (k + 1).

As we assume that we(S) =
∑

uũ∈∂S w
(e)
uũ , the RHS of formula (3.7) can

be decomposed into the weighted sum of weuũ. As we is symmetric and the

124

above identities can be used,

w
∗(e)
vṽ

=
∑

S∈2e/{∅,e}

[
we(S)

|S|(|e| − |S|)1v∈S,ṽ∈S̄ −
we(S)

(|S|+ 1)(|e| − |S| − 1)
1v,ṽ∈S̄

]

=

|e|−1∑
k=1

∑
S:|S|=k

we(S)

k(|e| − k)
1v∈S,ṽ∈S̄ −

|e|−2∑
k=1

∑
S:|S|=k

we(S)

(k + 1)(|e| − k − 1)
1v,ṽ∈S̄

=

|e|−1∑
k=1

∑
S:|S|=k

1

k(|e| − k)
1v∈S,ṽ∈S̄

∑
uũ∈∂S

weuũ

−
|e|−2∑
k=1

∑
S:|S|=k

1

(k + 1)(|e| − k − 1)
1v,ṽ∈S̄

∑
uũ∈∂S

weuũ

=
∑
uũ∈∂S

w
(e)
uũ


|e|−1∑
k=1

(|e| − 2

k − 1

)
1

k(|e| − k)
1v,ṽ∈{u,ũ}

+

|e|−1∑
k=1

(|e| − 3

k − 1

)
1

k(|e| − k)
−
|e|−2∑
k=1

(|e| − 3

k − 1

)
1

(k + 1)(|e| − k − 1)

 1v∈{u,ũ},ṽ /∈{u,ũ}

+

|e|−1∑
k=1

(|e| − 3

k − 2

)
1

k(|e| − k)
−
|e|−2∑
k=1

(|e| − 3

k − 1

)
1

(k + 1)(|e| − k − 1)

 1v/∈{u,ũ},ṽ∈{u,ũ}

+ 2

|e|−1∑
k=1

(|e| − 4

k − 2

)
1

k(|e| − k)
−
|e|−2∑
k=1

(|e| − 4

k − 1

)
1

(k + 1)(|e| − k − 1)

 1v/∈{u,ũ},ṽ /∈{u,ũ}


=

|e|−1∑
k=1

(|e| − 2

k − 1

)
1

k(|e| − k)
w

(e)
vṽ =

2|e| − 2

|e|(|e| − 1)
w

(e)
vṽ

which concludes the proof.

A.2.5 Complexity analysis

Recall that the proposed algorithm consists of three computational steps:

1) Projecting each InH-hyperedge onto a subgraph; 2) Combining the sub-

graphs to create a graph; 3) Performing spectral clustering on the derived

graph based on Algorithm 3.1. The complexity of the algorithms depends

on the complexity of these three steps. If in the first step we solve the

125

optimization procedure (3.2) for all InH-hyperedges with at most 2|e| con-

straints, the worst case complexity of the algorithm is O(2cζ(E)|E|), where

c is a constant that depends on the LP-solver. The second step has com-

plexity O((ζ(E))2|E|), while the third step has complexity O(n2), given that

one has to find the eigenvectors corresponding to the extremal eigenvalues.

Other benchmark hypergraph clustering algorithms such as Clique Expan-

sion, Star Expansion [11] and Zhou’s normalized hypergraph cut [120] share

two steps of our procedure and hence have the same complexity for the cor-

responding computations. In practice, we usually deal with hyperedges of

small size (< 10) and hence ζ(E) may, for all purposes, be treated as a con-

stant. Hence, the complexity overhead of our method is of the same order

as that of the last two steps, and hence we retain the same order of compu-

tation as classical homogeneous clustering methods. Nevertheless, to reduce

the complexity of InH-partition, one may use predetermined mappings of

the form (3.6) and (3.7). In the applications discussed in what follows, we

exclusively used this computationally efficient approach.

A.3 Proof for Chapter 4

A.3.1 Proof for Equation (2.6)

Suppose that y′ ∈ arg maxy∈B〈y, x〉. Then, f(x) = 〈y′, x〉, and f(x′) ≥ 〈y′, x′〉
for all x′ ∈ RN . Therefore, f(x′) − f(x) ≥ 〈y′, x′ − x〉, and thus y′ is a

subgradient of f at x.

Suppose next that y′ ∈ ∇f(x), and let S ⊆ [N]. If S = [N], we have

f(x± 1[N]) ≥ f(x)± 〈y′, 1[N]〉. As f(x± 1[N]) = f(x), so y′([N]) = 0. When

S 6= [[N]], we have

F (S) =f(1S) = max
y∈B
〈y, 1S〉 = max

y∈B
〈y, x+ 1S − x〉 ≥ max

y∈B
〈y, x+ 1S〉 −max

y∈B
〈y, x〉

=f(x+ 1S)− f(x)
1)

≥ 〈y′, x+ 1S − x〉 = y′(S),

where 1) follows from the definition of the subgradient. Hence, y′ ∈ B. As

y′ ∈ ∇f(x), we have f(0) − f(x) ≥ 〈y′,−x〉, which implies 〈y′, x〉 ≥ f(x).

Hence, y′ ∈ arg maxy∈B〈y, x〉.

126

A.3.2 Proof for Theorem 4.1.4

We first prove Statement 1. Note that since

∇Qp(x) = p4p(x),

y ∈ ∇Qp(x) is equivalent to y/p ∈ 4p(x).

When p > 1, Sp,µ is a differentiable and symmetric manifold. As (∇‖x‖p`p,µ)v =

pµvϕp(xv), the tangent space of Sp,µ at x is a vector space that can be de-

scribed as follows

Tx(Sp,µ) =

∑
v∈[N]

cvχv, where {cv}v∈[N] satisfies
∑
v∈[N]

cvµvϕp(xv) = 0

 ,

where {χv}v∈[N] is a canonical basis of RN . For a vector y ∈ ∇Qp(x), its

projection onto Tx(Sp,µ), i.e., Pp(x)(y), vanishes if and only if y ⊥ Tx(Sp,µ).

More precisely,

Pp(x)(y) = 0⇔ there exists some c ∈ R such that yv = cµvϕp(xv), ∀v ∈ [N],

which implies that y ∈ ∇Qp(x) ∩ cUϕp(x) 6= ∅. Therefore, x is a critical

point of Q̃p(x) if and only if x is an eigenvector of 4p. The corresponding

eigenvalue is λ = 〈x,4px〉
〈x,Uϕp(x)〉 = Qp(x)

‖x‖p`p,µ
= Q̃p(x), i.e., the critical value of Q̃p at

x.

When p = 1, Sp,µ is a piecewise linear manifold, whose tangent space at

x ∈ Sp,µ is a cone. According to Theorem 4.2 in [66], for some vector y ∈
∇Qp(x), its projection onto the tangent space at x, i.e., Pp(x)(y), vanishes if

and only if there exists some c ∈ R and {cu}, where |cu| ≤ 1, such that

y = c

[∑
v:xv 6=0

µvsgn(xv)χv +
∑
u:xu=0

µucuχu

]
,

which implies y ∈ cUφp(x) ∩ ∇Qp(x) 6= ∅. Therefore, x is a critical point of

Q̃p(x) if and only if x is an eigenvector of 4p. The corresponding eigenvalue

is λ = 〈x,4px〉
〈x,Uϕp(x)〉 = Qp(x)

‖x‖p`p,µ
= Q̃p(x), i.e., the critical value of Q̃p at x.

127

Now we prove statements 2 and 3. For p > 1, ‖x‖p`p,µ is differentiable, so

∇Rp(x) =
‖x‖p`p,µ∇Qp(x)− pQp(x)Uϕp(x)

‖x‖2p
`p,µ

=
p

‖x‖p`p,µ
(4p(x)−Rp(x)Uϕp(x)) .

(A.4)

Hence, 0 ∈ ∇Rp(x) is equivalent to 0 ∈ 4p(x)∩Rp(x)Uϕp(x), i.e., (x,Rp(x))

is an eigenpair. However, for p = 1, we only have (see Proposition 2.3.14 [121])

∇Rp(x) ⊆
‖x‖p`p,µ∇Qp(x)− pQp(x)Uϕp(x)

‖x‖2p
`p,µ

.

Therefore, 0 ∈ the set on the right-hand side does not necessarily imply that

0 ∈ ∇Rp(x).

A.3.3 Proof for Lemma 4.2.2

The high level idea behind our proof is as follows: Given a hyperedge e, if

for some nonempty S ⊂ e we have we(S) = 0, then e can be split into two

hyperedges e1 = S and e2 = e\S with two modified submodular weights

associated with e1 and e2. As the size of e is a constant, one can perform

this procedure for all hyperedges e until all nonempty subsets S of e satisfy

we(S) > 0.

Consider a hyperedge e with associated weight we(S1) = 0 for some nonempty

S1 ⊂ e. Then, for any S ⊆ e, it must hold that

2we(S) ≥ [we(S1 ∪ S) + we(S1 ∩ S)− we(S1)]

+ [we(S1 ∪ S̄) + we(S1 ∩ S̄)− we(S1)]

= [we(S1 ∪ S) + we(S1 ∩ S)] + [we(S\S1) + we(S1\S)]

= [we(S ∩ S1) + we(S\S1)] + [we(S ∪ S1) + we(S1\S)]

≥ 2we(S).

Hence, all inequalities must be strict equalities so that

we(S) = we(S1 ∪ S) + we(S1 ∩ S) = we(S1\S) + we(S\S1)

= we(S ∩ S1) + we(S\S1) = we(S ∪ S1) + we(S1\S).

128

As a result, we(S1\S) = we(S∩S1) and we(S\S1) = we(S∪S1). This implies

that the hyperedge e can be partitioned into two hyperedges, e1 = S1 and

e2 = e\S1, with weights (ϑei , wei)i=1,2, such that

ϑei = max
S⊂ei

we(S), ϑeiwei(S) = ϑewe(S) for all S ⊂ ei.

This partition ensures that wei is a normalized, symmetric submodular func-

tion and that for any S ⊆ e, ϑewe(S) = ϑe1we1(S ∩ e1) + ϑe2we2(S ∩ e2).

Therefore, for any subset S of [N], the volume vol(∂S) remains unchanged.

A.3.4 Proof for Lemma 4.2.4

Let x be an eigenvector associated with the eigenvalue 0. Then, Qp(x) =

〈x,4px〉 = 0. Therefore, for each hyperedge e, we have fe(x) = 0. Based

on Lemma (4.2.2) of the main text, we may assume that the weights of G

have been transformed so that for any e ∈ E and any set S ∩ e 6= {∅, e}, one

has we(S) > 0. Therefore, for any v ∈ e, xv is a constant vector. As in the

transformed G, for each pair of vertices v, u ∈ [N], one can find a hyperedge

path from v to u, so for all v ∈ [N], xv is a constant vector

A.3.5 Proof for discrete nodal domain theorems

The outline of the proof is similar to the one given by Tudisco and Hein [67]

for graph p−Laplacians, with one significant change that involves careful

handling of submodular hyperedges.

We start by introducing some useful notation. For a vector x ∈ RN and a

set A ⊂ [N], define a vector x|A as

(x|A)v =

{
xv v ∈ A
0 v 6∈ A

.

We also define the strong (weak) nodal space Ξ(x) (respectively, ξ(x)) in-

duced by x as the linear span of x|A1 , x|A2 , · · · , x|Am , where Ai, i = 1, . . . ,m

are the strong (weak) nodal domains of x.

Lemma A.3.1. A weak nodal space is a subspace of a strong nodal space.

Hence, the number of weak nodal domains is upper bounded by the number

129

of strong nodal domains for both p = 1 and p > 1 cases.

Proof. Suppose that the weak nodal domains of a vector x equalA1, A2, ..., Am.

Hence, its weak nodal space equals to ξ(x) = {y|y =
∑

i∈[m] αix|Ai , αi ∈ R}.
Let Z = {v ∈ [N] : xv = 0} and set Ci = Ai\Z for i ∈ [m]. The subgraph in

G induced by the vertex set Ci may contain several connected components,

in which case one may further partition Ci into disjoint sets Ci,1, Ci,2, ..., Ci,ik ,

each of which corresponds to a connected component. It is easy to check that

the strong nodal domains of x exactly consist of {Ci,j}1≤i≤m,1≤j≤ik . There-

fore, the strong nodal space equals Ξ(x) = {y|y =
∑

i,j αijx|Cij , αij ∈ R} and

contains ξ(x).

Our subsequent analysis of nodal domains is primarily based on the fol-

lowing three lemmas.

Based on the deformation theorems for locally Lipschitzian even functions

on Sµ,1 (Theorem 4.8 [66]) and Sµ,p (p > 1, Theorem 3.1 [74]), one can

guarantee that each critical value corresponds to at least one critical point,

which is described in the first lemma.

Lemma A.3.2 (Lemma 2.2 [67]). For k ≥ 1 and p ≥ 1, let A∗ ∈ Fk(Sp,µ)

be a minimizing set, i.e., a set such that

λ
(p)
k = min

A:Fk(Sp,µ)
max
x∈A

Rp(x) = max
x∈A∗

Rp(x).

Then A∗ contains at least one critical point of Rp(x) with respective to the

critical value λ
(p)
k .

Lemma A.3.3 (Lemma 3.7 [67]). Let p > 1, a, b, x, y ∈ R, so that x, y ≥ 0.

Then

|ax+ by|p ≤ (|a|px+ |b|py)(x+ y)p−1,

where the equality if and only if xy = 0 or a = b.

Lemma A.3.4. Let p ≥ 1 and let (x, λ) be an eigenpair of 4p. Let Ξ(x)

(ξ(x)) be the strong (weak) nodal space induced by x. Then, for any vector

x′ ∈ Ξ(x) (ξ(x)), it holds that Qp(x
′) ≤ λ‖x′‖p`p,µ, and the inequality is tight

for p = 1.

130

Proof. Due to Lemma A.3.1, we only need to prove the claimed result for

the strong nodal space. Suppose A1, A2, ..., Am are the strong nodal domains

of x. Consider a vector in the strong nodal space of x, say y =
∑

i αix|Ai ,
where αi ∈ R. The following observation is important when generalizing

a result pertaining to graphs to the case of submodular hypergraphs. As

we assume that the submodular hypergraph G is connected, we may without

loss of generality assume that G is a hypergraph obtained from the transform

described in Lemma 4.2.2. Then, based on the definition of nodal domains,

each hyperedge e intersects at most two strong nodal domains with different

signs. Hence, x|Ai∩e ⇀ x|e for any i ∈ [m], e ∈ E and x|Ai∩e ⇀ sgn(αi)y|e for

any i ∈ [m], αi 6= 0, e ∈ E. From Lemma A.1.3, and for any c ∈ R, i ∈ [m],

one has

〈∇fe(x), cx|Ai〉 = c〈∇fe(x|e), x|Ai∩e〉 = cfe(x|Ai∩e) = cfe(x|Ai), (A.5)

and

fe(y) =〈fe(y), y〉 =

〈
∇fe(y),

∑
i

αix|Ai

〉
=
∑
i

αi 〈∇fe(y), x|Ai∩e〉

=
∑
i

αi 〈sgn(αi)∇fe(sgn(αi)y|e), x|Ai∩e〉 =
∑
i

|αi|fe(x|Ai∩e)

=
∑
i

|αi|fe(x|Ai). (A.6)

We partition the hyperedges into two sets according to how many nodal

domains they intersect,

I1 = {e : |{i|e ∩ Ai 6= ∅}| ≤ 1},
I2 = {e : |{i|e ∩ Ai 6= ∅}| = 2}.

131

Then, we have

Qp(y) =
∑
e

ϑe(fe(y))p
1)
=
∑
e

ϑe

(∑
i

|αi|fe(x|Ai)
)p

=
∑
e∈I1

ϑe
∑
i

|αi|p(fe(x|Ai))p +
∑
e∈I2

ϑe

(∑
i

|αi|fe(x|Ai)
)p

2)
=
∑
e∈I1

ϑe
∑
i

|αi|pfe(x|Ai)(fe(x))p−1 +
∑
e∈I2

ϑe

(∑
i

|αi|fe(x|Ai)
)p

,

where 1) follows from (A.6) and 2) is due to the fact that fe(x) = fe(x|Ai) for

those i such that Ai ∩ e 6= ∅, and fe(x) = 0 for those i such that Ai ∩ e = ∅.
Moreover, we have

λ‖y‖p`p,µ =
∑
i

|αi|pλ‖x|Ai‖p`p,µ
1)
=
∑
i

|αi|p〈x|Ai ,4px〉

=
∑
i

|αi|p
∑
e

ϑe〈∇fe(x), x|Ai〉(fe(x))p−1

2)
=
∑
i

|αi|p
∑
e

ϑefe(x|Ai)(fe(x))p−1,

where 1) is due to

λ‖x|Ai‖p`p,µ = 〈x|Ai , λϕp(x|Ai)〉 = 〈x|Ai , λϕp(x)〉 = 〈x|Ai ,4px〉,

and 2) follows from (A.5). Therefore,

Qp(y)− λ‖y‖p`p,µ =
∑
e∈I2

ϑe

[(∑
i

|αi|fe(x|Ai)
)p

−
∑
i

|αi|pfe(x|Ai)(fe(x))p−1

]
=
∑
e∈I2

ϑef̃e(y),

where

f̃e(y) =
{[
|αi1|fe(x|Ai1) +|αi2|fe(x|Ai2)

]p−[
|αi1|pfe(x|Ai1) + |αi2 |pfe(x|Ai2)

] [
fe(x|Ai1) + fe(x|Ai2)

]p−1
}

andAi1 andAi2 are the two nodal domains intersecting e. Invoking Lemma A.3.3

proves the claimed result.

132

Now, we are ready to prove Theorem 4.2.5. The proof of the strong nodal

domain result for the graph p−Laplacian in [67] can be easily extended to

our case via Lemma A.3.4, while the proof of the weak nodal domain result

requires significant modifications.

Case 1: Strong nodal domains. Suppose that λ
(p)
k has multiplicity r

and associated eigenvector x. Let Ξ(x) be the strong nodal space induced

by x. If x supports m strong nodal domains, then γ(Ξ(x) ∩ Sp,µ) ≤ m. For

any x′ ∈ Ξ(x) ∩ Sp,µ, we have Rp(x
′) ≤ Rp(x) = λ

(p)
k due to Lemma A.3.4.

Therefore,

λ(p)
m = min

A∈Fm(Sp,µ)
max
x′∈A

Rp(x
′) ≤ max

x′∈Ξ(x)∩Sp,µ
Rp(x

′) ≤ λ
(p)
k ,

which implies m ≤ k+r−1, where r is the mulplicity of λk. Given this upper

bound of the number of strong nodal domains and Lemma A.3.1, one may

naturally obtain bound for the number of weak nodal domains. However, for

p > 1 case, one may derive a tighter bound.

Case 2: Weak nodal domains (for p > 1). Suppose that λ
(p)
k has

multiplicity r and associated eigenvector x. Suppose that A1, A2, ..., Am are

the weak nodal domains of x. According to Lemma A.3.1, we know that m

is upper bounded by the number of strong nodal domains which we know

from Case 1 to be upper bounded by k + r − 1.

Let ξ(x) be the weak nodal space induced by x. We use proof by con-

tradiction and assume that dim(ξ(x)) > k. Consider ξ(x)′ satisfying ξ(x) =

Span{x}⊕ξ(x)′.Then, we have γ(ξ(x)′∩Span{x}) ≥ k. Again, from Lemma A.3.4,

it holds

λ
(p)
k ≤ min

A∈Fk(Sp,µ)
max
x′∈A

Q̃p(x
′) ≤ max

x′∈ξ(x)′∩Sp,µ
Q̃p(x

′) ≤ Q̃p(x) = λ
(p)
k ,

which implies that ξ(x)′∩Sp,µ is a minimizing set in Fk(Sp,µ). From Lemma A.3.2,

it follows that there exists a critical point y ∈ ξ(x)′ ∩Sp,µ such that Q̃p(y) =

λ
(p)
k . Therefore, y is also an eigenvector of 4p with respect to the eigenvalue

λ
(k)
k . Suppose that y =

∑
i αix|Ai . Later, we will show the contradiction by

proving that y ∈ Span{x}, i.e., αi = αj for all i, j ∈ [m]. For any two over-

lapping weak nodal domains, say A1 and A2 with A1 ∩ A2 6= ∅, consider the

set of hyperedges that lie in A1∪A2, and denote this set by E∗. Without loss

of generality, assume that A1 is positive while A2 is negative, as no hyperedge

133

can intersect two weak nodal domains with the same sign. Suppose that there

exists a hyperedge e ∈ E∗ such that e ∩ (A1\A2) and e ∩ (A2\A1) are both

nonempty. Then, both fe(x|A1) and fe(x|A2) are positive. According to the

proof of Lemma A.3.4, as e intersects two strong nodal domains A1\A2 and

A2\A1, in order to have Rp(y) = λ
(p)
k one must also have f̃e(y) = 0, which

further implies α1 = α2. If there is no such hyperedge, then all hyperedges

in E∗ lie either in A1 or A2. Note that for all u ∈ A1 ∩A2, α1xu = 0, so that

for p > 1, we have

0 = λ
(p)
k µu〈1u, ϕp(α1x)〉 = 〈1u,4p(α1x)〉

=
∑
e:e∈E∗

ϑe〈∇fe(α1x),1u〉(fe(α1x))p−1

1)
=
∑
e:e∈A1

ϑe〈∇fe(α1x|A1),1u〉(fe(α1x|A1))p−1

+
∑
e:e∈A2

ϑe〈∇fe(α1x|A2),1u〉(fe(α1x|A2))p−1,

where 1) is due to the fact that for all e ⊆ A1 ∩ A2, one has fe(α1x) = 0.

Similarly, as yu = 0 and y is an eigenvector of 4p, for p > 1, we have

0 = λ
(p)
k µu〈1u, ϕp(y)〉 = 〈1u,4p(y)〉

=
∑
e:e∈E∗

ϑe〈∇fe(y),1u〉(fe(y))p−1

1)
=
∑
e:e⊆A1

ϑe〈∇fe(α1x|A1),1u〉(fe(α1x|A1))p−1

+
∑
e:e⊆A2

ϑe〈∇fe(α2x|A2),1u〉(fe(α2x|A2))p−1,

where 1) once again is due to for all e ⊆ A1 ∩ A2, one has fe(α1x) = 0.

Subtracting the above two equations leads to

0 =
∑
e:e⊆A2

ϑe
[
〈∇fe(α1x|A2),1u〉(fe(α1x|A2))p−1

−〈∇fe(α2x|A2),1u〉(fe(α2x|A2))p−1
]

= (ϕp(α1)− ϕp(α2))
∑
e:e⊆A2

ϑe〈fe(x|A2∩e),1u〉(fe(x|A2))p−1

1)
= (ϕp(α1)− ϕp(α2))

∑
e:e⊆A2

ϑefe(1u)(fe(x|A2))p−1,

134

where 1) is due to 1u ⇀ x|A2∩e. Based of the definition of a weak nodal

domain, there exists at least one hyperedge e intersecting both A1 ∩ A2 and

A2\A1. Therefore, for any u ∈ A1∩A2 such that
∑

e:e⊆A2
ϑefe(1u)fe(x|A2)p−1 >

0, one has ϕp(α1) = ϕp(α2) and consequently α1 = α2. Since the hypergraph

is connected, it follows that α1 = α2 = ... = αn = α, which implies that

y = αx. This is a contradiction and hence when p > 1, the number of weak

nodal domains is ≤ k.

Note that example 10 [68] shows that even for graphs, the number of weak

nodal domains of an eigenvector of λ
(1)
k can be greater than k.

A.3.6 Proof for Lemma 4.2.6

Consider a nonconstant eigenvector x and its corresponding eigenvalue λ. Ac-

cording to Lemma 4.2.4, ifG is connected, then λ 6= 0. Moreover, when p > 1,

Uϕp(x) is a vector and not a set. Therefore, 〈1, Uϕp(x)〉 ∈ 〈1,4p(x)〉/λ =∑
e ϑe〈1,∇fe(x)〉fe(x)p−1/λ = 0. This implies that x contains both positive

and negative components, which correspond to at least two weak (strong)

nodal domains. Combining this result with that of Theorem 4.2.5 shows

that the eigenvector corresponding to the eigenvalue λ2 contains exactly two

weak (strong) nodal domains.

For p = 1, we only have 〈1, Uϕp(x)〉 3 〈1,4p(x)〉/λ = 0, which may

allow that all components of x are either nonnegative or nonpositive. An

example of a graph with a single weak (strong) nodal domain may be found

in Example 11 of [68].

A.3.7 Proof for Lemma 4.2.7

According to the proof of Lemma 4.2.6, if p > 1, we have 〈1, Uϕp(x)〉 = 0

and thus µ+
p (x) = µ−p (x). Moreover, we have

∂‖x− c1‖p`p,µ
∂c

|c=0 = p
∑
v∈[N]

µv sgn(xv)|xv|(p−1) = µ+
p (x)− µ−p (x) = 0. (A.7)

Hence, c ∈ arg minc∈R ‖x− c1‖p`p,µ.

If p = 1, 0 ∈ 〈1, Uϕp(x)〉, which implies |µ+
1 (x)−µ−1 (x)| ≤ µ0(x). Further-

135

more, for any c ≥ 0 we have

‖x− c1‖`1,µ =
∑
v:xv>c

µv(xv − c) +
∑

v:0≤xv<c

µv(c− xv) +
∑
v:xv<0

µv(c− xv)

=
∑
v:xv>0

µvxv −
∑
v:xv<0

µvxv + 2
∑

v:0<xv<c

µv(c− xv) + c(µ0(x) + µ−1 (x)− µ+
1 (x))

≥
∑
v:xv>0

µvxv −
∑
v:xv<0

µvxv = ‖x‖`1,µ.

Therefore, 0 ∈ arg minc∈R ‖x− c1‖`1,µ.

A.3.8 Proof of Theorem 4.3.1

Let us first prove the second part of the theorem. Suppose that {S∗1 , S∗2 , ..., S∗k} ∈
Pk is one k-way partition such that hk = maxi∈[k] c(S

∗
i). Let

A = Span(1S∗1 ,1S∗2 , ...,1S∗k).

Choose a vector x ∈ A ∩ Sp,µ and suppose that it can be written as x =∑
i∈[k] αi1S∗i .

Lemma A.3.5. If x =
∑

i∈[k] αi1S∗i and x ∈ Sp,µ, then

∑
i∈[k]

|αi|pvol(S∗i) = 1.

Proof. As S∗i ∩S∗j = ∅, we have 1 = ‖x‖p`p,µ =
∑

i∈[k] ‖αi1S∗i ‖
p
`p,µ

=
∑

i∈[k] |αi|pvol(S∗i).

136

Arbitrary Submodular Weights

First, consider the following chain of inequalities that leads to an upper

bound for Q̃p(x):

Q̃p(x) =
∑
e

ϑe(fe(x))p =
∑
e

ϑe〈∇fe(x), x〉p =
∑
e

ϑe

∑
i∈[k]

αi〈∇fe(x),1S∗i 〉

p
1)

≤
∑
e

ϑe (min{|e|, k})p−1
∑
i∈[k]

|αi|p|〈∇fe(x),1S∗i 〉|
p (A.8)

2)

≤ (min{max |e|, k})p−1
∑
i∈[k]

|αi|p
∑
e

ϑe(fe(1S∗i))
p

3)

≤ (min{max |e|, k})p−1
∑
i∈[k]

|αi|pvol(∂S∗i)

4)

≤ (min{max |e|, k})p−1

∑
i∈[k] |αi|pvol(∂S∗i)∑
i∈[k] |αi|pvol(S∗i)

≤ (min{max |e|, k})p−1 hk.

Here, 1) follows from |{i ∈ [k]|〈∇fe(x),1S∗i ∩e〉 > 0}| ≤ min{|e|, k} and

Hölder’s inequality; 2) follows from the definition of fe; 3) is a consequence of

the inequality
∑

e ϑe(fe(1S∗i))
p ≤ ∑e ϑewe(Si)

p ≤ ∑e ϑewe(Si) = vol(∂S∗i);

and 4) follows from Lemma A.3.5.

Before establishing the lower bound, we first prove the following lemma.

Lemma A.3.6. For any vector x ∈ RN
≥0\{0} and p ≥ 1, there exists some

θ ≥ 0 such that Θ(x, θ) = {u : x(u) > θ} satisfies

Rp(x) ≥
(

1

τ

)p−1(
c(S)

p

)p
,

where τ = maxv∈[N]
dv
µv

.

Proof. Let us consider the case p > 1 first. For a vector x, we use (x)p to

denote the coordinatewise p-th power operation. Furthermore, let q = p
p−1

.

For a vector x′ ∈ RN , we write the Lovász extension fe(x
′) by only includ-

137

ing arguments that lie in e, i.e.,

fe(x
′) =

|e|−1∑
k=1

we(S
k,e)(x′ik(e) − x′ik+1(e)),

where e = {ik(e)}1≤k≤|e|, x
′
i1(e) ≥ x′i2(e) ≥ · · · ≥ x′i|e|(e) and Sk,e = {ij(e)}1≤j≤k.

Then,

Q1(xp) =
∑
e

ϑefe(x
p) =

∑
e

ϑe

|e|−1∑
k=1

we(S
k,e)(xpik(e) − x

p
ik+1(e))

1)

≤
∑
e

ϑe

|e|−1∑
k=1

we(S
k,e)p(xik(e) − xik+1(e))

(
xik(e)

)p−1
(A.9)

= p
∑
e

|e|−1∑
k=1

ϑ1/p
e we(S

k,e)(xik(e) − xik+1(e))ϑ
1/q
e

(
xik(e)

)p/q
2)

≤ p

∑
e

|e|−1∑
k=1

ϑe
[
we(S

k,e)(xik(e) − xik+1(e))
]p

1
p
∑

e

ϑe

|e|−1∑
k=1

(
xik(e)

)p
1
q

≤ p(Qp(x))
1
p

(∑
v

dvx
p
v

) 1
q

≤ pτ 1− 1
p (Qp(x))

1
p ‖x‖p−1

`p,µ
,

where 1) follows from the fact that a ≥ b ≥ 0 implies ap − bp ≤ p(a− b)ap−1

and 2) is a consequence of Hölder’s inequality. As when p = 1, we naturally

have Q1(x) ≤ Q1(x). For any p ≥ 1, we have

Q1(xp)

‖x‖p`p,µ
≤ pτ 1− 1

p
(Qp(x))

1
p

‖x‖`p,µ
. (A.10)

Moreover, by representing Lovász extension by its integral form [28], we

obtain

Q1(xp) =
∑
e

ϑe

∫ +∞

0

we({v : xpv > θ} ∩ e) dθ

=

∫ +∞

0

ϑe
∑
e

we({v : xpv > θ} ∩ e)dθ.

138

Then,

Q1(xp)

‖x‖p`p,µ
=

∫ +∞
0

ϑe
∑

ewe({v : xpv > θ} ∩ e)dθ∫ +∞
0

µ({v : xpv > θ})dθ
≥ inf

θ≥0

∑
e ϑewe({v : xpv > θ} ∩ e)
µ({v : xpv > θ})

= inf
θ≥0

vol(∂{v : xpv > θ})
vol({v : xpv > θ}) = inf

θ≥0
c({v : xpv > θ}).

Therefore, the minimizer θ∗ induces a set Θ∗ = {v : xpv > θ∗} ⊆ A, for which

the following inequality holds

Rp(x) =
Qp(x)

‖x‖p`p,µ
≥
(
Q1(xp)

‖x‖p`p,µ

)p
1

ppτ p−1
=

(
1

τ

)p−1(
c(Θ∗)

p

)p
.

This proves Lemma A.3.6.

Next, we turn our attention to the first inequality of Theorem 4.3.1.

Suppose λ
(p)
k has a corresponding eigenvector x that induces the strong

nodal domains A1, A2, ..., Am. According to Lemma A.3.4, we know that

λ
(p)
k ≥ Rp(1Ai). Moreover, due to Lemma A.3.6, for any i ∈ [m], there exists

a Bi ⊆ Ai such that

Rp(1Ai) ≥
(

1

τ

)p−1(
c(Bi)

p

)p
.

Therefore,

λ
(p)
k ≥ max

i∈[m]
Rp(1Ai) ≥ max

i∈[m]

(
1

τ

)p−1(
c(Bi)

p

)p
≥ min

(B1,B2,...,Bm)∈Pm
max
i∈[m]

(
1

τ

)p−1(
c(Bi)

p

)p
≥
(

1

τ

)p−1(
hm
p

)p
.

Homogeneous Weights

We can use a similar approach to prove the previous result for homogeneous

weights, i.e., weights such that we(S) = 1 for all S ∈ 2e\{∅, e}. Only several

steps have to be changed.

First, the inequality (A.8) may be tightened. Again, consider the partition

{S∗1 , S∗2 , ..., S∗k} ∈ Pk such that hk = maxi∈[k] c(S
∗
i). For a given hyperedge e,

139

choose a pair of vertices (u∗, v∗) ∈ arg maxu,v∈e |xu − xv|p. If both u, v ∈ S∗i ,
then fe(x) = 0. If not, assume that u ∈ S∗i and v ∈ S∗j . Then,

(fe(x))p = |xu∗ − xv∗ |p ≤ 2p−1(|xu∗ |p + |xv∗|p)
≤ 2p−1(|αi|pfe(1S∗i)

p + |αj|pfe(1S∗j)
p) = 2p−1

∑
i∈[k]

|αi|pfe(1S∗i)
p.

Therefore, in the homogeneous case, we have

Rp(x) ≤ 2p−1hk.

Second, we will use the following lemma to prove the lower bound:

Lemma A.3.7 ([63]). If a, b ≥ 0, p > 1, then

ap − bp ≤ p

21− 1
p

(a− b) (ap + bp)1− 1
p .

So the inequality (A.9) may be tightened as

fe(x
p) = xpi0(e) − x

p
i|e|(e)

≤ p

21− 1
p

(xi0(e) − xi|e|(e))
(
xpi0(e) + xpi|e|(e)

)1− 1
p
.

With these two modifications, we can rewrite inequality (A.10) as

Q1(xp)

‖x‖p`p,µ
≤ p

21− 1
p

τ 1− 1
p

(Qp(x))
1
p

‖x‖`p,µ
,

which leads to

λ
(p)
k ≥

(
2

τ

)p−1(
hm
p

)p
.

A.3.9 Proof of Theorem 4.4.1

First, we prove that λ
(p)
2 ≥ infxRp(x). Suppose that x′ is a nonconstant

eigenvector corresponding to λ
(p)
2 . If λ

(p)
2 = 0, then 〈x′,4p(x

′)〉 = 〈x′, λ(p)
2 Ux′〉 =

0, which implies thatQp(x
′) = 0. Moreover, as x′ is nonconstant, minc∈R ‖x′−

c1‖p`p,µ > 0, and thusRp(x
′) = 0 ≤ λ

(p)
2 . This proves the claim of the theorem

for the case that λ
(p)
2 = 0. Next, suppose that λ

(p)
2 6= 0. First, we observe

that Lemma 4.2.7 implies 0 ∈ ∇cZp,µ(x′, c)|c=0. As Zp,µ(x′, c) is convex in

140

c, c = 0 is a minimizer of Zp,µ(x′, c), i.e., Zp,µ(x′, 0) = Zp,µ(x′). Moreover,

λ
(p)
2 = Rp(x

′) = Qp(x′)
Zp,µ(x′,0)

= Qp(x′)
Zp,µ(x′)

= Rp(x
′). Therefore, λ

(p)
2 ≥ infxRp(x).

Second, we prove that infxRp(x) ≥ λ
(p)
2 . First, we focus on the case p > 1.

For any t1 ∈ R\{0} and t2 ∈ R, it is easy to show thatRp(t1x+t21) = Rp(x).

Therefore, to characterize the infimum of Rp(x), it suffices to consider x ∈
Sp,µ ∩ A, where A = {x ∈ RN |0 ∈ arg minc Zp,µ(x, c)}. For p > 1, Zp,µ(x, c)

is differentiably convex in c. By using formula (A.7) once again, we know

that A = {x ∈ RN |µ+
p (x)− µ−p (x) = 0}. Furthermore, A is closed, since the

functions µ+
p , µ

−
p are continuous. By recalling that Sp,µ is a compact space

we know that there exists a point x∗ ∈ Sp,µ∩A such that x∗ ∈ arg infxRp(x).

Consider next the subspace A′ = {t1x∗ + t21 : t1, t2 ∈ R}. As x∗ being

nonconstant reduces to x∗ 6= c1 for any scalar c ∈ R, we have γ(A∩Sp) = 2.

According to the definition of λ
(p)
2 (4.3), it follows that

λ
(p)
2 ≤ max

x∈A′∩Sp,µ
Qp(x) = max

t1,t2∈R
Qp(

t1x∗ + t21

‖t1x∗ + t21‖`p,µ
) = max

t1,t2∈R

Qp(t1x∗)

‖t1x∗ + t21‖p`p,µ

= max
t1∈R

Qp(t1x∗)

Zp,µ(t1x∗)
= Rp(x∗).

For any a, b ∈ R, we can write Qp(ax+ b1) = |a|pQp(x) and Zp,µ(ax+ b1) =

|a|pZp,µ(x). Combining these expressions with λ
(p)
2 ≥ infxRp(x) shows that

λ
(p)
2 = infxRp(x). This settles the case p > 1.

Next, we turn our attention to proving that minxR1(x) = h2 for p = 1.

This result, combined with the inequality h2 ≥ λ
(1)
2 from Theorem 4.3.1

proves that infxR1(x) = h2 = λ
(1)
2 .

Recall that the 2-way Cheeger constant can be written as

min
S⊂[N]

|∂S|
min{vol(S), vol([N]\S)} .

This expression, along with the fact that infxR1(x) = h2 (which is a special

case of Theorem 1 in [122]), allows one to reduce the proof to showing that

the Lovász extensions of vol(∂S) and min{vol(S), vol([N]\S)} are equal to

Q1(x) and Z1,µ(x), respectively. The claim regarding Q1 naturally follows

from the Definition 4.1.1. We hence only need to show that the Lovász

extension of min{vol(S), vol([N]\S)} equals Z1,µ(x).

For a given x ∈ RN , suppose that xi1 ≥ xi2 ≥ · · · ≥ xiN . Then, the Lovász

141

extension of min{vol(S), vol([N]\S)} can be written as

N∑
k=1

min{
k∑
j=1

µij ,
N∑

j=k+1

µij} (xij − xij+1
). (A.11)

Let k∗ be equal to min
{
k ∈ {1, 2, ..., N} :

∑k
j=1 µij ≥

∑N
j=k+1 µij

}
. In this

case, (A.11) is equivalent to

k∗−1∑
k=1

µik(xik − xik∗) +
N∑

k=k∗+1

µik(xik∗ − xik) = ‖x− xik∗1‖`1,µ = Z1,µ(x),

which establishes the claimed result.

A.3.10 Proof for Theorem 4.4.3

For a vector x ∈ RN , define two vectors x+, x− ∈ RN according to (x+)v =

max{xv, 0} and (x−)v = max{−xv, 0}. Hence, x = x+−x− and x+,−x− ⇀ x.

Then,

Qp(x) =
∑
e

ϑefe(x)p =
∑
e

ϑe[〈∇fe(x), x+〉+ 〈∇fe(x),−x−〉]p

1)
=
∑
e

ϑe[fe(x
+) + fe(−x−)]p

2)
=
∑
e

ϑe[fe(x
+)p + fe(x

−)p] = Qp(x
+) +Qp(x

−),

where in 1) we used Lemma A.1.3, and in 2) we used the fact that fe(x) =

fe(−x) and (a + b)p ≥ ap + bp for a, b ≥ 0, p ≥ 1. Moreover, as Zp,µ(x) =

‖x‖p`p,µ = ‖x+‖p`p,µ + ‖x−‖p`p,µ, we have

Rp(x) ≥ min{Rp(x
+), Rp(x

−)}.

142

By applying Lemma A.3.6 on x+ and x−, and by observing that c(x+), c(x−) ≥
c(x), we have

Rp(x) ≥ min{Rp(x
+), Rp(x

−)} ≥
(

1

τ

)p−1(
min{c(x+), c(x−)}

p

)p
≥
(

1

τ

)p−1(
c(x)

p

)p
,

which concludes the proof.

A.3.11 Proof for Lemma 4.4.4

First, it can be easily shown that Ux ⊥ 1, since∑
v∈[N]

µvxv =
∑
v∈[N]

µv(x
′
v)
Tg = (

∑
v∈[N]

µvx
′
v)
Tg = 0.

Next, we establish a lower bound for ‖x‖2
`2,µ

. For this purpose, we find the

following lemma useful.

Lemma A.3.8 (Lemma 7.7 [8]). Let Y1, Y2, ..., Yk be zero-mean normal

random variables that are not necessarily independent, such that E[
∑

i Y
2
i] =

1. Then,

P

[∑
i

Y 2
i ≥

1

2

]
≥ 1

12
.

We start by observing that

E[‖x‖2
`2,µ

] = E[‖XTg‖2
`2,µ

] =
∑
v∈[N]

µv‖x′v‖2
2 = 1.

From Lemma A.3.8, it follows that

P
[
‖x‖2

`2,µ
≥ 1

2

]
≥ 1

12
. (A.12)

Next, we prove an upper bound for Q2(x). For any e ∈ E, w ∈ E(Be), we

143

have

E

[(
max
y∈E(Be)

〈y, x′〉
)2
]

= E

[(
max
y∈E(Be)

〈
g,

Xy

‖Xy‖2

〉)2

‖Xy‖2
2

]

≤ E

[(
max
y∈E(Be)

〈
g,

Xy

‖Xy‖2

〉)2
]

max
y′∈E(Be)

‖Xy′‖2
2.

(A.13)

Suppose that the hyperedge e contains the following vertices e = {v1, v2, . . . , v|e|}.
Let A = Span(x′v1

− x′v|e| , x′v2
− x′v|e| , ..., x′v|e|−1

− x′v|e|) and let Sn stand for the

unit ball in Rn. Recall n is the dimension of the space to embed the vectors

for SDP relaxation which is no less than ζ(E). Then, given that
∑

v∈e yv = 0

and yu = 0 for u /∈ e, Xy
‖Xy‖2 always lies in A ∩ Sn. Therefore,

E

[(
max
y∈E(Be)

〈
g,

Xy

‖Xy‖2

〉)2
]
≤ E

[(
max

x′∈A∩Sn
〈g, x′〉

)2
]

= dim(A) = |e| − 1.

(A.14)

Combining (A.13) with (A.14), we have

E[(max
y∈E(Be)

〈y, x′〉)2] ≤ (|e| − 1) max
y∈E(Be)

‖Xy‖2
2.

As Q2(x) =
∑

e∈E we(maxy∈E(Be)〈y, x〉)2, using Markov’s inequality, we have

P

(
Q2(x) ≥ 13 ζ(E)

∑
e∈E

max
w′∈E(Be)

‖Y w′‖2
2

)
≤ 1

13
. (A.15)

In addition, applying the union bound to (A.15) and using (A.12), we have

P (R2(x) ≤ 26 SDPopt) ≥ 1

13
, (A.16)

which concludes the proof.

Note that the distortion term O(ζ(E)) is introduced through the inequal-

ities (A.13) and (A.14), which are tight for this case. This may be shown

as follows. Suppose the solution of the SDP produces a collection of vectors

{x′vi}1≤i≤|e| that have the same `2−norm, i.e. ‖x′vi‖2 = a, and are orthogo-

nal in Rn. Let Be denote the base polytope corresponding to a submodular

144

function satisfying we(S) = 2
|e| min{|S ∩ e|, |e| − |S ∩ e|}. Define a subset of

Be, Be,s, as follows:

Be,s ,
{
y ∈ RN ||y({vi})| ≤

2

|e| , y({vi+|e|/2}) = −y({vi}), for 1 ≤ i ≤ |e|/2,

y({v}) = 0, for v /∈ e} .

Then, choosing a y′ in Be,s such that y′({vi}) = 2
|e|

〈g,x′vi−x
′
vi+|e|/2

〉

|〈g,x′vi−x
′
vi+|e|/2

〉| for 1 ≤ i ≤
|e|/2, we obtain

E

[(
max
y∈E(Be)

〈g,Xy〉
)2
]

≥ E
[
〈g,Xy′〉2

]
= E

〈g, ∑
1≤i≤|e|/2

2

|e|
〈g, x′vi − x′vi+|e|/2〉
|〈g, x′vi − x′vi+|e|/2〉|

(x′vi − x′vi+|e|/2)

〉2


≥ 4

|e|2E

 ∑
1≤i≤|e|/2

|〈g, x′vi − x′vi+|e|/2〉|

2

≥ 4

|e|2

 ∑
1≤i≤|e|/2

E|〈g, x′vi − x′vi+|e|/2〉|

2

=
4

|e|2

(
|e|
2
×
√

2a

√
2

π

)2

=
|e|
π

4

|e|a
2

≥ |e|
π
a2 max

y∈E(Be)
‖y‖2 ≥ |e|

π
max
y∈E(Be)

∑
1≤i≤|e|

‖y({vi})xvi‖2
2

=
1

π
|e| max

y∈E(Be)
‖Xy‖2,

where the last equality is using the assumption that {xvi}vi∈e are mutually

orthogonal. Therefore, the Gaussian projection X causes distortion Θ(|e|).

145

A.3.12 Proof of Theorem 4.4.5

By combining Theorem 4.4.1, Theorem 4.4.3, Lemma 4.4.4 and Theorem (4.3.1),

we obtain

c(x) ≤ O(
√
τ)R2(x)1/2 ≤ O(

√
ζ(E) τ)

(
inf
x
R2(x)

)1/2

= O(
√
ζ(E) τ)

(
λ

(2)
2

)1/2

≤ O(
√
ζ(E) τh2) w.h.p.

A.3.13 Proof of Theorem 4.4.6

First, according to Step 3, we have

Q1(zk+1)− λ̂k〈zk+1, gk〉 ≤ Q1(zk)− λ̂k〈zk, gk〉.

It is also straightforward to check that gk satisfies

〈1, gk〉 = 0, 〈xk, gk〉 = ‖xk‖`1,µ.

Therefore,

Q1(xk+1)− λ̂k〈xk+1, gk〉 = Q1(zk+1)− λ̂k〈zk+1, gk〉 ≤ Q1(zk)− λ̂k〈zk, gk〉
= Q1(xk)− λ̂k〈xk, gk〉 = Q1(xk)− λ̂k‖xk‖`1,µ = 0,

which implies

R1(xk+1) ≤ λ̂k
〈xk+1, gk〉
Z1,µ(xk+1)

= λ̂k
〈xk+1, gk〉
‖xk+1‖`1,µ

≤ λ̂k
‖xk+1‖`1,µ‖gk‖`∞,µ−1

‖xk+1‖`1,µ
1)

≤ λ̂k.

Here, 1) follows from Lemma 3.11 which implies ‖gk‖`∞,µ−1 ≤ 1. This proves

the claimed result.

146

A.3.14 Proof of Theorem 4.4.7

If the norm ‖z‖ stands for ‖z‖2, the duality result holds since

min
z:‖z‖2≤1

Q1(z)− λ̂k〈z, gk〉 = min
z

max
λ≥0

max
ye∈ϑeBe

∑
e

〈ye, z〉 − λ̂k〈z, gk〉+
λ

2
(‖z‖2

2 − 1)

= max
ye∈ϑeBe

max
λ≥0

min
z

∑
e

〈ye, z〉 − λ̂k〈z, gk〉+
λ

2
(‖z‖2

2 − 1)

= max
ye∈ϑeBe

max
λ≥0
−‖
∑

e∈E ye − λ̂kgk‖2
2

2λ
− λ

2

= max
ye∈ϑeBe

−‖
∑
e∈E

ye − λ̂kgk‖2.

The relationships between the primal and dual variables read as z =
λ̂kgk−

∑
e∈E ye

λ

and λ = ‖∑e∈E ye − λ̂kgk‖2.

If the norm ‖z‖ stands for ‖z‖∞, let z′ = (z + 1)/2. As Q1(z′) = Q(z)/2

and 〈gk, z′〉 = 〈gk, z〉/2, we have

min
z:‖z‖∞≤1

1

2
[Q1(z)− λ̂k〈z, gk〉] ⇐⇒ min

z′:z′≤[0,1]N
Q1(z′)− λ̂k〈z′, gk〉.

The right-hand side essentially reduces to the following discrete optimization

problem (Proposition 3.7 [28])

min
S⊆[N]

∑
e

ϑewe(S)− λ̂kgk(S),

where the primal and dual variables satisfy z′v = 1, if v ∈ S, or 0 if v 6∈ S.

A.4 Proof for Chapter 5

A.4.1 Proof of Lemma 5.2.2

The first part of the proof follows along the same line as the corresponding

proof of Ene et al. [83] which is based on a submodular auxiliary graph and

the path-augmentation algorithm [123], described in what follows.

Let G = (V,E) be a directed graph such that the vertex set V corresponds

to the elements in [N], and where the arc set may be written as E = ∪r∈[R]Er,

147

with Er corresponding to a complete directed graph on the set of elements

Sr incident to Fr. With each arc (u, v), we associate a capacity value based

on a y′ ∈ B according to c(u, v) , min{fr(S)−y′r(S) : S ⊆ Sr, u ∈ S, v /∈ S}.
Next, we consider a procedure termed path augmentations over G that

sequentially transforms y′ from y′ = y to a point in B that satisfies Ay′ = z;

the vector y′ is kept within B during the whole procedure. Let the set of

source and sink nodes of the graph be defined as N , {v ∈ [N]|(Ay′)v < zv}
and P , {v ∈ [N]|(Ay′)v > zv}, where z is as defined in the statement of

the lemma. If N = P = ∅, we have Ay′ = z. It can be shown that there

always exists a directed path with positive capacity from N to P unless

N = P = ∅ [83]. In each step, we find the shortest directed path, denoted

by Q, with positive capacity from N to P . For each arc (u, v) in Q, if

the arc belongs to Er, we set y′r,u ← y′r,u + ρ, y′r,v ← y′r,v − ρ, where ρ

denotes the smallest capacity of any arc in Q. This procedure ensures that

y′ ∈ B and that the procedure terminates in a finite number of steps, with

N = P = ∅ [123].

The second part of the proof differs from the derivations of Ene et al. [83].

Suppose that {y′(0) = y, y′(1), ..., y′(t)} is a sequence such that y′(i) equals the

vector y′ after the i-th step of the above procedure. We also assume that

Ay′(t) = z, implying that the algorithm terminated at step t. Hence, the

point y′(t) is the desired value of ξ. During path-augmentation, no element

appears in more than two updated arcs. Hence,

‖y′(i) − y′(i−1)‖2,θ ≤
√

2
∑
v

max
r∈[R]:v∈Sr

θr,vρ =
√

2‖θ‖1,∞ρ.

As ‖Ay′(i) − Ay′(i−1)‖1 = 2ρ, we have

‖y′(i) − y′(i−1)‖2,θ ≤
√
‖θ‖1,∞

2
‖Ay′(i) − Ay′(i−1)‖1.

An important observation is that during the path-augmentation procedure,

for each component v ∈ [N], the updated sequence {(Ay′(i))v}i=1,2,..,t con-

verges monotonically to zv. Hence, ‖Ay′(t) − Ay′(0)‖1 =
∑t

i=1 ‖Ay′(i) −

148

Ay′(i−1)‖1. By using the triangle inequality for the norm ‖ · ‖2,θ, we obtain√
‖θ‖1,∞

2
‖z − Ay‖1 =

√
‖θ‖1,∞

2
‖Ay′(t) − Ay′(0)‖1 ≥

t∑
i=1

‖y′(i) − y′(i−1)‖2,θ

≥ ‖y′(t) − y′(0)‖2,θ = ‖y′(t) − y‖2,θ.

Invoking the Cauchy-Schwarz inequality establishes ‖z−Ay‖1 ≤
√
‖w−1‖1‖z−

Ay‖2,w, which concludes the proof.

A.4.2 Proof for Lemma 5.2.3

The equivalence between problem (5.5) and problem (5.4) is easy to establish,

as y is obtained from y′ by simply removing its zero components. The second

statement is proved as follows:

min
y∈B

min
a:Aa=0,ar,i=0, ∀(r,i):i/∈Sr

1

2
‖y − a‖2

2,I(µ)

= min
y∈B

min
a:ar,i=0, ∀(r,i):i/∈Sr

max
λ∈RN

1

2
‖y − a‖2

2,I(µ) − 〈λ,Aa〉

1)
= min

y∈B
max
λ∈RN

min
a∈⊗Rr=1R

N

1

2

∑
r∈[R]

∑
i∈Sr

[µi(yr,i − ar,i)2 − 2λiar,i]

= min
y∈B

max
λ∈RN

1

2

∑
r∈[R]

∑
i∈Sr

[µ−1
i λ2

i − 2λi(µ
−1
i λi + yr,i)]

= min
y∈B

max
λ∈RN

1

2

∑
r∈[R]

∑
i∈Sr

(−µ−1
i λ2

i − 2λiyr,i)

2)
= min

y∈B
max
λ∈RN

−1

2
‖λ‖2

2 − 〈λ,Ay〉

= min
y∈B
‖Ay‖2

2,

where 1) is obtained using the incidence relations yr,i = ar,i = 0 if i /∈ Sr

and 2) holds because µi = |{r ∈ [R]|i ∈ Sr}|. The optimal y, a, λ satisfy

ar,i = yr,i + µ−1
i λi for all i ∈ Sr, r ∈ [R] and λ = −Ay.

149

A.4.3 Proof of Lemma 5.2.5

First, consider a y ∈ B/Ξ. We have dI(µ)(y,Z) = ‖Ay + x∗‖2, since

1

2
dI(µ)(y,Z)2 = min

a∈Z

1

2
‖y − a‖2

2,I(µ)

= min
a:ar,i=0, ∀(r,i):i/∈Sr

max
λ∈RN

1

2
‖y − a‖2

2,I(µ) − 〈λ,Aa+ x∗〉

1)
= max

λ∈RN
min

a∈⊗Rr=1RN

1

2

∑
r∈[R]

∑
i∈Sr

[µi(yr,i − ar,i)2 − 2λiar,i]− 〈λ, x∗〉

= max
λ∈RN

1

2

∑
r∈[R]

∑
i∈Sr

[−µ−1
i λ2

i − λiyr,i]− 〈λ, x∗〉

2)
= max

λ∈RN
−1

2
‖λ‖2

2 − λT (Ay + x∗)

=
1

2
‖Ay + x∗‖2

2,

where 1) is obtained using the incidence relations yr,i = ar,i = 0 if i /∈ Sr and

2) holds because µi = |{r ∈ [R]|i ∈ Sr}|. Based on Lemma 5.2.2, we know

that there exists a ξ ∈ B such that Aξ = −x∗ and

‖y − ξ‖2,I(µ) ≤
√
N‖I(µ)‖1,∞

2
‖Ay + x∗‖2 =

√
N‖µ‖1

2
‖Ay + x∗‖2.

Therefore, κ(y) =
dI(µ)(y,Ξ)

dI(µ)(y,Z)
≤
√

N‖µ‖1
2

.

Next, consider a y ∈ Z/Ξ. As B is compact, there exists a y′ ∈ B that

achieves dI(µ)(y,B) = ‖y− y′‖2,I(µ). Based on Lemma 3.1, we also know that

there exists a ξ ∈ B such that Aξ = −x∗ and

‖ξ − y′‖2,I(µ) ≤
√
‖I(µ)‖1,∞

2
‖Ay′ + x∗‖1 =

√
‖µ‖1

2
‖Ay′ + x∗‖1.

Moreover, we have

‖Ay′ + x∗‖1 =‖Ay′ − Ay‖1 ≤ ‖y′ − y‖1 =
∑
v∈[N]

∑
r:v∈Sr

|y′r,v − yr,v|

≤
∑
v∈[N]

[
µv
∑
r:v∈Sr

(y′r,v − yr,v)2

] 1
2

≤
√
N‖y′ − y‖2,I(µ).

As ξ ∈ Ξ, it holds that dI(µ)(y,Ξ) ≤ ‖ξ−y‖2,I(µ) ≤ ‖y′−y‖2,I(µ)+‖y′−ξ‖2,I(µ).

150

In addition, as

‖y′ − ξ‖2,I(µ) ≤
√
δs

2
‖Ay′ + x∗‖1 ≤

√
N‖µ‖1

2
‖y′ − y‖2,I(µ),

we know that dI(µ)(y,Ξ) ≤ (1 +
√

N‖µ‖1
2

)‖y′ − y‖2,I(µ). Therefore,

κ(y) =
dI(µ)(y,Ξ)

dI(µ)(y,B)
≤
(

1 +

√
N‖µ‖1

2

)
,

which concludes the proof.

A.4.4 Proof of Lemma 5.2.10

Choose z = Ay∗ in Lemma 5.2.2. Then, there is a ξ ∈ B such that ‖Ay −
Ay∗‖2 ≥ 2

N‖θP ‖1,∞‖y − ξ‖
2
2,θP . Moreover as Aξ = z = Ay∗ = −x∗, we also

have ξ ∈ Ξ. Therefore, ‖y− ξ‖2
2,θP ≥ ‖y−y∗‖2

2,θP , which concludes the proof.

A.4.5 Proof for Theorem 5.2.11

First, given a group of blocks C and y ∈ ⊗Rr=1RN , we define y[C] ∈ ⊗Rr=1RN

as

(y[C])r =

{
yr if r ∈ C,

0 if r 6∈ C.

The following lemma holds.

Lemma A.4.1. Let C be a group of blocks sampled according to a α−proper

distribution P . Then, for any y ∈ ⊗Rr=1RN and yr,i = 0, whenever i /∈ Sr,

one has

EC∼P (‖y[C]‖2
2,I(µC)) = EC∼P (‖y[C]‖2

2,θP).

151

Proof.

EC∼P (‖y[C]‖2
2,I(µC)) = EC∼P (

∑
r∈C

‖yr‖2
2,µC) =

∑
r∈[R]

EC∼P
[
‖yr‖2

2,µC1r∈C
]

=
∑
r∈[R]

E
[
1r∈CEC∼P

[
‖yr‖2

2,µC |r ∈ C
]]

=
∑
r∈[R]

E
[
1r∈C‖yr‖2

2,θPr

]
=EC∼P (‖y[C]‖2

2,θP).

Next, we turn our attention to the proof of the theorem. For this purpose,

suppose that y∗ = arg miny∈Ξ ‖y − y(k)‖2,θP . We start by establishing the

following results.

Lemma A.4.2. It can be shown that

〈∇g(y(k)), y∗ − y(k)〉
1)

≤ g(y∗)− g(y(k))− 1

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP

2)

≤ 4

N‖θP‖1,∞ + 2

[
g(y∗)− g(y(k))− 1

2
‖y(k) − y∗‖2

2,θP

]
.

(A.17)

Proof. From Lemma 3.8 we can infer that

‖Ay(k) − Ay∗‖2
2 ≥

2

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP ⇒

g(y∗) ≥ g(y(k)) + 〈∇g(y(k)), y∗ − y(k)〉+
1

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP , (A.18)

g(y(k)) ≥ g(y∗) + 〈∇g(y∗), y(k) − y∗〉+
1

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP . (A.19)

As 〈∇g(y∗), y(k) − y∗〉 ≥ 0, (A.30) gives

g(y∗)− g(y(k)) ≤ − 1

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP . (A.20)

The inequality (A.29) yields claim 1) in (A.28). Claim 2) in (A.28) follows

from (A.31).

The following lemma is a direct consequence of the optimality of y
(k+1)
r for

an oblique projection.

152

Lemma A.4.3.

〈∇rg(y(k)), y(k+1)
r − y∗r〉 ≤ 〈y(k)

r − y(k+1)
r , y(k+1)

r − y∗r〉θPr .

The following lemma follows from a simple manipulation of the Euclidean

norm.

Lemma A.4.4.

1

2
‖y(k+1)

r − y(k)
r ‖2

2,θPr

=
1

2
‖y(k+1)

r − y∗r‖2
2,θPr

+
1

2
‖y∗r − y(k)

r ‖2
2,θPr

+ 〈y(k+1)
r − y∗r , y∗r − y(k)

r 〉θPr

=− 1

2
‖y(k+1)

r − y∗r‖2
2,θPr

+
1

2
‖y∗r − y(k)

r ‖2
2,θPr

+ 〈y(k+1)
r − y∗r , y(k+1)

r − y(k)
r 〉θPr .

Let us analyze next the amount by which the objective function decreases

153

in each iteration. The following expectation is with respect to Cik ∼ P .

E
[
g(y(k+1))

]
(A.21)

1)

≤ g(y(k)) + E

∑
r∈Cik

[
〈∇rg(y(k)), y(k+1)

r − y(k)
r 〉+

1

2
‖y(k+1)

r − y(k)
r ‖2

2,µ
Cik
r

]
2)
= g(y(k)) + E

∑
r∈Cik

[
〈∇rg(y(k)), y(k+1)

r − y(k)
r 〉+

1

2
‖y(k+1)

r − y(k)
r ‖2

2,θPr

]
= g(y(k)) + E

∑
r∈Cik

[
〈∇rg(y(k)), y∗r − y(k)

r 〉+ 〈∇rg(y(k)), y(k+1)
r − y∗r〉

+
1

2
‖y(k+1)

r − y(k)
r ‖2

2,θPr

]}
3)

≤ g(y(k)) + E

∑
r∈Cik

[
〈∇rg(y(k)), y∗r − y(k)

r 〉 −
1

2
‖y(k+1)

r − y∗r‖2
2,θPr

+
1

2
‖y∗r − y(k)

r ‖2
2,θPr

]}
= g(y(k)) + α〈∇g(y(k)), y∗ − y(k)〉 − E

[
1

2
‖y(k+1)

[Cik] − y∗[Cik]‖2
2,θP

]
+ E

[
1

2
‖y(k)

[Cik] − y∗[Cik]‖2
2,θP

]
4)
= g(y(k)) + α〈∇g(y(k)), y∗ − y(k)〉 − E

[
1

2
‖y(k+1) − y∗‖2

2,θP

]
+ E

[
1

2
‖y(k) − y∗‖2

2,θP

]
5)

≤ g(y∗)− E
[

1

2
‖y(k+1) − y∗‖2

2,θP

]
+

[
1− 4α

N‖θP‖1,∞ + 2

]{
g(y(k))− g(y∗)− 1

2
‖y(k) − y∗‖2

2,θP

}
,

(A.22)

where 1) follows from inequality (5.9), 2) holds due to Lemma A.4.1, 3) is a

consequence of Lemma A.5.4 and Lemma A.5.5, 4) is due to y
(k+1)
r = y

(k)
r for

r /∈ Cik , and 5) may be established from (A.28).

Equation (A.41) further establishes that

E
[
g(y(k+1))− g(y∗) +

1

2
d2
θP (yk+1, ξ)

]
≤E

[
g(y(k+1))− g(y∗) +

1

2
‖y(k+1) − y∗‖2

2,θP

]
≤
(

1− 4α

N‖θP‖1,∞ + 2

)
E
[
g(y(k))− g(y∗) +

1

2
d2
θP (yk, ξ)

]
.

154

The proof follows by repeating the derivations for all k.

A.4.6 Proof of Lemma 5.2.12

According to the definition of θP , we have

max
r∈[R]:i∈Sr

θPr,i = max
r∈[R]:i∈Sr

EC∼P
[
µCi |r ∈ C

]
= max

r∈[R]:i∈Sr
EC∼P

 ∑
r′∈[R]:i∈Sr′

1r′∈C |r ∈ C


= max

r∈[R]:i∈Sr

∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C] (A.23)

=
1

α
max

r∈[R]:i∈Sr

∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C, r ∈ C]

≥ 1

αµi

∑
r,r′∈[R]:i∈Sr,Sr′

PC∼P [r′ ∈ C, r ∈ C]

=
1

αµi
EC∼P [|{(r, r′) ∈ C × C : i ∈ Sr, i ∈ Sr′}|]

=
1

αµi
EC∼P

[
(µCi)2

]
≥ 1

αdi

[
EC∼P (µCi)

]2
=

1

αdi

∑
C

∑
r∈[R]:i∈Sr

1r∈CP(C)

2

=
1

αµi

 ∑
r∈[R]:i∈Sr

PC∼P [r ∈ C]

2

=
1

αµi
(αµi)

2 = αµi.

From (A.23), we also have
∑

r′∈[R]:i∈Sr′
PC∼P [r′ ∈ C|r ∈ C] ≥ PC∼P [r ∈ C|r ∈ C] =

1, which proves the claimed result.

A.4.7 Proof of Lemma 5.2.13

Similar to what was established for (A.23), one can show that

θPr,i =
∑

r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C] .

155

Consider next the right-hand side of this equation for α = K
R

. In this case,

for some r and some i ∈ Sr, we have∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C] = PC∼P [r ∈ C|r ∈ C]

+
∑

r′∈[R]:i∈Sr′ ,r′ 6=r

PC∼P [r′ ∈ C|r ∈ C]

= 1 +
R

K

∑
r′:i∈Sr′ ,r′ 6=r

PC∼P [r′ ∈ C, r ∈ C]

= 1 +
R

K
(µi − 1)

(
R−2
K−2

)(
R
K

) = 1 +
K − 1

R− 1
(µi − 1).

Therefore, θPr,i = K−1
R−1

µi + R−K
R−1

when P is a uniform distribution.

A.4.8 Proof of Theorem 5.2.14

We start by establishing a number of background results.

The following lemma is due to the optimality of z
(k+1)
r .

Lemma A.4.5.

〈∇rg(p(k)), z(k+1)
r − y∗r〉 ≤

λk
α
〈z(k)
r − z(k+1)

r , z(k+1)
r − y∗r〉θPr .

Once again, one can easily establish the following result pertaining to the

Euclidean norm.

Lemma A.4.6.

1

2
‖z(k+1)

r −z(k)
r ‖2

2,θPr
=

1

2
‖z(k+1)

r − y∗r‖2
2,θPr

+
1

2
‖y∗r − z(k)

r ‖2
2,θPr

+ 〈z(k+1)
r − y∗r , y∗r − z(k)

r 〉θPr
=− 1

2
‖z(k+1)

r − y∗r‖2
2,θPr

+
1

2
‖y∗r − z(k)

r ‖2
2,θPr

+ 〈z(k+1)
r − y∗r , z(k+1)

r − z(k)
r 〉θPr .

The next result follows from the convexity property of the function g.

156

Lemma A.4.7.

λk〈∇g(p(k)), y∗ − z(k)〉 = 〈∇g(p(k)), λky
∗ − λkz(k)〉

= 〈∇g(p(k)), λky
∗ − (p(k) − (1− λk)y(k))〉

= λk〈∇g(p(k)), y∗ − p(k)〉+ (1− λk)〈∇g(p(k)), y(k) − p(k)〉
≤ λk

[
g(y∗)− g(p(k))

]
+ (1− λk)

[
g(y(k))− g(p(k))

]
.

We are now ready to analyze the decrease of the objective function in each

iteration of Algorithm 5.2. The expectation in the following equations is

performed with respect to Cik ∼ P .

E
[
g(y(k+1))

]
1)

≤ g(p(k)) +
λk
α
E

∑
r∈Cik

[
〈∇rg(p(k)), z(k+1)

r − z(k)
r 〉+

λk
2α
‖z(k+1)

r − z(k)
r ‖2

2,µC

]
2)
= g(p(k)) +

λk
α
E

∑
r∈Cik

[
〈∇rg(p(k)), z(k+1)

r − z(k)
r 〉+

λk
2α
‖z(k+1)

r − z(k)
r ‖2

2,θPr

]
= g(p(k)) +

λk
α
E

∑
r∈Cik

[
〈∇rg(p(k)), y∗r − z(k)

r 〉+ 〈∇rg(p(k)), z(k+1)
r − z∗r 〉

+
λk
2α
‖z(k+1)

r − z(k)
r ‖2

2,θPr

]}
3)

≤ g(p(k)) +
λk
α
E

∑
r∈Cik

[
〈∇rg(p(k)), y∗r − z(k)

r 〉 −
λk
2α
‖z(k+1)

r − y∗r‖2
2,θPr

+
λk
2α
‖y∗r − z(k)

r ‖2
2,θPr

]}
= g(p(k)) + λk〈∇g(p(k)), y∗ − z(k)〉

+
λ2
k

2α2
E
[
‖z(k)

[Cik] − y∗[Cik]‖2
2,θP − ‖z

(k+1)
[Cik] − y∗[Cik]‖2

2,θP

]
4)
= g(p(k)) + λk〈∇g(p(k)), y∗ − z(k)〉+

λ2
k

2α2
E
[
‖z(k) − y∗‖2

2,θP − ‖z(k+1) − y∗‖2
2,θP

]
5)
= g(y∗) + (1− λk)

[
g(y(k))− g(y∗)

]
+

λ2
k

2α2

{
‖z(k) − y∗‖2

2,θP − E
[
‖z(k+1) − y∗‖2

2,θP

]}
, (A.24)

where 1) follows from (5.9), 2) may be deduced from Lemma A.4.1, 3) is a

157

consequence of Lemma A.4.5 and Lemma A.4.6, 4) is due to the fact that

y
(k+1)
r = y

(k)
r for r /∈ Cik , and 5) follows from Lemma A.4.7.

Based on the definition of {λk}k≥0, we also have

1− λk
λ2
k

=
1

λ2
k−1

, 0 < λk+1 ≤ λk ≤
2

k + 2/λ0

=
2

k + 2
. (A.25)

Hence, combining the above expression with (A.24), for k ∈ [1, 2
α
d
√
N‖θP‖1,∞e+

1], we have

E
[

1− λk
λ2
k

[
g(y(k))− g(y∗)

]
+

1

2α2
‖z(k) − y∗‖2

2,θP

]
= E

[
1

λ2
k−1

[
g(y(k))− g(y∗)

]
+

1

2α2
‖z(k) − y∗‖2

2,θP

]
≤ E

[
1− λk−1

λ2
k−1

[
g(y(k−1))− g(y∗)

]
+

1

2α2
‖z(k−1) − y∗‖2

2,θP

]
≤ · · · ≤ (1− λ0)

λ2
0

[
g(y(0))− g(y∗)

]
+

1

2α2
‖z(0) − y∗‖2

2,θP . (A.26)

Lemma 5.2.10 implies the strong convexity property as

‖Ay(k) − Ay∗‖2
2 ≥

2

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP ⇒

g(y(k))− g(y∗) ≥ 〈∇g(y∗), y(k) − y∗〉+
1

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP

1)

≥ 1

N‖θP‖1,∞
‖y(k) − y∗‖2

2,θP . (A.27)

Here, 1) holds since y∗ is an optimal solution of miny g(y) and thus 〈∇g(y∗), y(k)−
y∗〉 ≥ 0.

Combining (A.25), (A.26) and (A.27), we obtain

E
[
g(y(k))− g(y∗)

]
≤ λ2

k−1

[
1− λ0

λ2
0

(g(y(0))− g(y∗)) +
1

2α2
‖y(0) − y∗‖2

2,θP

]
≤
(

2

k + 1

)2
1

2α2
‖y(0) − y∗‖2

2,θP

≤
(

2

k + 1

)2
N‖θP‖1,∞

2α2
(g(y(0))− g(y∗)).

158

Therefore, for k =

⌈
(1 + c)

√
2N‖θP ‖1,∞

α
+ c

⌉
, we have

E

g(y

(⌈
(1+c)

√
2N‖θP ‖1,∞

α
+c

⌉)
)− g(y∗)

 ≤ 1

1 + c
(g(y(0))− g(y∗)).

For each value of k = l ×
⌈

(1 + c)

√
2N‖θP ‖1,∞

α
+ c

⌉
, l ∈ Z≥0, the values z(k),

λk are reinitialized. Using a similar proof as above, we have

E

g(y

(
(l+1)×

⌈
(1+c)

√
2N‖θP ‖1,∞

α
+c

⌉)
)− g(y∗)


≤ 1

1 + c

g(y

(
l×
⌈

(1+c)

√
2N‖θP ‖1,∞

α
+c

⌉)
)− g(y∗)

 .
Therefore,

E

g(y

(
l

⌈
(1+c)

√
2N‖θP ‖1,∞

α
+c

⌉)
)− g(y∗)

 ≤ 1

(1 + c)l
(g(y(0))− g(y∗)).

This concludes the proof.

A.4.9 Avoiding full-dimensional vector operations for parallel
ACDM

Algorithm 5.2 can be implemented without full-dimensional vector opera-

tions. In each step, only those coordinates within the blocks in C are updated.

Consequently, one only needs to replace p(k) and y(k) with p(k) = z(k) +λ2
ku

(k)

and y(k) = z(k) +λ2
k−1u

(k), where u(k) is a new variable described in Algorithm

A.1.

159

Algorithm A.1: Parallel ACDM (an efficient implementation)
Input: B, α
0: Initialize z(0) ∈ B, u(0) ← 0 ∈ RN , k ← 0.
1: Do the following steps iteratively until the dual gap < ε:

2: If k = l

⌈
(1 + c)

√
2N‖θP ‖1,∞

α
+ c

⌉
for some l ∈ Z and c > 0,

z(k) ← z(k) + λ2
k−1u

(k), u(k) ← 0, λk ← 1
3: Sample one set Cik according to a α-proper distribution P
4: For r ∈ Cik :
5: 4zr ← arg min4z+z(k)

r ∈Br
‖4z + α

λk
(θPr)−1 �∇rg(z(k) + λ2

ku
(k))‖2

2,θPr

6: z
(k+1)
r ← z

(k)
r +4zr

7: u
(k+1)
r ← u

(k)
r + λk−α

αλ2
k
4zr

8: λk+1 ←
√
λ4
k+4λ2

k−λ
2
k

2

9: k ← k + 1
10: Output y(k)

A.5 Proof for Chapter 6

A.5.1 Proofs of the results pertaining to the dual formulation

Proof of Lemma 6.1.1

In all derivations that follow, we may exchange the order of minimization

and maximization (i.e., min max = max min) due to Proposition 2.2 [124].

Plugging equation (6.2) into (6.1), we obtain

min
x

∑
r∈[R]

[fr(x)]2 + ‖x− a‖2
W

= min
x

max
φr≥0,yr∈φrBr

∑
r∈[R]

[
〈yr, x〉 −

φ2
r

4

]
+ ‖x− a‖2

W

= max
φr≥0,yr∈φrBr

min
x

∑
r∈[R]

[
〈yr, x〉 −

φ2
r

4

]
+ ‖x− a‖2

W

= max
φr≥0,yr∈φrBr

−1

4
‖
∑
r∈[R]

yr − 2Wa‖2
W−1 − 1

4

∑
r

φ2
r + ‖a‖2

W .

By eliminating some constants, one obtains the dual (6.3).

Next, we prove that the problem (6.4) is equivalent to (6.3) when removing

λr.

160

First, (6.4) is equivalent to

min
φr≥0,yr∈φrBr,λr

max
λ

∑
r∈[R]

[
‖yr −

λr√
R
‖2
W−1 + φ2

r

]
+

〈
λ,
∑
r∈[R]

λr − 2Wa

〉

= min
φr≥0,yr∈φrBr

max
λ

min
λr

∑
r∈[R]

[
‖yr −

λr√
R
‖2
W−1 + φ2

r

]
+

〈
λ,
∑
r∈[R]

λr − 2Wa

〉

= min
φr≥0,yr∈φrBr

max
λ

∑
r∈[R]

[
1

4
‖λ‖2

W + φ2
r

]
+

〈
λ,
√
R
∑
r∈[R]

(yr −
1

2
Wλr)− 2Wa

〉

= min
φr≥0,yr∈φrBr

max
λ
−R

4
‖λ‖2

W +
√
R

〈
λ,
∑
r∈[R]

yr − 2Wa

〉
+
∑
r∈[R]

φ2
r

= min
φr≥0,yr∈φrBr

‖
∑
r∈[R]

yr − 2Wa‖2
W−1 +

∑
r∈[R]

φ2
r,

which is equivalent to (6.3).

Proof of Lemma 6.1.2

We start by recalling the following lemma from [70] that characterizes the

geometric structure of the product base polytope.

Lemma A.5.1 ([70]). Assume that W ∈ RN×N is a positive diagonal matrix.

Let y ∈ ⊗r∈[R] φ
′
rBr and let s be in the base polytope of the submodular

function
∑

r φ
′
rFr. Then, there exists a point y′ ∈ ⊗r∈[R] φ

′
rBr such that∑

r∈[R] y
′
r = s and ‖y′ − y‖I(W) ≤

√∑N
i=1 Wii

2
‖∑r∈[R] yr − s‖1.

Lemma A.5.1 cannot be used directly to prove Lemma 6.1.2, since y, y′

are in different product base polytopes,
⊗

r∈[R] φrBr and
⊗

r∈[R] φ
′
rBr, re-

spectively. However, the following lemma shows that one can transform y to

lie in the same base polytopes that contains y′.
Lemma A.5.2. For a given feasible point (y, φ) ∈⊗r∈[R]Cr, and a nonneg-

ative vector φ′ = (φr) ∈
⊗

r∈[R] R≥0, one has

‖
∑
r∈[R]

yr − s‖1 +
ρ

2
‖φ′ − φ‖ ≥ ‖

∑
r∈[R]

φ′r
φr
yr − s‖1.

Proof. For all r, let ỹr = yr/φr ∈ Br, and define a function that depends on

161

φ,

h(φ) = ‖
∑
r∈[R]

yr − s‖1 = ‖
∑
r∈[R]

φrỹr − s‖1.

For all φ and r, |∇φrh(φ)| ≤ ‖ỹr‖1. Therefore,

h(φ′) = h(φ) +

∫ 1

t=0

〈∇h|φ+t(φ′−φ), t(φ
′ − φ)〉dt

≥ h(φ)− maxt∈[0,1] ‖∇h|φ+t(φ′−φ)‖
2

‖φ′ − φ‖

≥ h(φ)−
maxỹr∈Br,∀r

√∑
r∈[R] ‖ỹr‖2

1

2
‖φ′ − φ‖ = h(φ)− ρ

2
‖φ′ − φ‖.

Combining Lemma A.5.2 with Lemma A.5.1, we can establish the claim

of Lemma 6.1.2.

First, let ρ(W (1)) = maxy∈⊗r∈[R] Br

√∑
r∈[R] ‖yr‖2

Wr
. Suppose that y′ ∈⊗

r∈[R] φ
′
rBr is such that

∑
r∈[R] y

′
r = s and it minimizes

∑
r∈[R] ‖φ

′
r

φr
yr −

y′r‖2
W (1) . As s lies in the base polytope of

∑
r∈[R] φ

′
rFr, we know that such an

y′ exists. Moreover, we have

‖y − y′‖I(W (1)) ≤
∑
r∈[R]

‖y′r −
φ′r
φr
yr‖W (1) +

∑
r∈[R]

‖yr −
φ′r
φr
yr‖W (1)

1)

≤

√∑
i∈[N] W

(1)
ii

2
‖
∑
r∈[R]

φ′r
φr
yr − s‖1 + ρ(W (1))‖φ′ − φ‖

2)

≤

√∑
i∈[N] W

(1)
ii

2

‖∑
r∈[R]

yr − s‖1 +
ρ

2
‖φ′ − φ‖

+ ρ(W (1))‖φ′ − φ‖

=

√∑
i∈[N] W

(1)
ii

∑
j∈[N] 1/W

(2)
jj

2
‖
∑
r∈[R]

yr − s‖W (2)

+


√∑

i∈[N] W
(1)
ii

2

ρ

2
+ ρ(W (1))

 ‖φ′ − φ‖
3)

≤

√∑
i∈[N] W

(1)
ii

∑
j∈[N] 1/W

(2)
jj

2
‖
∑
r∈[R]

yr − a‖W (2) +
3

2

√∑
i∈[N] W

(1)
ii

2
ρ‖φ′ − φ‖,

162

where 1) follows from Lemma A.5.1 and the definition of ρ(W (1)), 2) is a

consequence of Lemma A.5.2 and 3) holds because∑
i∈[N]

W
(1)
ii

∑
r∈[R]

‖yr‖2
1 ≥

∑
r∈[R]

‖yr‖2
Wr
.

A.5.2 Proof for the linear convergence rate of the RCD
algorithm

Proof of Lemma 6.2.1

If (y∗, φ∗) is the optimal solution, then it must hold that
∑

r∈[R] y
∗
r = 2W (a−

x∗) because of the duality between the primal and dual variables. Moreover,

we also know that there must exist a nonempty collection Y of points y′ ∈⊗
r∈[R] φ

∗
rBr such that

∑
r∈[R] y

′
r =

∑
r∈[R] y

∗
r . Using Lemma 6.1.2, and setting

φ′ = φ∗, s = 2W (a − x∗), W (1),W (2) = W−1, we can show that there exists

some y′ ∈ Y such that

‖y − y′‖2
I(W−1) + ‖φ− φ∗‖2 ≤ µ(W−1,W−1)

‖∑
r∈[R]

(yr − y′r)‖2
W−1 + ‖φ− φ∗‖2

 .
According to the definition of y∗, one has ‖y− y∗‖2

I(W−1) ≤ ‖y− y′‖2
I(W−1) for

y′ ∈ Y . This concludes the proof.

Proof of Theorem 6.2.2

First, suppose that (y∗, φ∗) = arg min(y′,φ′)∈Ξ ‖y(k) − y′‖2
I(W−1) + ‖φ(k) − φ′‖2.

Throughout the proof, for simplicity, we use µ to denote µ(W−1,W−1). We

start by establishing the following results.

163

Lemma A.5.3. It can be shown that the following inequalities hold:

〈∇g(y(k), φ(k)), (y∗ − y(k), φ∗ − φ(k))〉
1)

≤ g(y∗, φ∗)− g(y(k), φ(k))− 1

µ

(
‖y(k) − y∗‖2

I(W−1) + ‖φ(k) − φ∗‖2
)

2)

≤ 2

µ+ 1

[
g(y∗, φ∗)− g(y(k), φ(k))− ‖y(k) − y∗‖2

I(W−1) − ‖φ(k) − φ∗‖2
]
.

(A.28)

Proof. From Lemma 6.2.1, we can infer that

‖
∑
r∈[R]

(yr − y∗r)‖2
W−1 + ‖φ− φ∗‖2 ≥ 1

µ

[
‖y − y∗‖2

I(W−1) + ‖φ− φ∗‖2
]
⇒

g(y∗, φ∗) ≥ g(y(k), φ(k)) + 〈∇g(y(k), φ(k)), (y∗ − y(k), φ∗ − φ(k))〉

+
1

µ

[
‖y − y∗‖2

I(W−1) + ‖φ− φ∗‖2
]
, (A.29)

g(y(k), φ(k)) ≥ g(y∗, φ∗) + 〈∇g(y∗, φ∗), (y(k) − y∗, φ(k) − φ∗)〉

+
1

µ

[
‖y − y∗‖2

I(W−1) + ‖φ− φ∗‖2
]
. (A.30)

As 〈∇g(y∗, φ∗), (y(k) − y∗, φ(k) − φ∗)〉 ≥ 0, (A.30) gives

g(y∗, φ∗)− g(y(k), φ(k)) ≤ − 1

µ

[
‖y − y∗‖2

I(W−1) + ‖φ(k) − φ∗‖2
]
. (A.31)

Inequality (A.29) establishes Claim 1) in (A.28). Claim 2) in (A.28) follows

from (A.31).

The following lemma is a direct consequence of the optimality of y
(k+1)
r as

the projection ΠCr .

Lemma A.5.4. One has

〈∇rg((y(k), φ(k))), (y(k+1)
r − y∗r , φ(k+1)

r − φ∗r)〉
≤ 2〈y(k)

r − y(k+1)
r , y(k+1)

r − y∗r〉W−1 + 2〈φ(k)
r − φ(k+1)

r , φ(k+1)
r − φ∗r〉.

The following lemma follows from a simple manipulation of the Euclidean

norm.

164

Lemma A.5.5. It holds that

‖y(k+1)
r − y(k)

r ‖2
W−1 + (φ(k+1)

r − φ(k)
r)2

= ‖y(k+1)
r − y∗r‖2

W−1 + (φ(k+1)
r − φ∗r)2 + ‖y(k)

r − y∗r‖2
W−1 + (φ(k)

r − φ∗r)2

+ 2〈y(k+1)
r − y∗r , y∗r − y(k)

r 〉W−1 + 2〈φ(k+1)
r − φ∗r, φ∗r − φ(k)

r 〉
= −‖y(k+1)

r − y∗r‖2
W−1 − (φ(k+1)

r − φ∗r)2 + ‖y(k)
r − y∗r‖2

W−1 + (φ(k)
r − φ∗r)2

+ 2〈y(k+1)
r − y∗r , y(k+1)

r − y(k)
r 〉W−1 + 2〈φ(k+1)

r − φ∗r, φ(k+1)
r − φ(k)

r 〉.

Our next task is to determine how the objective function decreases in each

iteration. The following expectation is with respect to uniformly sampled

values of r ∈ [R] in the k-th iteration:

E
[
g(y(k+1), φ(k+1))

]
− g(y(k), φ(k))

= E
[
〈∇rg(y(k), φ(k)), (y(k+1)

r − y(k)
r , φ(k+1)

r − φ(k)
r)〉

+‖y(k+1)
r − y(k)

r ‖2
W−1 + (φ(k+1)

r − φ(k)
r)2

]
= E

[
〈∇rg(y(k), φ(k)), (y∗r − y(k)

r , φ∗r − φ(k)
r)〉

+〈∇rg(y(k), φ(k)), (y(k+1)
r − y∗r , φ(k+1)

r − φ∗r)〉
+‖y(k+1)

r − y(k)
r ‖2

W−1 + (φ(k+1)
r − φ(k)

r)2
]

1)

≤ E
[
〈∇rg(y(k), φ(k)), (y∗r − y(k)

r , φ∗r − φ(k)
r)〉 − ‖y(k+1)

r − y∗r‖2
W−1 + ‖y∗r − y(k)

r ‖2
W−1

−(φ(k+1)
r − φ∗r)2 + (φ∗r − φ(k)

r)2
]

2)

≤ 1

R
〈∇g(y(k), φ(k)), (y∗ − y(k), φ∗ − φ(k))〉

− E
[
‖y(k+1) − y∗‖2

I(W−1) + ‖φ(k+1) − φ∗‖2
]

+ ‖y(k) − y∗‖2
I(W−1) + ‖φ(k) − φ∗‖2 (A.32)

3)

≤ 2

(µ+ 1)R

[
g(y∗, φ∗)− g(y(k), φ(k))

]
+

(
1− 2

(µ+ 1)R

)[
‖y(k) − y∗‖2

I(W−1) + ‖φ(k) − φ∗‖2
]

− E
[
‖y(k+1) − y∗‖2

I(W−1) + ‖φ(k+1) − φ∗‖2
]
. (A.33)

Here, 1) is a consequence of Lemma A.5.4 and Lemma A.5.5, 2) is due to

y
(k+1)
r′ = y

(k)
r′ , φ

(k+1)
r′ = φ

(k)
r′ for r′ 6= r, and 3) may be established from (A.28).

165

Equation (A.41) further leads to

E
[
g(y(k+1), φk+1)− g(y∗, φ∗) + d2((y(k+1), φ(k+1)),Ξ)

]
≤ E

[
g(y(k+1), φk+1)− g(y∗, φ∗) + ‖y(k+1) − y∗‖2

I(W−1) + ‖φ(k+1) − φ∗‖2
I(W−1)

]
≤

[
1− 2

(µ+ 1)R

]
E
[
g(y(k), φk)− g(y∗, φ∗) + d2((y(k), r(k)),Ξ)

]
.

The claimed proof follows by iterating the above derivations for all values of

k.

A.5.3 Convergence analysis of the AP algorithm

Proof of Lemma 6.2.3

First, for r ∈ [R], we define a diagonal matrix Ar ∈ RN×N : (Ar)ii = 1, if

i ∈ Sr, and 0 otherwise. Start with a Lagrangian dual of (6.8), and transform

it according to

min
(y,φ)∈

⊗
r∈[R] Cr

min
Λ:λr,i=0,∀(i,r) 6∈S

max
α∈RN

∑
r∈[R]

[
‖yr − λr‖2

ΨW−1 + φ2
r

]
+ 〈α,

∑
r∈[R]

λr − 2Wa〉

= min
(y,φ)∈

⊗
r∈[R] Cr

max
α∈RN

min
Λ:λr,i=0,∀(i,r) 6∈S

∑
r∈[R]

[
‖yr − λr‖2

ΨW−1 + φ2
r

]
+ 〈α,

∑
r∈[R]

λr − 2Wa〉

1)
= min

(y,φ)∈
⊗
r∈[R] Cr

max
α∈RN

∑
r∈[R]

[
1

4
‖ArΨ−1Wα‖2

ΨW−1 + φ2
r

]

+

〈
α,
∑
r∈[R]

(
yr −

1

2
ArΨ

−1Wα

)
− 2Wa

〉
2)
= min

(y,φ)∈
⊗
r∈[R] Cr

max
α∈RN

−1

4
‖α‖2

W +

〈
α,
∑
r∈[R]

yr − 2Wa

〉
+
∑
r∈[R]

φ2
r

= min
(y,φ)∈

⊗
r∈[R] Cr

‖
∑
r∈[R]

yr − 2Wa‖2
W−1 +

∑
r∈[R]

φ2
r.

166

Here, 1) is due to λr = yr − 1
2
ArΨ

−1Wα while 2) is based on the fact that

Ψ =
∑

r∈[R] Ar. This establishes the claimed result.

Proof of Lemma 6.2.6

Suppose that (y, φ) ∈ C/Ξ. Then,

[dΨW−1((y, φ),Z)]2 = min
λr,∀r∈[R]

∑
r

[
‖yr − λr‖2

ΨW−1 + (φr − φ∗r)2
]

s.t.
∑
r∈[R]

λr = 2W (a− x∗), λr,i = 0,∀r ∈ [R], i 6∈ Sr.

By eliminating λr, we arrive at

[dΨW−1((y, φ),Z)]2 = ‖
∑
r

yr − 2W (a− x∗)‖2
W−1 +

∑
r

(φr − φ∗r)2.

Based on Lemma 6.1.2, we know that there exists a (y′, φ′) ∈ Ξ such that

µ(ΨW−1,W−1)

[
‖
∑
r

(yr − y′r)‖2
W−1 +

∑
r

(φr − φ′r)2

]
≥ ‖y − y′‖2

ΨW−1 +
∑
r

(φr − φ′r)2.

As φ∗r is the unique optimum, it follows that φ∗r = φ′r. Also,
∑

r y
′
r = 2W (a−

x∗). Moreover, as

‖y − y′‖2
ΨW−1 +

∑
r

(φr − φ′r)2 ≥ [dΨW−1((y, φ),Ξ)]2

according to the above definition, we have

[dΨW−1((y, φ),Ξ)]2

[dΨW−1((y, φ),Z)]2
≤ µ(ΨW−1,W−1).

Next, suppose that (y, φ) ∈ Z/Ξ and that

(y′, φ′) = arg min
(z,ψ)∈C

‖y − z‖2
I(ΨW−1) + ‖φ− ψ‖2,

(y′′, φ′′) = arg min
(z,ψ)∈Ξ

‖y′ − z‖2
I(ΨW−1) + ‖φ′ − ψ‖2.

167

Again, due to the definition of the distance dΨW−1((y, φ),Ξ), we have

[dΨW−1((y, φ),Ξ)]2 ≤ ‖y − y′′‖2
I(ΨW−1) + ‖φ− φ′′‖2. (A.34)

Moreover, because of the way we chose (y′, φ′) and due to the fact that C is

convex, we have

‖y − y′′‖2
I(ΨW−1) + ‖φ− φ′′‖2 ≤ ‖y − y′‖2

I(ΨW−1) + ‖φ− φ′‖2

+ ‖y′ − y′′‖2
I(ΨW−1) + ‖φ′ − φ′′‖2. (A.35)

Using Lemma 6.1.2, we obtain

‖y′ − y′′‖2
I(ΨW−1) + ‖φ′ − φ′′‖2

≤ µ(ΨW−1,W−1)(‖
∑
r

(y′r − y′′r)‖2
W−1 + ‖φ′ − φ′′‖2), (A.36)

and we also have

‖
∑
r

(y′r − y′′r)‖2
W−1 = ‖

∑
r

y′r − 2W (a− x∗)‖2
W−1

=‖
∑
r

(y′r − yr)‖2
W−1

1)

≤ ‖(y′ − y)‖2
I(ΨW−1), (A.37)

where 1) follows from the Cauchy-Schwarz inequality over the entries yr,i, i ∈
Sr.

Finally, we set φ = φ′′ = φ∗ and combine (A.34)-(A.37) to obtain

[dΨW−1((y, φ),Ξ)]2 ≤ (1 + µ(ΨW−1,W−1))(‖y − y′‖2
I(ΨW−1) + ‖φ− φ′‖2)

= (1 + µ(ΨW−1,W−1))[dΨW−1((y, φ), C)]2,

which concludes the proof.

A.5.4 Proof of Corollary 6.2.7

First, we establish an upper bound on ρ.

168

Lemma A.5.6. Suppose that Dii =
∑

r:r∈[R],i∈Cr maxS⊆V [Fr(S)]2. Then

ρ2 ≤ 4
∑
i∈[N]

Dii.

Proof. For each r, consider yr ∈ Br. Sort the entries of yr in descending

order. Without loss of generality, assume that the ordering reads as yr,i1 ≥
yr,i2 ≥ · · · ≥ yr,iN . As Fr([N]) =

∑N
j=1 yr,ij ≥ 0, we have yr,i1 ≥ 0. If

yr,iN ≥ 0, then ‖yr‖1 =
∑N

k=1 yr,ik = Fr([N]) ≤ maxS⊆[N] Fr(S). If yr,iN < 0,

there exists a k′ such that yr,ik′ ≥ 0 and yr,ik′+1
< 0. Given the definition of

Br, we have

N∑
k=k′+1

|yr,ik | ≤
k′∑
k=1

|yr,ik | ≤ Fr({i1, i2, ..., ik′}) ≤ max
S⊆[N]

Fr(S),

and thus ‖yr‖1 ≤ 2 maxS⊆[N] Fr(S). Moreover, as each variable in [N] is

incident to at least one submodular function, we have∑
r∈[R]

max
S⊆[N]

[Fr(S)]2 ≤
∑
i∈[N]

∑
r:i∈Sr

max
S⊆[N]

[Fr(S)]2 ≤
∑
i∈[N]

Dii.

Combining all of the above results, we obtain

ρ2 =
∑
r∈[R]

max
yr∈Br

‖yr‖2
1 ≤ 4

∑
r∈[R]

max
S⊆[N]

[Fr(S)]2 ≤ 4
∑
i∈[N]

Dii.

When W = βD, we have

∑
i∈[N]

Wii

∑
j∈[N]

1/Wjj ≤ N2 max
i,j

Wii

Wjj

= N2 max
i,j

Dii

Djj

,

and

ρ2
∑
j∈[N]

1/Wjj

1)

≤ 4
∑
i∈[N]

Dii

∑
j∈[N]

1/Wjj ≤
4

β
N2 max

i,j

Dii

Djj

,

where 1) follows from Lemma A.5.6. According to the definition of µ(W−1,W−1)

169

(see (6.5)),

µ(W−1,W−1) ≤ N2 max{1, 9β−1}max
i,j

Dii

Djj

.

Similarly, we have

µ(ΨW−1,W−1) ≤ N2 max{1, 9β−1}max
i,j

ΨjjDii

Djj

.

This concludes the proof.

A.5.5 Convergence analysis of the conic MNP algorithm

Preliminary notation and lemmas

Given an active set S = {q1, q2, ...}, and a collection of coefficients λ =

{λ1, λ2, ...}, if y =
∑

qi∈S λiqi, we simply refer to (y, S, λ) as a triple.

Define the following functions that depend on S

h̃(S, λ) , h(
∑
qi∈S

λiqi,
∑
qi∈S

λi),

h̃(S) , min
λ:λi∈R,∀i

h̃(S, λ),

h̃+(S) , min
λ:λi≥0,∀i

h̃(S, λ).

If the coefficients λ (λi ∈ R,∀i) minimize h̃(S, λ), we call the corresponding

triple (y, S, λ) a good triple. Given a triple (y, S, λ), we also define

4(y, q) = −〈y − a, q〉 −
∑
qi∈S

λi,

4(y) = max
q∈B
4(y) = −min

q∈B
〈y − a, q〉 −

∑
qi∈S

λi,

and

err(y) = h(y,
∑
qi∈S

λi)− h∗.

The following lemma establishes the optimality of a good triple.

170

Lemma A.5.7. Given an active set S, consider the good triple (y′, S, λ′) and

an arbitrary triple (y, S, λ). Then,

〈y′− a, y〉W̃ + 〈
∑
qi∈S

λ′i,
∑
qi∈S

λi〉 = 〈y′− a, y′− y〉W̃ + 〈
∑
qi∈S

λ′i,
∑
qi∈S

(λ′i− λi)〉 = 0.

Proof. Without loss of generality, assume that

〈y′ − a, y〉W̃ + 〈
∑
qi∈S

λ′i,
∑
qi∈S

λi〉 < 0.

Then, for any ε > 0, (y′ + εy, S, λ′ + ελ) is also a triple. For ε sufficiently

small, we have h̃(S, λ′ + ελ) < h̃(S, λ′), which contradicts the optimality of

(y′, S, λ′). Hence,

〈y′ − a, y〉W̃ + 〈
∑
qi∈S

λ′i,
∑
qi∈S

λi〉 = 0.

As (y′−y, S, λ′−λ) is also a triple, repeating the above procedure we obtain

the claimed equality.

Lemma A.5.8. For any ŷ ∈ B,

arg min
φ≥0

h(φŷ, φ) ≤ ‖a‖W̃
2

.

Moreover, φ∗ ≤ ‖a‖W̃
2

.

Proof. Given ŷ, the optimal value of φ satisfies

φ =
〈a, ŷ〉W̃

1 + ‖ŷ‖2
W̃

≤ ‖a‖W̃
‖ŷ‖W̃ + 1

‖ŷ‖W̃

≤ ‖a‖W̃
2

.

This establishes the claimed result.

Lemma A.5.9. If (y, S, λ) is a good triple, then 4(y) ≥ err(y)
‖a‖W̃

, where we

recall that err(y) = h(y,
∑

qi∈S λi)− h∗.

Proof. Recall that (y∗, φ∗) denotes the optimal solution. As y∗/φ∗ ∈ B, we

171

have

φ∗4(y) ≥ −〈y − a, y∗〉W̃ − 〈φ∗,
∑
qi∈S

λi〉

1)
= −〈y − a, y∗〉W̃ − 〈φ∗,

∑
qi∈S

λi〉+ 〈y − a, y〉W̃ + (
∑
qi∈S

λi)
2

= −〈y − a, y∗ − a〉W̃ − 〈φ∗,
∑
qi∈S

λi〉+ 〈y − a, y − a〉W̃ + (
∑
qi∈S

λi)
2

2)

≥ 1

2

[
‖y − a‖2

W̃
+ (
∑
qi∈S

λi)
2 − ‖y∗ − a‖2

W̃
+ (φ∗)2

]

=
1

2
err(y),

where 1) follows from Lemma A.5.7, while 2) is a consequence of the Cauchy-

Schwarz inequality. By using the bound for φ∗ described in Lemma A.5.8,

we arrive at the desired conclusion.

Proof of Theorem 6.3.1

We only need to prove the following three lemmas which immediately give

rise to Theorem 6.3.1. Lemma A.5.10 corresponds to the first statement

of Theorem 6.3.1. Combining Lemma A.5.11 and Lemma A.5.12, we can

establish the second statement of Theorem 6.3.1. This follows as we may

choose ε = δ‖a‖W̃ .

If Algorithm 6.3 terminates after less than O(N‖a‖2
W̃

max{Q2, 1}/ε) itera-

tions, then the condition of Lemma A.5.11 is satisfied and thus err(y(k)) ≤ ε =

δ‖a‖W̃ . If Algorithm 6.3 does not terminate after O(N‖a‖2
W̃

max{Q2, 1}/ε)
iterations, Lemma A.5.12 guarantees err(y(k)) ≤ ε = δ‖a‖W̃ .

Lemma A.5.10. At any point before Algorithm 6.3 terminates, one has

h(y(k), φ(k)) ≥ h(y(k+1), φ(k+1));

moreover, if (y(k), φ(k)) triggers a MAJOR loop, the claimed inequality is

strict.

The following lemma characterizes the pair (y, φ) at the point when the

MNP method terminates.

172

Lemma A.5.11. In the MAJOR loop at iteration k, if 〈y(k) − a, q(k)〉W̃ +

φ(k) ≥ −δ, then h(y(k), φ(k)) ≤ h∗ + ‖a‖W̃ δ.

Lemma A.5.12. If Algorithm 6.3 does not terminate, then for any ε > 0,

one can guarantee that after O(N‖a‖2
W̃

max{Q2, 1}/ε) iterations, Algorithm

6.3 generates a pair (y, φ) that satisfies err(y) ≤ ε.

The proofs of Lemma A.5.10 and Lemma A.5.11 are fairly straightforward,

while the proof of Lemma A.5.12 is significantly more involved and postponed

to the next section.

Proof of Lemma A.5.10. Suppose that (y(k), φ(k)) starts a MAJOR loop.

As

〈y(k) − a, q(k)〉W̃ + φ(k) < −δ,

we know that there exists some small ε such that

h(y(k) + εq(k), φ(k) + ε) < h(y(k), φ(k)).

Consider next the relationship between (z(k),
∑

qi∈S(k)∪{q(k)} αi) and (y(k), φ(k)).

Because of Step 6, we know that

h(z(k+1),
∑

qi∈S(k)∪{q(k)}

αi) = h̃(S(k)∪{q(k)}) ≤ h(y(k)+εq(k), φ(k)+ε) < h(y(k), φ(k)).

If (y(k+1), φ(k+1)) is generated in some MAJOR loop, then

(y(k+1), φ(k+1)) = (z(k+1),
∑

qi∈S(k)∪{q(k)}

αi),

which naturally satisfies the claimed condition. If (y(k+1), φ(k+1)) is generated

in some MINOR loop, then (y(k+1), φ(k+1)) lies strictly within the segment

between (z(k+1),
∑

qi∈S(k)∪{q(k)} αi) and (y(k), φ(k)) (because θ > 0). Therefore,

we also have h(y(k+1), φ(k+1)) < h(y(k), φ(k)). If (y(k), φ(k)) starts a MINOR

loop, then we have

h(z(k+1),
∑

qi∈S(k)∪{q(k)}

αi) = h̃(S(k)) ≤ h(y(k), φ(k)),

once again due to Step 6. As (y(k+1), φ(k+1)) still lies within the segment

between

173

(z(k+1),
∑

qi∈S(k)∪{q(k)} αi) and (y(k), φ(k)), we have h(y(k+1), φ(k+1)) ≤ h(y(k), φ(k)).

Proof of Lemma A.5.11. Lemma A.5.11 is a corollary of Lemma A.5.9.

To see why this is the case, observe that in a MAJOR loop, (y(k), S(k), λ(k))

is always a good triple. Since

4(y(k)) = −(〈y(k) − a, q(k)〉W̃ + φ(k)) ≤ δ,

we have err(y) ≤ δ‖a‖W̃ .

Proof of Lemma A.5.12

The outline of the proof is similar to that of the standard case described

in [85], and some results therein can be directly reused. The key step is to

show that in every MAJOR loop k with no more than one MINOR loop,

the objective achieved by y(k) decreases sufficiently, as precisely described in

Theorem A.5.13.

Theorem A.5.13. For a MAJOR loop with no more than one MINOR loop,

if the starting point is y, the starting point y′ of the next MAJOR loop satisfies

err(y′) ≤ err(y)

(
1− err(y)

‖a‖W̃ (Q2 + 1)

)
.

Based on this theorem, it is easy to establish the result in Lemma A.5.12

by using the next lemma and the same approach as described in [85].

Lemma A.5.14 (Lemma 1 [85]). In any consecutive 3N + 1 iteratons, there

exists at least one MAJOR loop with not more than one MINOR loop.

We now focus on the proof of Theorem A.5.13. The next geometric lemma

is the counterpart of Lemma 2 [85] for the conic case.

Lemma A.5.15. Given an active set S, consider a good triple (y′, S, λ′) and

an arbitrary triple (y, S, λ). Then, for any q ∈ lin(S) such that 4(y, q) > 0,

we have

‖y − a‖2
W̃

+ (
∑
qi∈S

λi)
2 − ‖y′ − a‖2

W̃
− (
∑
qi∈S

λ′i)
2 ≥ 4

2(y, q)

‖q‖2
W̃

+ 1
.

174

Proof. First, we have

‖y − a‖2
W̃

+ (
∑
qi∈S

λi)
2 − ‖y′ − a‖2

W̃
− (
∑
qi∈S

λ′i)
2

=‖y − y′‖2
W̃

+ [
∑
qi∈S

(λi − λ′i)]2 + 2〈y − y′, y′ − a〉W̃ + 2〈
∑
qi∈S

(λi − λ′i),
∑
qi∈S

λ′i〉

1)
=‖y − y′‖2

W̃
+ [
∑
qi∈S

(λi − λ′i)]2,

where 1) follows from Lemma A.5.7. Next, for any φ ≥ 0,

‖y − y′‖2
W̃

+ [
∑
qi∈S

(λi − λ′i)]2

1)

≥

[
〈y − y′, y − φq〉W̃ + 〈∑qi∈S(λi − λ′i),

∑
qi∈S λi − φ〉

]2

‖y − φq‖2
W̃

+ (
∑

qi∈S λi − φ)2

2)
=

[
〈y − a, y − φq〉W̃ + 〈∑qi∈S λi,

∑
qi∈S λi − φ〉

]2

‖y − φq‖2
W̃

+ (
∑

qi∈S λi − φ)2
, (A.38)

where 1) follows from the Cauchy-Schwarz inequality and 2) is due to Lemma A.5.7.

Since 4(y, q) > 0, letting φ→∞ reduces equation (A.38) to 42(y,q)

‖q‖2
W̃

+1
.

Next, using Lemma A.5.15, we may characterize the decrease of the objec-

tive function for one MAJOR loop with no MINOR loop. As (y(k+1), S(k+1), λ(k+1))

is a good triple and y(k) also lies in lin(S), we have the following result.

Lemma A.5.16. Consider some MAJOR loop k without MINOR loops.

Then

err(y(k))− err(y(k+1)) ≥ 4
2(y(k), q(k))

Q2 + 1
=
42(y(k))

Q2 + 1
.

Next, we characterize the decrease of the objective function for one MA-

JOR loop with one single MINOR loop.

Lemma A.5.17. Consider some MAJOR loop k with only one MINOR loop.

Then

err(y(k))− err(y(k+2)) ≥ 4
2(y(k))

Q2 + 1
.

175

Proof. Suppose that the active sets associated with y(k), y(k+1), y(k+2) are

S(k), S(k+1), S(k+2), respectively. We know that within the MINOR loop,

(z(k), S(k) ∪ {q(k)}, α) is a good triple and y(k+1) = θy(k) + (1 − θ)z(k), for

some θ ∈ [0, 1]. Let

A = ‖y(k) − a‖2
W̃

+ (
∑

qi∈S(k)

λ
(k)
i)2 − ‖z(k) − a‖2

W̃
− (

∑
qi∈S(k)∪{q(k)}

αi)2. (A.39)

From Lemma A.5.15, we have

A ≥ 4
2(y(k), q(k))

‖q(k)‖2
W̃

+ 1
≥ 4

2(y(k))

Q2 + 1
. (A.40)

Note that both S(k) and S(k+1) are subsets of S(k) ∪ {q(k)}. As (z(k), S(k) ∪
{q(k)}, α) is a good triple, using Lemma A.5.7, we obtain

〈z(k) − a, z(k) − y(k)〉W̃ + 〈
∑

qi∈S(k)∪{q(k)}

αi,
∑

qi∈S(k)∪{q(k)}

(αi − λ(k)
i)〉 = 0.

Furthermore, as y(k+1) = θy(k) +(1−θ)z(k) = z(k)−θ(z(k)−y(k)) and λ(k+1) =

α− θ(α− λ(k)), we have

‖y(k) − a‖2
W̃

+ (
∑
i∈S(k)

λ
(k)
i)2 − ‖y(k+1) − a‖2

W̃
− (

∑
i∈S(k+1)

λ
(k+1)
i)2 = (1− θ2)A.

Moreover, we have

4(y(k+1), q(k)) = θ4(y(k), q(k)) + (1− θ)4(z(k), q(k)) = θ4(y(k), q(k)) = θ4(y(k)),

(A.41)

which holds because4(y, q) is linear in y and Lemma A.5.7 implies4(z(k), q(k)) =

0.

Since according to Lemma A.5.10, h(y(k), φ(k)) > h(y(k+1), φ(k+1)), Lemma

4 in [85] also holds in our case, and thus q(k) ∈ S(k+1). To obtain y(k+2) and

S(k+2), one needs to remove active points with a zero coefficients from S(k+1),

so that y(k+2) once again belongs to a good triple with corresponding S(k+1).

176

Based on A.5.15 and equation (A.41), we have the following result.

‖y(k+1) − a‖2
W̃

+ (
∑

qi∈S(k+1)

λ
(k+1)
i)2−‖y(k+2) − a‖2

W̃
− (

∑
qi∈S(k+2)

λ
(k+2)
i)2

(A.42)

≥4
2(y(k+1), q(k))

Q2 + 1
=
θ242(y(k))

Q2 + 1
. (A.43)

Consequently, combining equations (A.39), (A.40) and (A.42), we arrive at

err(y(k))− err(y(k+2)) ≥ 4
2(y(k))

Q2 + 1
.

And, combining Lemma A.5.16, Lemma A.5.17 and Lemma A.5.9 estab-

lishes Theorem A.5.13.

A.5.6 Convergence analysis of the conic Frank-Wolfe
algorithm

Proof of Theorem 6.3.2

Using the same strategy as in the proof of Lemma A.5.8, we may prove the

following lemma. It hinges on the optimality assumption for γ
(k)
1 φ(k) + γ

(k)
2

in Step 3 of Algorithm 6.4.

Lemma A.5.18. In Algorithm 6.4, for all k, φ(k+1) ≤ ‖a‖W̃
2

.

Now, we prove Theorem 6.3.2. We write y = φŷ, where ŷ ∈ B, so that

h(y, φ) = h(φŷ, φ) ≥ h(y(k), φ(k)) + 2〈y(k) − a, φŷ − y(k)〉W̃ + φ2 − (φ(k))2.

For both sides, minimize (ŷ, φ) over B × [0,
‖a‖W̃

2
], which contains (y∗, φ∗).

Since q(k) = arg minq∈B(y(k) − a, q〉W̃ , we know that the optimal solutions

satisfy ŷ = q(k) and φ = φ̃(k) = min{max{0,−〈y(k) − a, q(k)〉}, ‖a‖W̃
2
} of the

RHS

h∗ = h(y∗, φ∗) ≥ h(y(k), φ(k)) + 2〈y(k) − a, φ̃(k)q(k) − y(k)〉W̃ + (φ̃(k))2 − (φ(k))2.

(A.44)

177

Moreover, because of the optimality of (γ
(k)
1 × γ

(k)
2) ∈ R2

≥0, for arbitrary

γ ∈ [0, 1] we have

h(γ
(k)
1 y(k) + γ

(k)
2 q(k), γ

(k)
1 φ(k) + γ

(k)
2)

≤ h((1− γ)y(k) + γφ̃(k)q(k), (1− γ)φ(k) + γφ̃(k))

= h(y(k), φ(k)) + 2γ〈y(k) − a, φ̃(k)q(k) − y(k)〉W̃
+ γ[(φ̃(k))2 − (φ(k))2] + γ2‖φ̃(k)q(k) − y(k)‖2

W̃
+ (γ2 − γ)(φ̃(k) − φ(k))2

1)

≤ h(y(k), φ(k)) + γ(h∗ − h(y(k), φ(k))) + γ2‖φ̃(k)q(k) − y(k)‖2
W̃

2)

≤ h(y(k), φ(k)) + γ(h∗ − h(y(k), φ(k))) + γ2‖a‖2
W̃
Q2,

where 1) follows from (A.44) and γ2 − γ ≤ 0, and 2) follows from

‖φ̃(k)q(k) − y(k)‖2
W̃
≤ 4
‖a‖2

W̃

4
max
q∈B
‖q‖2

W̃
= ‖a‖2

W̃
Q2.

The claimed result now follows by induction. First, let ŷ∗ = y∗/φ∗, where

φ∗ =
〈ŷ∗,a〉W̃

1+‖ŷ∗‖2
W̃

. Then,

h(y(0), φ(0))− h∗ ≤ 2〈y∗, a〉 − (y∗)2 − (φ∗)2 =
〈ŷ∗, a〉2

W̃

1 + ‖ŷ∗‖2
W̃

≤ ‖a‖2
W̃
Q2.

Suppose that h(y(k), r(k)) − h∗ ≤ 2‖a‖2
W̃
Q2

k+2
. In this case, for all γ ∈ [0, 1], we

have

h(y(t+1), φ(t+1))− h∗ ≤ (1− γ)[h(y(k), φ(k))− h∗] + γ2‖a‖2
W̃
Q2.

By choosing γ = 1
k+2

, we obtain h(y(k+1), φ(k+1)) − h∗ ≤ 2‖a‖2
W̃
Q2

k+3
, which

concludes the proof.

178

A.5.7 Proofs for the partitioning properties of PageRank

Proof of Lemma 6.4.3

Based on the definitions of Spj and j ∈ Vp, we have 〈∇fr(x), 1Spj 〉 = Fr(Spj).

Consequently,

2p(Spj)−
∑
r∈[R]

wrfr(x)〈∇fr(x), 1Spj 〉

=2p(Spj)−
∑
r∈[R]

wrfr(x)Fr(Spj)

=2p(Spj)−
∑
r∈[R]

wrFr(S
p
j) max

(i,j)∈S↑r×S↓r
(xi − xj)

=

Ip(vol(Spj))−
∑
r∈[R]

wrFr(Spj) max
i∈S↑r

xi

+

Ip(vol(Spj)) +
∑
r∈[R]

wrFr(Spj) min
i∈S↓r

xi


≤Ip

vol(Spj)−
∑
r∈[R]

wrFr(Spj)

+ Ip

vol(Spj) +
∑
r∈[R]

wrFr(Spj)


=Ip

(
vol(Spj)− vol(∂Spj)

)
+ Ip

(
vol(Spj) + vol(∂Spj)

)
. (A.45)

Using equation (6.11), we have

p(Spj) =
α

2− αp0(Spj) +
2− 2α

2− α

{
1

2
[M(p)− p] (Spj) + p(Spj)

}
1)
=

α

2− αp0(Spj) +
2− 2α

2− α

−1

2

∑
r∈[R]

fr(x)〈∇fr(x), 1Spj 〉+ p(Spj)


2)

≤ α

2− αp0(Spj) +
1− α
2− α

[
Ip
(
vol(Spj)− vol(∂Spj)

)
+ Ip

(
vol(Spj) + vol(∂Spj)

)]
,

where 1) is due to Lemma 6.4.1 and 2) is due to equation (A.45). This proves

the first inequality. By using the concavity of Ip(·), we also have

Ip(vol(Spj)) ≤ p0(Spj) ≤ Ip0(vol(Spj)).

Moreover, as Ip is piecewise linear, the proof follows.

179

Proof of Theorem 6.4.4

This result can be proved in a similar way as the corresponding case for

graphs [106], by using induction.

Define k̄ = min{k,m− k}, dmin = mini:(p0)i>0 di and

I(t)(k) =
k

m
+

α

2− αt+

√
k̄

dmin

(
1− Φ2

p

8

)t
.

When t = 0, Ip(k) ≤ Ip0(k) holds due to Lemma 6.4.3. As I(t)(m) =

I(t)(dmin) = 1, for k ∈ [dmin,m], we have

Ip0(k) ≤ 1 ≤ I(0)(k).

Since for k ∈ [0, dmin], Ip0(k) is linear, we also have Ip0(0) = 0 ≤ I(t)(0).

Hence, for k ∈ [0, dmin], it also holds that Ip0(k) ≤ I(0)(k).

Next, suppose that for step t, Ip(k) ≤ I(t)(k) holds. We then consider the

case t+ 1. For k = vol(Spj), Lemma 6.4.3 indicates that

Ip(k) ≤ α

2− αIp0(k) +
1− α
2− α [Ip(k − k̄Φ(Spj)) + Ip(k + k̄Φ(Spj))]

1)

≤ α

2− αIp0(k)

+
1− α
2− α

2k

m
+

2α

2− αt+

√k − k̄Φ(Spj)

dmin

+

√
k + k̄Φ(Spj)

dmin

(1− Φ2
p

8

)t
2)

≤ k

m
+

α

2− α(t+ 1) +
1− α
2− α

√k − k̄Φ(Spj)

dmin

+

√
k + k̄Φ(Spj)

dmin

(1− Φ2
p

8

)t
3)

≤ k

m
+

α

2− α(t+ 1) +
1− α
2− α

√ k̄ − k̄Φ(Spj)

dmin

+

√
k̄ + k̄Φ(Spj)

dmin

(1− Φ2
p

8

)t
4)

≤ k

m
+

α

2− α(t+ 1) +
2− 2α

2− α

√
k̄

dmin

(
1− Φ2

p

8

)t+1

≤ I(t+1)(k),

where 1) follows from Lemma 6.4.3; 2) is due to Ip0(k) ≤ 1; 3) can be verified

by considering two cases separately, namely k ≤ m
2

and k ≥ m
2

; and 4) follows

from Φ(Spj) ≥ Φp and the Taylor-series expansion of
√
x± φx.

At this point, we have shown that Ip(k) ≤ I(t)(k) for all k = vol(Spj). Since

180

{vol(Spj)}j∈Vp covers all break points of Ip and since I(t) is concave, we have

that for all k ∈ [0,m], it holds that Ip(k) ≤ I(t)(k). This concludes the proof.

Proof of Theorem 6.4.5

First, we prove that under the assumptions for the vertex-sampling proba-

bility P in the statement of the theorem, pr(α, 1i)(S) can be lower bounded

as follows.

Lemma A.5.19. If a vertex v ∈ S is sampled according to a distribution P

such that

Ei∼P [pr(α, 1i)(S̄)] ≤ c pr(α, πS)(S̄),

where c is a constant, then with probability at least 1
2
, one has

pr(α, 1i)(S) ≥ 1− cΦ(S)

4α
.

Proof. Let p = pr(α, πS). Then,

αp(S̄)
1)
= απS(S̄) + (1− α) [M(p)− p] (S̄)

2)
= −

∑
r∈[R]

wrfr(x)〈∇fr(x), 1S̄〉

3)

≤
∑
r∈[R]

wrfr(x)F (S) ≤
∑
r∈[R]

wrF (S) max
i∈S↑r

xi

≤ Ip(
∑
r∈[R]

wrF (S)) = Ip(vol(∂S))

4)

≤ IπS(vol(∂S)) = Φ(S),

where 1) is a consequence of Equation (6.11); 2) follows from Lemma 6.4.1;

3) holds because for any x ∈ RN , 〈∇fr(x), 1S̄〉 ≥ −F (S); and 4) is a conse-

quence of Lemma 6.4.3. Hence,

Ev∼P [pr(α, 1i)(S̄)] ≤ c

8
pr(α, πS)(S̄) ≤ c

8

Φ(S)

α
.

Moreover, sampling according to v ∼ P and using Markov’s inequality, we

181

have

P
[
pr(α, 1i)(S̄) ≥ c

4

Φ(S)

α

]
≤ Ev∼P [pr(α, 1i)(S̄)]

c
4

Φ(S)
α

≤ 1

2
,

which concludes the proof.

As Φ(S) ≤ α
c
, we have P

[
pr(α, 1i)(S) ≥ 3

4

]
≥ 1

2
. By combining this lower

bound on pr(α, 1i)(S) with the upper bound of Theorem 6.4.4, we have

3

4
≤ pr(α, 1i)(S) ≤ Ipr(α,1i)(vol(S)) ≤ 1

2
+

α

2− αt+

√
vol(S)

di

(
1−

Φ2
pr(α,1i)

8

)t

.

Next, we choose t = d 8
Φ2
pr(α,1i)

ln 8
√

vol(S)
di
e. Then, the above inequality may

be transformed into

3

4
≤ 1

2
+

α

2− αd
8

Φ2
pr(α,1i)

ln 8

√
vol(S)

di
e+

1

8
≤ 5

8
+

α

2− α
8

Φ2
pr(α,1i)

ln 10

√
vol(S)

di
.

Therefore,

Φpr(α,1i) ≤
√

32α ln
100vol(S)

di
.

A.5.8 Analysis of the parameter choices for experimental
verification

Let x′ = W−1/2x and a′ = W−1/2a. We can transform the objective (6.14)

into a standard QDSFM problem,

β‖x′ − a′‖2
W +

∑
r∈[R]

max
i,j∈Sr

(x′i − x′j)2.

From Theorem 6.2.2, to achieve an ε-optimal solution, one requires

O(Rµ(β−1W−1, β−1W−1) log
1

ε
)

182

iterations in the RCD algorithm (Algorithm 6.1). According to the particular

settings for the experiment (undirected unweighted hypergraphs), we have

ρ2 = max
yr∈Br,∀r

∑
r∈[R]

‖yr‖2
1 = max

yr∈Br,∀r

∑
r∈[R]

2 = 2R. (A.46)

From the definition of µ (6.5), we may rewrite µ(β−1W−1, β−1W−1) as

µ(β−1W−1, β−1W−1)
1)
= max

{
N2

2

(
max
i,j∈[N]

Wii

Wjj

+ 1

)
,
9

4
ρ2Nβ−1 max

j∈[N]

1

Wjj

}
2)
= max

{
N2

2

(
max
i,j∈[N]

Wii

Wjj

+ 1

)
,
9

2
β−1NRmax

j∈[N]

1

Wjj

}
3)
= max

{
N2

2

(
max
i,j∈[N]

Wii

Wjj

+ 1

)
,
9

2
β−1N2 max

i,j∈[N]

Wii

Wjj

}
,

(A.47)

where 1) holds because half of the values of Wii are set to 1 and the other

half to a value in {1, 0.1, 0.01, 0.001}, 2) follows from (A.46) and 3) is due

to the particular setting N = R and maxi∈[N] Wii = 1. Equation (A.47) may

consequently be rewritten as

O(N2 max(1, 9/(2β)) max
i,j∈[N]

Wii/Wjj),

which establishes the claimed statement.

183

A.6 Additional Tables

Table A.1: Species in the Florida Bay foodweb with biological classification
and assigned clusters. Cluster labels and colors correspond to the clusters
shown in Figure 3.1. For InH-partition, in the first-level clustering, the
species Roots is the only singleton while in the second-level clustering, the
species Kingfisher, Hawksbill Turtle and Manatee are singletons.

Species Biological Classification Cluster (Ours) Cluster (Benson’s [39])

Roots producers (no predator) Singleton Singleton

2µm Spherical cya phytoplankton producers Green Singleton

Synedococcus phytoplankton producers Green Singleton

Oscillatoria phytoplankton producers Green Singleton

Small Diatoms (< 20µm) phytoplankton producers Green Singleton

Big Diatoms (> 20µm) phytoplankton producers Green Singleton

Dinoflagellates phytoplankton producers Green Singleton

Other Phytoplankton phytoplankton producers Green Singleton

Free Bacteria producers Green Green

Water Flagellates producers Green Green

Water Cilitaes producers Green Green

Kingfisher bird (no predator) Singleton Singleton

A. Hawksbill Turtle reptiles (no predator) Singleton Singleton

Manatee mammal (no predator) Singleton Singleton

Rays fish Blue Singleton

Bonefish fish Blue Singleton

Lizardfish fish Blue Red

Catfish fish Blue Blue

Eels fish Blue Red

Brotalus fish Blue Blue

Needlefish fish Blue Yellow

Snook fish Blue Singleton

Jacks fish Blue Singleton

Pompano fish Blue Singleton

Other Snapper fish Blue Singleton

Gray Snapper fish Blue Singleton

Grunt fish Blue Singleton

Porgy fish Blue Singleton

Scianids fish Blue Singleton

Spotted Seatrout fish Blue Singleton

Red Drum fish Blue Singleton

Spadefish fish Blue Singleton

Flatfish fish Blue Blue

Filefish fish Blue Singleton

Puffer fish Blue Singleton

Other Pelagic fish fish Blue Yellow

Small Herons & Egrets bird Blue Singleton

Ibis bird Blue Singleton

Roseate Spoonbill bird Blue Singleton

Herbivorous Ducks bird Blue Singleton

Omnivorous Ducks bird Blue Singleton

Gruiformes bird Blue Singleton

Small Shorebird bird Blue Singleton

Gulls & Terns bird Blue Singleton

Loggerhead Turtle reptiles (no predator) Blue Singleton

Sharks fish (no predator) Purple Singleton

Tarpon fish Purple Singleton

Grouper fish (no predator) Purple Singleton

Mackerel fish (no predator) Purple Singleton

Barracuda fish Purple Singleton

Loon bird (no predator) Purple Singleton

Greeb bird (no predator) Purple Singleton

Pelican bird Purple Singleton

Comorant bird Purple Singleton

Big Herons & Egrets bird Purple Singleton

Predatory Ducks bird (no predator) Purple Singleton

Raptors bird (no predator) Purple Singleton

Crocodiles reptiles (no predator) Purple Singleton

SingleDolphin mammal (no predator) Purple Singleton

184

Table A.1: Continued.

Species Biological Classification Cluster Labels Cluster(Benson’s [39])

Benthic microalgea algea producers Yellow Blue

Thalassia seagrass producers Yellow Blue

Halodule seagrass producers Yellow Blue

Syringodium seagrass producers Yellow Blue

Drift Algae algea producers Yellow Blue

Epiphytes algea producers Yellow Blue

Acartia Tonsa zooplankton invertebrates Yellow Green

Oithona nana zooplankton invertebrates Yellow Green

Paracalanus zooplankton invertebrates Yellow Green

Other Copepoda zooplankton invertebrates Yellow Green

Meroplankton zooplankton invertebrates Yellow Green

Other Zooplankton zooplankton invertebrates Yellow Green

Benthic Flagellates invertebrates Yellow Blue

Benthic Ciliates invertebrates Yellow Blue

Meiofauna invertebrates Yellow Blue

Sponges macro-invertebrates Yellow Green

Bivalves macro-invertebrates Yellow Blue

Detritivorous Gastropods macro-invertebrates Yellow Blue

Epiphytic Gastropods macro-invertebrates Yellow Singleton

Predatory Gastropods macro-invertebrates Yellow Blue

Detritivorous Polychaetes macro-invertebrates Yellow Blue

Predatory Polychaetes macro-invertebrates Yellow Blue

Suspension Feeding Polych macro-invertebrates Yellow Blue

Macrobenthos macro-invertebrates Yellow Blue

Benthic Crustaceans macro-invertebrates Yellow Blue

Detritivorous Amphipods macro-invertebrates Yellow Blue

Herbivorous Amphipods macro-invertebrates Yellow Blue

Isopods macro-invertebrates Yellow Blue

Herbivorous Shrimp macro-invertebrates Yellow Red

Predatory Shrimp macro-invertebrates Yellow Blue

Pink Shrimp macro-invertebrates Yellow Blue

Thor Floridanus macro-invertebrates Yellow Singleton

Detritivorous Crabs macro-invertebrates Yellow Red

Omnivorous Crabs macro-invertebrates Yellow Blue

Green Turtle reptiles Yellow Singleton

Coral macro-invertebrates Red Singleton

Other Cnidaridae macro-invertebrates Red Blue

Echinoderma macro-invertebrates Red Blue

Lobster macro-invertebrates Red Singleton

Predatory Crabs macro-invertebrates Red Red

Callinectus sapidus macro-invertebrates Red Red

Stone Crab macro-invertebrates Red Singleton

Sardines fish Red Yellow

Anchovy fish Red Yellow

Bay Anchovy fish Red Yellow

Toadfish fish Red Blue

Halfbeaks fish Red Yellow

Other Killifish fish Red Singleton

Goldspotted killifish fish Red Yellow

Rainwater killifish fish Red Yellow

Sailfin Molly fish Red Singleton

Silverside fish Red Yellow

Other Horsefish fish Red Singleton

Gulf Pipefish fish Red Singleton

Dwarf Seahorse fish Red Singleton

Mojarra fish Red Singleton

Pinfish fish Red Singleton

Parrotfish fish Red Singleton

Mullet fish Red Blue

Blennies fish Red Blue

Code Goby fish Red Red

Clown Goby fish Red Red

Other Demersal Fish fish Red Blue

185

Table A.2: Inhomogeous cost functions w
(r)
e (S) for |e| ∈ {4, 5, 6}.

|e| = 4, β(e) = 3/2

r
S

1 2 3 4 1, 2 1, 3 1, 4
1 0 1 1 1 1 1 1
2 0 0 1 1 0 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 2 2 2

|e| = 5, β(e) = 2

r
S

1 2 3 4 5 1, 2 1, 3 1, 4 1, 5 2, 3 2, 4 2, 5 3, 4 3, 5 4, 5
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1
5 1 1 1 1 1 0 2 2 2 2 2 2 1 1 1
6 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

|e| = 6, β(e) = 4

r
S

1 2 3 4 5 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
6 1 1 1 1 1 1 0 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2
8 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
9 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2

r
S

3, 4 3, 5 3, 6 4, 5 4, 6 5, 6 1, 2, 3 1, 2, 4 1, 2, 5 1, 2, 6 1, 3, 4 1, 3, 5
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1
4 2 2 2 2 2 2 3 3 3 3 3 3
5 1 1 1 1 1 1 1 1 1 1 2 2
6 1 1 1 1 1 1 1 1 1 1 2 2
7 2 2 2 1 1 1 1 2 2 2 2 2
8 2 2 2 2 2 2 1 3 3 3 3 3
9 2 2 2 1 1 1 0 2 2 2 2 2

r
S

1, 3, 6 1, 4, 5 1, 4, 6 1, 5, 6
1 1 1 1 1
2 2 2 2 2
3 1 1 1 1
4 3 3 3 3
5 2 2 2 2
6 2 2 2 2
7 2 2 2 2
8 3 3 3 3
9 2 2 2 2

186

REFERENCES

[1] S. Wasserman and K. Faust, Social network analysis: Methods and
applications. Cambridge University Press, 1994, vol. 8.

[2] D. Warde-Farley, S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi,
P. Chao, M. Franz, C. Grouios, F. Kazi, C. T. Lopes et al., “The
genemania prediction server: biological network integration for gene
prioritization and predicting gene function,” Nucleic Acids Research,
vol. 38, no. 2, pp. W214–W220, 2010.

[3] E. M. Rogers and D. L. Kincaid, Communication Networks: Toward a
New Paradigm for Research. New York Free Press, 1981.

[4] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality
reduction,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 29, no. 1, pp. 40–51, 2007.

[5] C. Berge, Hypergraphs: Combinatorics of Finite Sets. Elsevier, 1984,
vol. 45.

[6] C. Chekuri and C. Xu, “Computing minimum cuts in hypergraphs,”
in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, 2017, pp. 1085–1100.

[7] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in Advances in Neural In-
formation Processing Systems, 2007, pp. 1601–1608.

[8] A. Louis, “Hypergraph Markov operators, eigenvalues and approxima-
tion algorithms,” in Proceedings of the ACM Symposium on Theory of
Computing. ACM, 2015, pp. 713–722.

[9] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram, “The total vari-
ation on hypergraphs-learning on hypergraphs revisited,” in Advances
in Neural Information Processing Systems, 2013, pp. 2427–2435.

[10] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási,
“The large-scale organization of metabolic networks,” Nature, vol. 407,
no. 6804, pp. 651–654, 2000.

187

[11] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and
S. Belongie, “Beyond pairwise clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2.
IEEE, 2005, pp. 838–845.

[12] F. R. Chung, “Four proofs for the cheeger inequality and graph parti-
tion algorithms,” in Proceedings of ICCM, vol. 2, 2007, p. 378.

[13] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning
and semi-supervised learning using gaussian fields and harmonic func-
tions,” in ICML 2003 Workshop on the Continuum from Labeled to
Unlabeled Data in Machine Learning and Data Mining, vol. 3, 2003.

[14] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
20th International Conference on Machine learning, 2003, pp. 912–919.

[15] C. Arora, S. Banerjee, P. Kalra, and S. Maheshwari, “Generic cuts:
An efficient algorithm for optimal inference in higher order MRF-
MAP,” in Proceedings of the European Conference on Computer Vi-
sion. Springer, 2012, pp. 17–30.

[16] A. Fix, T. Joachims, S. M. Park, and R. Zabih, “Structured learning
of sum-of-submodular higher order energy functions,” in Proceedings of
the IEEE International Conference on Computer Vision. IEEE, 2013,
pp. 3104–3111.

[17] P. Kohli, P. H. Torr et al., “Robust higher order potentials for enforcing
label consistency,” International Journal of Computer Vision, vol. 82,
no. 3, pp. 302–324, 2009.

[18] P. Stobbe and A. Krause, “Efficient minimization of decomposable sub-
modular functions,” in Advances in Neural Information Processing Sys-
tems, 2010, pp. 2208–2216.

[19] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-friendly
submodular optimization,” in Advances in Neural Information Process-
ing Systems, 2013, pp. 1313–1321.

[20] A. Ene and H. Nguyen, “Random coordinate descent methods for min-
imizing decomposable submodular functions,” in Proceedings of the In-
ternational Conference on Machine Learning, 2015, pp. 787–795.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank ci-
tation ranking: Bringing order to the web.” Stanford InfoLab, Tech.
Rep., 1999.

188

[22] D. Gleich and M. Mahoney, “Anti-differentiating approximation algo-
rithms: A case study with min-cuts, spectral, and flow,” in Interna-
tional Conference on Machine Learning, 2014, pp. 1018–1025.

[23] T.-H. H. Chan, A. Louis, Z. G. Tang, and C. Zhang, “Spectral proper-
ties of hypergraph laplacian and approximation algorithms,” Journal
of the ACM (JACM), vol. 65, no. 3, p. 15, 2018.

[24] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval Research Logistics, vol. 3, no. 1-2, pp. 95–110, 1956.

[25] P. Wolfe, “Finding the nearest point in a polytope,” Mathematical
Programming, vol. 11, no. 1, pp. 128–149, 1976.

[26] V. Kaibel, “On the expansion of graphs of 0/1-polytopes,” in The
Sharpest Cut: The Impact of Manfred Padberg and His Work. SIAM,
2004, pp. 199–216.

[27] L. Lovász, “Submodular functions and convexity,” in Mathematical
Programming The State of the Art. Springer, 1983, pp. 235–257.

[28] F. Bach et al., “Learning with submodular functions: A convex opti-
mization perspective,” Foundations and Trends in Machine Learning,
vol. 6, no. 2-3, pp. 145–373, 2013.

[29] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Computing Surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[30] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal-
ysis and an algorithm,” in Advances in Neural Information Processing
Systems (NIPS), 2002, pp. 849–856.

[31] S. R. Bulò and M. Pelillo, “A game-theoretic approach to hypergraph
clustering,” in Advances in Neural Information Processing Systems
(NIPS), 2009, pp. 1571–1579.

[32] M. Leordeanu and C. Sminchisescu, “Efficient hypergraph clustering,”
in International Conference on Artificial Intelligence and Statistics
(AISTATS), 2012, pp. 676–684.

[33] H. Liu, L. J. Latecki, and S. Yan, “Robust clustering as ensembles
of affinity relations,” in Advances in Neural Information Processing
Systems (NIPS), 2010, pp. 1414–1422.

[34] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” in The
43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2002, pp. 238–247.

189

[35] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent
information: ranking and clustering,” Journal of the ACM (JACM),
vol. 55, no. 5, p. 23, 2008.

[36] P. Li, H. Dau, G. Puleo, and O. Milenkovic, “Motif clustering and
overlapping clustering for social network analysis,” in IEEE Conference
on Computer Communications (INFOCOM), 2017, pp. 109–117.

[37] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca,
and S. Albayrak, “Spectral analysis of signed graphs for clustering,
prediction and visualization,” in SIAM International Conference on
Data Mining (ICDM), 2010, pp. 559–570.

[38] A. V. Knyazev, “Signed Laplacian for spectral clustering revisited,”
2017, arXiv preprint arXiv:1701.01394.

[39] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organiza-
tion of complex networks,” Science, vol. 353, no. 6295, pp. 163–166,
2016.

[40] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable motif-
aware graph clustering,” in Proceedings of the 26th International Con-
ference on World Wide Web. International World Wide Web Confer-
ences Steering Committee, 2017, pp. 1451–1460.

[41] N. R. Devanur, S. Dughmi, R. Schwartz, A. Sharma, and M. Singh,
“On the approximation of submodular functions,” 2013, arXiv preprint
arXiv:1304.4948.

[42] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex net-
works,” Science, vol. 298, no. 5594, pp. 824–827, 2002.

[43] “Florida bay trophic exchange matrix,” http://vlado.fmf.uni-lj.si/pub/
networks/data/bio/foodweb/Florida.paj.

[44] S. Allesina, A. Bodini, and C. Bondavalli, “Ecological subsystems via
graph theory: the role of strongly connected components,” Oikos, vol.
110, no. 1, pp. 164–176, 2005.

[45] P. Awasthi, A. Blum, O. Sheffet, and A. Vijayaraghavan, “Learning
mixtures of ranking models,” in Advances in Neural Information Pro-
cessing Systems (NIPS), 2014, pp. 2609–2617.

[46] C. Meek and M. Meila, “Recursive inversion models for permutations,”
in Advances in Neural Information Processing Systems (NIPS), 2014,
pp. 631–639.

190

[47] J. Huang, C. Guestrin et al., “Uncovering the riffled independence
structure of ranked data,” Electronic Journal of Statistics, vol. 6, pp.
199–230, 2012.

[48] J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Maximum likelihood
estimation of functionals of discrete distributions,” IEEE Transactions
on Information Theory, vol. 63, no. 10, pp. 6774–6798, 2017.

[49] Y. Bu, S. Zou, Y. Liang, and V. V. Veeravalli, “Estimation of KL di-
vergence: Optimal minimax rate,” IEEE Transactions on Information
Theory, vol. 64, no. 4, pp. 2648–2674, 2018.

[50] W. Gao, S. Oh, and P. Viswanath, “Demystifying fixed k-nearest neigh-
bor information estimators,” in IEEE International Symposium on In-
formation Theory (ISIT), 2017, pp. 1267–1271.

[51] R. L. Plackett, “The analysis of permutations,” Applied Statistics, pp.
193–202, 1975.

[52] I. C. Gormley and T. B. Murphy, “A latent space model for rank data,”
in Statistical Network Analysis: Models, Issues, and New Directions.
Springer, 2007, pp. 90–102.

[53] T. Kamishima, “Nantonac collaborative filtering: recommendation
based on order responses,” in ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), 2003, pp. 583–588.

[54] R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine,
vol. 28, no. 2, pp. 52–68, 2011.

[55] G. Chen and G. Lerman, “Spectral curvature clustering (SCC),” In-
ternational Journal of Computer Vision (IJCV), vol. 81, no. 3, pp.
317–330, 2009.

[56] J. P. Costeira and T. Kanade, “A multibody factorization method for
independently moving objects,” International Journal of Computer Vi-
sion (IJCV), vol. 29, no. 3, pp. 159–179, 1998.

[57] R. Tron and R. Vidal, “A benchmark for the comparison of 3-d motion
segmentation algorithms,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2007, pp. 1–8.

[58] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component anal-
ysis (GPCA),” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 12, pp. 1945–1959, 2005.

191

[59] J. Yan and M. Pollefeys, “A general framework for motion segmenta-
tion: Independent, articulated, rigid, non-rigid, degenerate and non-
degenerate,” in European Conference on Computer Vision (ECCV),
2006, pp. 94–106.

[60] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of mul-
tivariate mixed data via lossy data coding and compression,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 9, 2007.

[61] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2009,
pp. 2790–2797.

[62] P. Purkait, T.-J. Chin, A. Sadri, and D. Suter, “Clustering with hyper-
graphs: the case for large hyperedges,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2016.

[63] S. Amghibech, “Eigenvalues of the discrete p-Laplacian for graphs,”
Ars Combinatoria, vol. 67, pp. 283–302, 2003.

[64] T. Bühler and M. Hein, “Spectral clustering based on the graph p-
Laplacian,” in Proceedings of the International Conference on Machine
Learning. ACM, 2009, pp. 81–88.

[65] A. Szlam and X. Bresson, “Total variation and cheeger cuts,” in Pro-
ceedings of the International Conference on Machine Learning, 2010,
pp. 1039–1046.

[66] K. C. Chang, “Spectrum of the 1-Laplacian and Cheeger’s constant on
graphs,” Journal of Graph Theory, vol. 81, no. 2, pp. 167–207, 2016.

[67] F. Tudisco and M. Hein, “A nodal domain theorem and a higher-order
Cheeger inequality for the graph p-Laplacian,” Journal of Spectral The-
ory, vol. 8, no. 3, pp. 883–908, 2018.

[68] K. Chang, S. Shao, and D. Zhang, “Nodal domains of eigenvectors
for 1-Laplacian on graphs,” Advances in Mathematics, vol. 308, pp.
529–574, 2017.

[69] M. Hein and T. Bühler, “An inverse power method for nonlinear eigen-
problems with applications in 1-spectral clustering and sparse pca,” in
Advances in Neural Information Processing Systems, 2010, pp. 847–
855.

[70] P. Li and O. Milenkovic, “Revisiting decomposable submodular func-
tion minimization with incidence relations,” in Advances in Neural In-
formation Processing Systems, 2018, pp. 2237–2247.

192

[71] P. Li and O. Milenkovic, “Inhomogeneous hypergraph clustering with
applications,” in Advances in Neural Information Processing Systems,
2017, pp. 2305–2315.

[72] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.

[73] S. H. Gould, Variational Methods for Eigenvalue Problems. University
of Toronto Press, Toronto, 1966, vol. 22, no. 12.

[74] K.-C. Chang, “Variational methods for non-differentiable functionals
and their applications to partial differential equations,” Journal of
Mathematical Analysis and Applications, vol. 80, no. 1, pp. 102–129,
1981.

[75] T. Bıyıkoglu, J. Leydold, and P. F. Stadler, “Laplacian eigenvectors of
graphs,” Lecture Notes in Mathematics, vol. 1915, 2007.

[76] E. B. Davies, J. Leydold, and P. F. Stadler, “Discrete nodal domain
theorems,” Linear Algebra and its Applications, vol. 336, no. 1-3, pp.
51–60, 2001.

[77] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal-
ysis and an algorithm,” in Advances in Neural Information Processing
Systems, 2002, pp. 849–856.

[78] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[79] V. Kolmogorov, “Minimizing a sum of submodular functions,” Discrete
Applied Mathematics, vol. 160, no. 15, pp. 2246–2258, 2012.

[80] R. Nishihara, S. Jegelka, and M. I. Jordan, “On the convergence rate
of decomposable submodular function minimization,” in Advances in
Neural Information Processing Systems, 2014, pp. 640–648.

[81] D. R. Karger, “Global min-cuts in RNC, and other ramifications of a
simple min-cut algorithm,” in Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms, vol. 93, 1993, pp. 21–30.

[82] Y. T. Lee, A. Sidford, and S. C.-w. Wong, “A faster cutting plane
method and its implications for combinatorial and convex optimiza-
tion,” in Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on. IEEE, 2015, pp. 1049–1065.

[83] A. Ene, H. Nguyen, and L. A. Végh, “Decomposable submodular func-
tion minimization: discrete and continuous,” in Advances in Neural
Information Processing Systems, 2017, pp. 2874–2884.

193

[84] W. Meyer, “Equitable coloring,” The American Mathematical Monthly,
vol. 80, no. 8, pp. 920–922, 1973.

[85] D. Chakrabarty, P. Jain, and P. Kothari, “Provable submodular mini-
mization using Wolfe’s algorithm,” in Advances in Neural Information
Processing Systems, 2014, pp. 802–809.

[86] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradi-
ent and proximal-gradient methods under the polyak- lojasiewicz condi-
tion,” in Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. Springer, 2016, pp. 795–811.

[87] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[88] A. Hajnal and E. Szemerédi, “Proof of a conjecture of Erdös,” Combi-
natorial Theory and Its Applications, vol. 2, pp. 601–623, 1970.

[89] O. Fercoq and P. Richtárik, “Accelerated, parallel, and proximal co-
ordinate descent,” SIAM Journal on Optimization, vol. 25, no. 4, pp.
1997–2023, 2015.

[90] H. A. Kierstead, A. V. Kostochka, M. Mydlarz, and E. Szemerédi, “A
fast algorithm for equitable coloring,” Combinatorica, vol. 30, no. 2,
pp. 217–224, 2010.

[91] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickin-
son, and K. Siddiqi, “Turbopixels: Fast superpixels using geometric
flows,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 12, pp. 2290–2297, 2009.

[92] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of Anthropological Research, vol. 33, no. 4, pp.
452–473, 1977.

[93] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[94] N. Yadati, M. Nimishakavi, P. Yadav, A. Louis, and P. Talukdar, “Hy-
perGCN: Hypergraph convolutional networks for semi-supervised clas-
sification,” arXiv preprint arXiv:1809.02589, 2018.

[95] A. Chambolle and J. Darbon, “On total variation minimization and
surface evolution using parametric maximum flows,” International
Journal of Computer Vision, vol. 84, no. 3, p. 288, 2009.

[96] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of Modern Physics, vol. 74, no. 1, p. 47, 2002.

194

[97] R. Johnson and T. Zhang, “On the effectiveness of laplacian normaliza-
tion for graph semi-supervised learning,” Journal of Machine Learning
Research, vol. 8, no. Jul, pp. 1489–1517, 2007.

[98] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learn-
ing with local and global consistency,” in Advances in Neural Informa-
tion Processing Systems, 2004, pp. 321–328.

[99] C. Zhang, S. Hu, Z. G. Tang, and T. H. Chan, “Re-revisiting learning
on hypergraphs: confidence interval and subgradient method,” in Pro-
ceedings of the International Conference on Machine Learning, 2017,
pp. 4026–4034.

[100] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathemat-
ical Imaging and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[101] S. Fujishige and S. Isotani, “A submodular function minimization al-
gorithm based on the minimum-norm base,” Pacific Journal of Opti-
mization, vol. 7, no. 1, pp. 3–17, 2011.

[102] P. Wolfe, “Convergence theory in nonlinear programming,” Integer and
Nonlinear Programming, pp. 1–36, 1970.

[103] F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi, “Greedy algo-
rithms for cone constrained optimization with convergence guarantees,”
in Advances in Neural Information Processing Systems, 2017, pp. 773–
784.

[104] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient
algorithms for norm-regularized smooth convex optimization,” Mathe-
matical Programming, vol. 152, no. 1-2, pp. 75–112, 2015.

[105] T.-H. H. Chan, Z. G. Tang, X. Wu, and C. Zhang, “Diffusion operator
and spectral analysis for directed hypergraph Laplacian,” Theoretical
Computer Science, 2019.

[106] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
PageRank vectors,” in Proceedings of the 47th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society, 2006, pp.
475–486.

[107] P. Li, G. J. Puleo, and O. Milenkovic, “Motif and hypergraph correla-
tion clustering,” arXiv preprint arXiv:1811.02089, 2018.

[108] D. Zhou, S. Zhang, M. Y. Yildirim, S. Alcorn, H. Tong, H. Davulcu,
and J. He, “A local algorithm for structure-preserving graph cut,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp. 655–664.

195

[109] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 555–564.

[110] D. F. Gleich, L.-H. Lim, and Y. Yu, “Multilinear PageRank,” SIAM
Journal on Matrix Analysis and Applications, vol. 36, no. 4, pp. 1507–
1541, 2015.

[111] P. Li and O. Milenkovic, “Submodular hypergraphs: p-Laplacians,
Cheeger inequalities and spectral clustering,” in Proceedings of the In-
ternational Conference on Machine learning, 2018.

[112] Y. Yoshida, “Cheeger inequalities for submodular transformations,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. Society for Industrial and Applied Mathematics,
2019, pp. 2582–2601.

[113] K. Fujii, T. Soma, and Y. Yoshida, “Polynomial-time algorithms
for submodular Laplacian systems,” arXiv preprint arXiv:1803.10923,
2018.

[114] M. Ikeda, A. Miyauchi, Y. Takai, and Y. Yoshida, “Finding
Cheeger cuts in hypergraphs via heat equation,” arXiv preprint
arXiv:1809.04396, 2018.

[115] T. Soma and Y. Yoshida, “Spectral sparsification of hypergraphs,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SIAM, 2019, pp. 2570–2581.

[116] R. Andersen, F. Chung, and K. Lang, “Local partitioning for directed
graphs using PageRank,” Internet Mathematics, vol. 5, no. 1-2, pp.
3–22, 2008.

[117] L. Lovasz and M. Simonovits, “The mixing rate of Markov chains, an
isoperimetric inequality, and computing the volume,” in Proceedings
of the 31st Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 1990, p. 1.

[118] A. Gammerman, V. Vovk, and V. Vapnik, “Learning by transduction,”
in Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann Publishers Inc., 1998, pp. 148–155.

[119] T. Joachims, “Transductive learning via spectral graph partitioning,”
in Proceedings of the 20th International Conference on Machine Learn-
ing, 2003, pp. 290–297.

196

[120] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in Advances in Neural In-
formation Processing Systems, 2007, pp. 1601–1608.

[121] F. H. Clarke, Optimization and Nonsmooth Analysis. Siam, 1990,
vol. 5.

[122] T. Bühler, S. S. Rangapuram, S. Setzer, and M. Hein, “Constrained
fractional set programs and their application in local clustering and
community detection,” in Proceedings of the International Conference
on Machine Learning. JMLR. org, 2013, pp. I–624.

[123] S. Fujishige and X. Zhang, “New algorithms for the intersection prob-
lem of submodular systems,” Japan Journal of Industrial and Applied
Mathematics, vol. 9, no. 3, p. 369, 1992.

[124] I. Ekeland and R. Temam, Convex Analysis and Variational Problems.
Siam, 1999, vol. 28.

197

