13 research outputs found

    Reversible Sessions Using Monitors

    Get PDF

    Reversible Multiparty Sessions with Checkpoints

    Full text link
    Reversible interactions model different scenarios, like biochemical systems and human as well as automatic negotiations. We abstract interactions via multiparty sessions enriched with named checkpoints. Computations can either go forward or roll back to some checkpoints, where possibly different choices may be taken. In this way communications can be undone and different conversations may be tried. Interactions are typed with global types, which control also rollbacks. Typeability of session participants in agreement with global types ensures session fidelity and progress of reversible communications.Comment: In Proceedings EXPRESS/SOS 2016, arXiv:1608.0269

    Causal Consistency for Reversible Multiparty Protocols

    Get PDF
    In programming models with a reversible semantics, computational steps can be undone. This paper addresses the integration of reversible semantics into process languages for communication-centric systems equipped with behavioral types. In prior work, we introduced a monitors-as-memories approach to seamlessly integrate reversible semantics into a process model in which concurrency is governed by session types (a class of behavioral types), covering binary (two-party) protocols with synchronous communication. The applicability and expressiveness of the binary setting, however, is limited. Here we extend our approach, and use it to define reversible semantics for an expressive process model that accounts for multiparty (n-party) protocols, asynchronous communication, decoupled rollbacks, and abstraction passing. As main result, we prove that our reversible semantics for multiparty protocols is causally-consistent. A key technical ingredient in our developments is an alternative reversible semantics with atomic rollbacks, which is conceptually simple and is shown to characterize decoupled rollbacks.Comment: Extended, revised version of a PPDP'17 paper (https://doi.org/10.1145/3131851.3131864

    Concurrent Reversible Sessions

    Get PDF
    We present a calculus for concurrent reversible multiparty sessions, which improves on recent proposals in several respects: it allows for concurrent and sequential composition within processes and types, it gives a compact representation of the past of processes and types, which facilitates the definition of rollback, and it implements a fine-tuned strategy for backward computation. We propose a refined session type system for our calculus and show that it enforces the expected properties of session fidelity, forward and backward progress, as well as causal consistency. In conclusion, our calculus is a conservative extension of previous proposals, offering enhanced expressive power and refined analysis techniques

    Causally consistent reversible choreographies: a monitors-as-memories approach

    Get PDF
    Under a reversible semantics, computation steps can be undone. This paper addresses the integration of reversible semantics into a process model of multiparty protocols (choreographies). Building upon the monitors-as-memories approach that we developed in prior work for reversible binary protocols, we present a reversible process framework for multiparty communication, which improves on prior models by seamlessly integrating asynchrony, decoupled rollbacks, and process passing. As main technical result, we prove that our multiparty, reversible semantics is causally-consistent

    Reversibility in session-based concurrency: A fresh look

    Get PDF
    Much research has studied foundations for correct and reliable communication-centric software systems. A salient approach to correctness uses verification based on session types to enforce structured communications; a recent approach to reliability uses reversible actions as a way of reacting to unanticipated events or failures. In this paper, we develop a simple observation: the semantic machinery required to define asynchronous (queue-based), monitored communications can also support reversible protocols. We propose a framework of session communication in which monitors support reversibility of (untyped) processes. Main novelty in our approach are session types with present and past, which allow us to streamline the semantics of reversible actions. We prove that reversibility in our framework is causally consistent, and define ways of using monitors to control reversible actions. Keyword

    Causal Consistency for Reversible Multiparty Protocols

    Get PDF
    In programming models with a reversible semantics, computational steps can be undone. This paper addresses the integration of reversible semantics into process languages for communication-centric systems equipped with behavioral types. In prior work, we introduced a monitors-as-memories approach to seamlessly integrate reversible semantics into a process model in which concurrency is governed by session types (a class of behavioral types), covering binary (two-party) protocols with synchronous communication. The applicability and expressiveness of the binary setting, however, is limited. Here we extend our approach, and use it to define reversible semantics for an expressive process model that accounts for multiparty (n-party) protocols, asynchronous communication, decoupled rollbacks, and abstraction passing. As main result, we prove that our reversible semantics for multiparty protocols is causally-consistent. A key technical ingredient in our developments is an alternative reversible semantics with atomic rollbacks, which is conceptually simple and is shown to characterize decoupled rollbacks

    Causal consistency for reversible multiparty protocols

    Get PDF
    In programming models with a reversible semantics, computational steps can be undone. This paper addresses the integration of reversible semantics into process languages for communication-centric systems equipped with behavioral types. In prior work, we introduced a monitors-as-memories approach to seamlessly integrate reversible semantics into a process model in which concurrency is governed by session types (a class of behavioral types), covering binary (two-party) protocols with synchronous communication. The applicability and expressiveness of the binary setting, however, is limited. Here we extend our approach, and use it to define reversible semantics for an expressive process model that accounts for multiparty (n-party) protocols, asynchronous communication, decoupled rollbacks, and abstraction passing. As main result, we prove that our reversible semantics for multiparty protocols is causally-consistent. A key technical ingredient in our developments is an alternative reversible semantics with atomic rollbacks, which is conceptually simple and is shown to characterize decoupled rollbacks

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    corecore