24,626 research outputs found

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Ontologies on the semantic web

    Get PDF
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The “Semantic Web” was touted by its developers as equally revolutionary but has not yet achieved anything like the Web’s exponential uptake. This 17 000 word survey article explores why this might be so, from a perspective that bridges both philosophy and IT

    Expressing the tacit knowledge of a digital library system as linked data

    Get PDF
    Library organizations have enthusiastically undertaken semantic web initiatives and in particular the data publishing as linked data. Nevertheless, different surveys report the experimental nature of initiatives and the consumer difficulty in re-using data. These barriers are a hindrance for using linked datasets, as an infrastructure that enhances the library and related information services. This paper presents an approach for encoding, as a Linked Vocabulary, the "tacit" knowledge of the information system that manages the data source. The objective is the improvement of the interpretation process of the linked data meaning of published datasets. We analyzed a digital library system, as a case study, for prototyping the "semantic data management" method, where data and its knowledge are natively managed, taking into account the linked data pillars. The ultimate objective of the semantic data management is to curate the correct consumers' interpretation of data, and to facilitate the proper re-use. The prototype defines the ontological entities representing the knowledge, of the digital library system, that is not stored in the data source, nor in the existing ontologies related to the system's semantics. Thus we present the local ontology and its matching with existing ontologies, Preservation Metadata Implementation Strategies (PREMIS) and Metadata Objects Description Schema (MODS), and we discuss linked data triples prototyped from the legacy relational database, by using the local ontology. We show how the semantic data management, can deal with the inconsistency of system data, and we conclude that a specific change in the system developer mindset, it is necessary for extracting and "codifying" the tacit knowledge, which is necessary to improve the data interpretation process

    The evaluation of ontologies: Editorial review vs. democratic ranking

    Get PDF
    Increasingly, the high throughput technologies used by biomedical researchers are bringing about a situation in which large bodies of data are being described using controlled structured vocabularies—also known as ontologies—in order to support the integration and analysis of this data. Annotation of data by means of ontologies is already contributing in significant ways to the cumulation of scientific knowledge and, prospectively, to the applicability of cross-domain algorithmic reasoning in support of scientific advance. This very success, however, has led to a proliferation of ontologies of varying scope and quality. We define one strategy for achieving quality assurance of ontologies—a plan of action already adopted by a large community of collaborating ontologists—which consists in subjecting ontologies to a process of peer review analogous to that which is applied to scientific journal articles

    Philosophy of Blockchain Technology - Ontologies

    Get PDF
    About the necessity and usefulness of developing a philosophy specific to the blockchain technology, emphasizing on the ontological aspects. After an Introduction that highlights the main philosophical directions for this emerging technology, in Blockchain Technology I explain the way the blockchain works, discussing ontological development directions of this technology in Designing and Modeling. The next section is dedicated to the main application of blockchain technology, Bitcoin, with the social implications of this cryptocurrency. There follows a section of Philosophy in which I identify the blockchain technology with the concept of heterotopia developed by Michel Foucault and I interpret it in the light of the notational technology developed by Nelson Goodman as a notational system. In the Ontology section, I present two developmental paths that I consider important: Narrative Ontology, based on the idea of order and structure of history transmitted through Paul Ricoeur's narrative history, and the Enterprise Ontology system based on concepts and models of an enterprise, specific to the semantic web, and which I consider to be the most well developed and which will probably become the formal ontological system, at least in terms of the economic and legal aspects of blockchain technology. In Conclusions I am talking about the future directions of developing the blockchain technology philosophy in general as an explanatory and robust theory from a phenomenologically consistent point of view, which allows testability and ontologies in particular, arguing for the need of a global adoption of an ontological system for develop cross-cutting solutions and to make this technology profitable. CONTENTS: Abstract Introducere Tehnologia blockchain - Proiectare - Modele Bitcoin Filosofia Ontologii - Ontologii narative - Ontologii de intreprindere Concluzii Note Bibliografie DOI: 10.13140/RG.2.2.24510.3360
    • 

    corecore