10,448 research outputs found

    Integrable dynamics of Toda-type on the square and triangular lattices

    Full text link
    In a recent paper we constructed an integrable generalization of the Toda law on the square lattice. In this paper we construct other examples of integrable dynamics of Toda-type on the square lattice, as well as on the triangular lattice, as nonlinear symmetries of the discrete Laplace equations on the square and triangular lattices. We also construct the Ď„\tau - function formulations and the Darboux-B\"acklund transformations of these novel dynamics.Comment: 22 pages, 4 figure

    Cornerstones of Sampling of Operator Theory

    Full text link
    This paper reviews some results on the identifiability of classes of operators whose Kohn-Nirenberg symbols are band-limited (called band-limited operators), which we refer to as sampling of operators. We trace the motivation and history of the subject back to the original work of the third-named author in the late 1950s and early 1960s, and to the innovations in spread-spectrum communications that preceded that work. We give a brief overview of the NOMAC (Noise Modulation and Correlation) and Rake receivers, which were early implementations of spread-spectrum multi-path wireless communication systems. We examine in detail the original proof of the third-named author characterizing identifiability of channels in terms of the maximum time and Doppler spread of the channel, and do the same for the subsequent generalization of that work by Bello. The mathematical limitations inherent in the proofs of Bello and the third author are removed by using mathematical tools unavailable at the time. We survey more recent advances in sampling of operators and discuss the implications of the use of periodically-weighted delta-trains as identifiers for operator classes that satisfy Bello's criterion for identifiability, leading to new insights into the theory of finite-dimensional Gabor systems. We present novel results on operator sampling in higher dimensions, and review implications and generalizations of the results to stochastic operators, MIMO systems, and operators with unknown spreading domains

    Algebraic solutions of tropical optimization problems

    Full text link
    We consider multidimensional optimization problems, which are formulated and solved in terms of tropical mathematics. The problems are to minimize (maximize) a linear or nonlinear function defined on vectors of a finite-dimensional semimodule over an idempotent semifield, and may have constraints in the form of linear equations and inequalities. The aim of the paper is twofold: first to give a broad overview of known tropical optimization problems and solution methods, including recent results; and second, to derive a direct, complete solution to a new constrained optimization problem as an illustration of the algebraic approach recently proposed to solve tropical optimization problems with nonlinear objective function.Comment: 25 pages, presented at Intern. Conf. "Algebra and Mathematical Logic: Theory and Applications", June 2-6, 2014, Kazan, Russi

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Zamolodchikov's Tetrahedron Equation and Hidden Structure of Quantum Groups

    Full text link
    The tetrahedron equation is a three-dimensional generalization of the Yang-Baxter equation. Its solutions define integrable three-dimensional lattice models of statistical mechanics and quantum field theory. Their integrability is not related to the size of the lattice, therefore the same solution of the tetrahedron equation defines different integrable models for different finite periodic cubic lattices. Obviously, any such three-dimensional model can be viewed as a two-dimensional integrable model on a square lattice, where the additional third dimension is treated as an internal degree of freedom. Therefore every solution of the tetrahedron equation provides an infinite sequence of integrable 2d models differing by the size of this "hidden third dimension". In this paper we construct a new solution of the tetrahedron equation, which provides in this way the two-dimensional solvable models related to finite-dimensional highest weight representations for all quantum affine algebra Uq(sl^(n))U_q(\hat{sl}(n)), where the rank nn coincides with the size of the hidden dimension. These models are related with an anisotropic deformation of the sl(n)sl(n)-invariant Heisenberg magnets. They were extensively studied for a long time, but the hidden 3d structure was hitherto unknown. Our results lead to a remarkable exact "rank-size" duality relation for the nested Bethe Ansatz solution for these models. Note also, that the above solution of the tetrahedron equation arises in the quantization of the "resonant three-wave scattering" model, which is a well-known integrable classical system in 2+1 dimensions.Comment: v2: references adde

    Numerical Analysis

    Get PDF
    Acknowledgements: This article will appear in the forthcoming Princeton Companion to Mathematics, edited by Timothy Gowers with June Barrow-Green, to be published by Princeton University Press.\ud \ud In preparing this essay I have benefitted from the advice of many colleagues who corrected a number of errors of fact and emphasis. I have not always followed their advice, however, preferring as one friend put it, to "put my head above the parapet". So I must take full responsibility for errors and omissions here.\ud \ud With thanks to: Aurelio Arranz, Alexander Barnett, Carl de Boor, David Bindel, Jean-Marc Blanc, Mike Bochev, Folkmar Bornemann, Richard Brent, Martin Campbell-Kelly, Sam Clark, Tim Davis, Iain Duff, Stan Eisenstat, Don Estep, Janice Giudice, Gene Golub, Nick Gould, Tim Gowers, Anne Greenbaum, Leslie Greengard, Martin Gutknecht, Raphael Hauser, Des Higham, Nick Higham, Ilse Ipsen, Arieh Iserles, David Kincaid, Louis Komzsik, David Knezevic, Dirk Laurie, Randy LeVeque, Bill Morton, John C Nash, Michael Overton, Yoshio Oyanagi, Beresford Parlett, Linda Petzold, Bill Phillips, Mike Powell, Alex Prideaux, Siegfried Rump, Thomas Schmelzer, Thomas Sonar, Hans Stetter, Gil Strang, Endre SĂĽli, Defeng Sun, Mike Sussman, Daniel Szyld, Garry Tee, Dmitry Vasilyev, Andy Wathen, Margaret Wright and Steve Wright
    • …
    corecore