45 research outputs found

    Computational intelligence-based steganalysis comparison for RCM-DWT and PVA-MOD methods

    Get PDF
    This research article proposes data hiding technique for improving the data hiding procedure and securing the data transmission with the help of contrast mapping technique along with advanced data encryption standard. High data hiding capacity, image quality and security are the measures of steganography. Of these three measures, number of bits that can be hidden in a single cover pixel, bits per pixel (bpp), is very important and many researchers are working to improve the bpp. We propose an improved high capacity data hiding method that maintains the acceptable image quality that is more than 30 dB and improves the embedding capacity higher than that of the methods proposed in recent years. The method proposed in this paper uses notational system and achieves higher embedding rate of 4 bpp and also maintain the good visual quality. To measure the efficiency of the proposed information hiding methodology, a simulation system was developed with some of impairments caused by a communication system. PSNR (Peak Signal to Noise ratio) is used to verify the robustness of the images. The proposed research work is verified in accordance to noise analysis. To evaluate the defencing performance during attack RS steganalysis is used

    Encryption and Decryption of Images with Pixel Data Modification Using Hand Gesture Passcodes

    Get PDF
    To ensure data security and safeguard sensitive information in society, image encryption and decryption as well as pixel data modifications, are essential. To avoid misuse and preserve trust in our digital environment, it is crucial to use these technologies responsibly and ethically. So, to overcome some of the issues, the authors designed a way to modify pixel data that would hold the hidden information. The objective of this work is to change the pixel values in a way that can be used to store information about black and white image pixel data. Prior to encryption and decryption, by using Python we were able to construct a passcode with hand gestures in the air, then encrypt it without any data loss. It concentrates on keeping track of simply two pixel values. Thus, pixel values are slightly changed to ensure the masked image is not misleading. Considering that the RGB values are at their border values of 254, 255 the test cases of masking overcome issues with the corner values susceptibility

    Deep Learning for Reversible Steganography: Principles and Insights

    Get PDF
    Deep-learning\textendash{centric} reversible steganography has emerged as a promising research paradigm. A direct way of applying deep learning to reversible steganography is to construct a pair of encoder and decoder, whose parameters are trained jointly, thereby learning the steganographic system as a whole. This end-to-end framework, however, falls short of the reversibility requirement because it is difficult for this kind of monolithic system, as a black box, to create or duplicate intricate reversible mechanisms. In response to this issue, a recent approach is to carve up the steganographic system and work on modules independently. In particular, neural networks are deployed in an analytics module to learn the data distribution, while an established mechanism is called upon to handle the remaining tasks. In this paper, we investigate the modular framework and deploy deep neural networks in a reversible steganographic scheme referred to as prediction-error modulation, in which an analytics module serves the purpose of pixel intensity prediction. The primary focus of this study is on deep-learning\textendash{based} context-aware pixel intensity prediction. We address the unsolved issues reported in related literature, including the impact of pixel initialisation on prediction accuracy and the influence of uncertainty propagation in dual-layer embedding. Furthermore, we establish a connection between context-aware pixel intensity prediction and low-level computer vision and analyse the performance of several advanced neural networks

    Reversible data hiding method by extending reduced difference expansion

    Get PDF
    To keep hiding secret data in multimedia files, such as video, audio, and image considers essential for information security. Image, for instance, as the media aids data insertion securely. The use of insertion technique must ensure a reliable process on retaining data quality and capacity. However, a trade-off between the resulted image quality and the embedded payload capacity after the embedding process often occurs. Therefore, this research aims at extending the existing method of integrating confidential messages using the Reduced Difference Expansion (RDE), transform into a medical image by changing the base point, block size, and recalculating of difference. The results display that the proposed method enhances the quality of the stego image and capacity of the hidden message

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature

    Security and imperceptibility improving of image steganography using pixel allocation and random function techniques

    Get PDF
    Information security is one of the main aspects of processes and methodologies in the technical age of information and communication. The security of information should be a key priority in the secret exchange of information between two parties. In order to ensure the security of information, there are some strategies that are used, and they include steganography and cryptography. An effective digital image-steganographic method based on odd/even pixel allocation and random function to increase the security and imperceptibility has been improved. This lately developed outline has been verified for increasing the security and imperceptibility to determine the existent problems. Huffman coding has been used to modify secret data prior embedding stage; this modified equivalent secret data that prevent the secret data from attackers to increase the secret data capacities. The main objective of our scheme is to boost the peak-signal-to-noise-ratio (PSNR) of the stego cover and stop against any attack. The size of the secret data also increases. The results confirm good PSNR values in addition of these findings confirmed the proposed method eligibility

    Paperless Transfer of Medical Images: Storing Patient Data in Medical Images

    Get PDF
    Medical images have become an integral part ofpatient diagnosis in recent years. With the introduction of HealthInformation Management Systems (HIMS) used for the storageand sharing of patient data, as well as the use of the PictureArchiving and Communication Systems (PACS) formanipulating and storage of CT Scans, X-rays, MRIs and othermedical images, the security of patient data has become a seriousconcern for medical professionals. The secure transfer of theseimages along with patient data is necessary for maintainingconfidentiality as required by the Data Protection Act, 2011 inTrinidad and Tobago and similar legislation worldwide. Tofacilitate this secure transfer, different digital watermarking andsteganography techniques have been proposed to safely hideinformation in these digital images. This paper focuses on theamount of data that can be embedded into typical medical imageswithout compromising visual quality. In addition, ExploitingModification Direction (EMD) is selected as the method of choicefor hiding information in medical images and it is compared tothe commonly used Least Significant Bit (LSB) method.Preliminary results show that by using EMD there little to nodistortion even at the highest embedding capacity
    corecore