173,817 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Defense against Insider Threat: a Framework for Gathering Goal-based Requirements

    Get PDF
    Insider threat is becoming comparable to outsider threat in frequency of security events. This is a worrying situation, since insider attacks have a high probability of success because insiders have authorized access and legitimate privileges. Despite their importance, insider threats are still not properly addressed by organizations. We contribute to reverse this situation by introducing a framework composed of a method for identification and assessment of insider threat risks and of two supporting deliverables for awareness of insider threat. The deliverables are: (i) attack strategies structured in four decomposition trees, and (ii) a matrix which correlates defense strategies, attack strategies and control principles. The method output consists of goal-based requirements for the defense against insiders

    Power system security enhancement by HVDC links using a closed-loop emergency control

    Get PDF
    In recent years, guaranteeing that large-scale interconnected systems operate safely, stably and economically has become a major and emergency issue. A number of high profile blackouts caused by cascading outages have focused attention on this issue. Embedded HVDC (High Voltage Direct Current) links within a larger AC power system are known to act as a “firewall” against cascading disturbances and therefore, can effectively contribute in preventing blackouts. A good example is the 2003 blackout in USA and Canada, where the Québec grid was not affected due to its HVDC interconnection. In the literature, many works have studied the impact of HVDC on the power system stability, but very few examples exist in the area of its impact on the system security. This paper presents a control strategy for HVDC systems to increase their contribution to system security. A real-time closed-loop control scheme is used to modulate the DC power of HVDC links to alleviate AC system overloads and improve system security. Simulations carried out on a simplified model of the Hydro-Québec network show that the proposed method works well and can greatly improve system security during emergency situations.Peer reviewedFinal Accepted Versio

    Dynamic cyber-incident response

    Get PDF
    Permission to make digital or hard copies of this publication for internal use within NATO and for personal or educational use when for non-profi t or non-commercial purposes is granted providing that copies bear this notice and a full citation on the first page. Any other reproduction or transmission requires prior written permission by NATO CCD COE.Traditional cyber-incident response models have not changed significantly since the early days of the Computer Incident Response with even the most recent incident response life cycle model advocated by the US National Institute of Standards and Technology (Cichonski, Millar, Grance, & Scarfone, 2012) bearing a striking resemblance to the models proposed by early leaders in the field e.g. Carnegie-Mellon University (West-Brown, et al., 2003) and the SANS Institute (Northcutt, 2003). Whilst serving the purpose of producing coherent and effective response plans, these models appear to be created from the perspectives of Computer Security professionals with no referenced academic grounding. They attempt to defend against, halt and recover from a cyber-attack as quickly as possible. However, other actors inside an organisation may have priorities which conflict with these traditional approaches and may ultimately better serve the longer-term goals and objectives of an organisation

    The assessment of treatment-related issues and risk in sex offenders and abusers with intellectual disability

    Get PDF
    corecore