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Abstract. In programming models with a reversible semantics, computational steps can
be undone. This paper addresses the integration of reversible semantics into process
languages for communication-centric systems equipped with behavioral types. In prior
work, we introduced a monitors-as-memories approach to seamlessly integrate reversible
semantics into a process model in which concurrency is governed by session types (a class of
behavioral types), covering binary (two-party) protocols with synchronous communication.
The applicability and expressiveness of the binary setting, however, is limited. Here we
extend our approach, and use it to define reversible semantics for an expressive process
model that accounts for multiparty (n-party) protocols, asynchronous communication,
decoupled rollbacks, and abstraction passing. As main result, we prove that our reversible
semantics for multiparty protocols is causally-consistent. A key technical ingredient in
our developments is an alternative reversible semantics with atomic rollbacks, which is
conceptually simple and is shown to characterize decoupled rollbacks.

1. Introduction

This paper is about reversible computation in the context of models of concurrency for
communication-centric software systems, i.e., collections of distributed software components
in which concurrent interactions are governed by reciprocal dialogues or protocols.

Building upon process calculi techniques, these models provide a rigorous footing for
message-passing concurrency; on top of them, many analysis techniques based on behavioral
types and contracts have been put forward to enforce key safety and liveness properties
(see, e.g., the survey [HLV+16]). Reversibility is an appealing notion in concurrency at
large [LMT14], but especially so in communication-centric scenarios: it may elegantly
abstract fault-tolerant communicating systems that react to unforeseen circumstances (say,
local failures) by “undoing” computational steps so as to reach a previous consistent state.

In communication-centric software systems, protocols specify the intended communica-
tion structures among interacting components. We focus on process calculi equipped with
behavioral types, which use those protocols as types to enforce communication correctness.
The interest is in protocol conformance, the property that ensures that each component
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respects its ascribed protocol. The integration of reversibility in models of communication-
centric systems has been addressed from various angles (cf. [TY15, TY16, BDd16, MP16]).
Focusing on session types [HVK98, HYC08]—a well established class of behavioral types—,
Tiezzi and Yoshida [TY15] were the first to integrate reversibility into a session-typed
π-calculus, following the seminal approach of Danos and Krivine [DK04]; in their approach,
however, session types are not used in the definition of reversible communicating systems,
nor play a rôle in establishing their properties.

Triggered by this observation, our prior work [MP16, MP17b] develops a monitors-as-
memories approach. The idea is to use monitors (i.e., run-time entities that enact protocol
actions) as the memories needed to record and eventually undo communication steps. There
is a monitor for each protocol participant, which includes a session type that describes the
intended protocol. We use a so-called cursor to “mark” the current protocol state in the
type; the cursor can move to the future (enacting protocol actions) but also to the past
(reversing protocol actions).

The monitors-as-memories approach induces a streamlined process framework in which
the key properties of a reversible semantics can be established with simple proofs, because
session types narrow down the spectrum of possible process behaviors, allowing only those
forward and backward actions that adhere to the declared protocols. The most significant of
such properties is causal consistency [DK04], considered as the “right” criterion for reversing
concurrent processes in distributed systems [MSG+20]. Intuitively, causal consistency ensures
that reversible steps lead to system states that could have been reached by performing
forward steps only. That is, causally consistent reversibility does not lead to extraneous
states, not reachable through ordinary computations.

The reversible framework in [MP16, MP17b], however, accounts only for π-calculus pro-
cesses implementing binary sessions, which represent protocols between exactly two partners.
Also, it considers synchronous communication instead of the more general asynchronous
(queue-based) communication. Hence, our prior work rules out an important class of real-life
protocols, namely those that describe interaction scenarios among multiple parties without a
single point of control. In multiparty session types [HYC08], these protocols are represented
by a global type that can be projected as local types to obtain each participant’s contribution
to the entire interaction. Moving from binary to multiparty sessions is a significant jump in
expressiveness; global types offer a convenient declarative description of the entire communi-
cation scenario. However, the multiparty case also entails added challenges, as two levels
of abstraction, global and local, should be considered for (reversible) protocols and their
implementations. Hence, it is far from obvious that our monitors-as-memories approach to
(causal consistent) reversibility extends to the multiparty case.

Contributions. Given this context, in this paper we make the following contributions:

(1) We introduce a process model for reversible, multiparty sessions with asynchrony (as
in [KYHH16]), abstraction passing (i.e., functions from names to processes) [San92,
KPY16, KPY19], and decoupled rollbacks (§ 2). We define forward and backward
semantics for multiparty processes by extending the monitors-as-memories approach to
both global types and their implementations.

(2) We prove that reversibility in our model is causally consistent (Theorem 3.21). The
proof is challenging as we must appeal to an alternative reversible semantics with
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Figure 1. Our process model of multiparty communications.

atomic rollbacks, which we show to coincide with the semantics with decoupled rollbacks
(Theorem 3.12).

(3) We formally connect reversibility at two distinct levels: the (declarative) level of global
types and the (operational) level of processes monitored by local types with cursors
(Theorem 3.27).

We stress that asynchrony, abstraction passing, and decoupled rollbacks are not considered in
prior works [TY16, DG16, MP16, MP17b]. Asynchrony and decoupled rollbacks are delicate
issues in a reversible multiparty setting—we do not know of other asynchronous calculi
with reversible semantics, nor featuring the same combination of constructs. The formal
connection between global and local levels of abstraction (Theorem 3.27) is also unique to
our multiparty setting.

Organization. In Section 2, we introduce our process model of reversible multiparty protocols,
and illustrate it with examples. In Section 3 we establish causal consistency by relating
decoupled and atomic semantics, and connect reversibility at global and local levels. Section 4
discusses an alternative decoupled semantics and related works. Section 5 collects some
concluding remarks.

This paper is a revised and extended version of the conference paper [MP17a]. In this
presentation we consider a language with labeled choices (not treated in [MP17a]), provide
additional examples, streamline the presentation of the decoupled and atomic semantics,
extend comparisons with related works, and include technical details (definitions and proofs).

2. Reversible Multiparty Protocols

Fig. 1 depicts the ingredients of our two-level model of protocols and configurations/processes.
Multiparty protocols are defined in terms of global types, which declaratively describe
a protocol among two or more participants. A global type can be projected onto each
participant so as to obtain its corresponding local type, i.e., a session type that abstracts a
participant’s contribution to the global protocol.

The semantics of global types is given in terms of forward and backward transition
systems (Fig. 3). There is a configuration for each protocol participant: it includes a located
process that specifies asynchronous communication behavior, subject to a monitor that
enables forward/backward steps at run-time based on the local type. The semantics of
configurations is given in terms of forward and backward reduction relations (Figs. 6, 7, 8,
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9, and 10). Figure 11 in § 3 summarizes our notations for semantics of global types and
configurations.

We illustrate our model of reversible protocols with two examples. As a running example,
we develop a reversible variant of the Three-Buyer protocol (see, e.g., [CDCPY15]) with
abstraction passing (code mobility), one of the distinctive traits of our framework. This
example comes in three parts—cf. § 2.1.2, § 2.2.2, and § 2.3.3. As second example, in § 2.4
we present a protocol with labeled choices.

Remark 2.1 (Colors). Throughout the paper, we use colors to improve readability. In
particular, elements in blue belong to a forward semantics; elements in red belong to a
backward semantics. Also, we use orange to highlight the cursor and other syntactic entities.

2.1. Global and Local Types.

2.1.1. Syntax. Let us write p, q, r, A, B . . . to denote protocol participants. The syntax of
global types (G,G′, . . .) and local types (T, T ′, . . .) is standard [HYC08] and defined as
follows:

G,G′ ::= p→ q : 〈U〉.G | p→ q : {li : Gi}i∈I | µX.G | X | end
U,U ′ ::= bool | nat | · · · | T→�
T, T ′ ::= p!〈U〉.T | p?〈U〉.T | p⊕{li : Ti}i∈I | p&{li : Ti}i∈I | µX.T | X | end

The global type p → q : 〈U〉.G says that p may send a value of type U to q, and then
continue as G. Given a finite index set I and pairwise different labels li, the global type
p → q : {li : Gi}i∈I specifies a labeled choice: p may choose label li, communicate this
selection to q, and then continue as Gi. In these two types we assume that p 6= q. Global
recursive and terminated protocols are denoted µX.G and end, respectively. We write pa(G)
to denote the set of participants in G.

Value types U include basic first-order values (constants), but also higher-order values:
abstractions from names to processes. (We write � to denote the type of processes.) Local
types p!〈U〉.T and p?〈U〉.T denote, respectively, an output and input of value of type U by
p. Type p&{li : Ti}i∈I says that p offers different behaviors, available as labeled alternatives;
conversely, type p⊕{li : Ti}i∈I says that p may select one of such alternatives. Terminated
and recursive local types are denoted end and µX.T , respectively. We use α to denote type
prefixes p?(U), p!〈U〉.

As usual, we consider only recursive types µX.G (and µX.T ) in which X occurs guarded
in G (and T ). We shall take an equi-recursive view of (global and local) types, and so we
consider two types with the same regular tree as equal.

Global and local types are connected by projection: following [HYC08], the projection
of G onto participant p, written G↓p, is defined in Fig. 2. Projection for p→ q : {li : Gi}i∈I
is noteworthy: the projections of the participants not involved in the choice (different from
p, q) should correspond to the same identical local type.
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(p→ q : 〈U〉.G)↓r =


q!〈U〉.(G↓r) if r = p

p?〈U〉.(G↓r) if r = q

(G↓r) if r 6= q, r 6= p

(p→ q : {li : Gi}i∈I)↓r =


q⊕{li : (Gi ↓r)}i∈I if r = p

p&{li : Gi ↓r}i∈I if r = q

(G1 ↓r) if r 6= q, r 6= p and ∀i, j ∈ I.Gi ↓r= Gj ↓r

(µX.G)↓r =

{
µX.G↓r if r occurs in G

end otherwise

X ↓r = X end↓r = end

Figure 2. Projection of a global type G onto a participant r.

2.1.2. Example: The Three-Buyer Seller Protocol (I). The Three-Buyer Seller Protocol
involves three buyers—Alice (A), Betty (B), and Carol (C)—who interact with a Seller (V) as
follows:

1. Alice sends a book title to Seller, which replies back to Alice and Betty with a quote.
Alice tells Betty how much she can contribute.

2. Betty notifies Seller and Alice that she agrees with the price, and asks Carol to assist her
in completing the protocol. To delegate her remaining interactions with Alice and Seller
to Carol, Betty sends her the code she must execute.

3. Carol continues the rest of the protocol with Seller and Alice as if she were Betty. She
sends Betty’s address (contained in the mobile code she received) to Seller.

4. Seller answers to Alice and Carol (who represents Betty) with the delivery date.

We formalize this protocol as a global type denoted G (see below). We first define some
convenient notation.

• We write p→ {q1, q2} : 〈U〉.G as a shorthand notation for p→ q1 : 〈U〉.p→ q2 : 〈U〉.G
(and similarly for local types).
• We write {{�}} to denote the type end→�. As we will see, this is the type of a thunk

process λx. P with x 6∈ fn(P ), written {{P}}. A thunk is an inactive process; it can be
activated by applying to it a dummy name of type end (which we will denote ∗).

The global type G between A, B, and C is as follows:

G = A→ V : 〈title〉.V→ {A, B} : 〈price〉.A→ B : 〈share〉.
B→ {A, V} : 〈OK〉.
B→ C : 〈share〉.B→ C : 〈{{�}}〉.
B→ V : 〈address〉.V→ B : 〈date〉.end

where price and share are base types treated as integers; also, title, OK, address, and date
are base types treated as strings.
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(FVal1) G[ ˆ̂ p→ q : 〈U〉.G]
#G[p→ ˆ̂ q : 〈U〉.G]

(FVal2) G[p→ ˆ̂ q : 〈U〉.G]
#G[p→ q : 〈U〉. ˆ̂G]

(FCho1) G[ ˆ̂ p→ q : {li : Gi}i∈I ]
#G[p→ ˆ̂ q : {li : Gi ; lj : Gj}i∈I\j ]

(FCho2) G[p→ ˆ̂ q : {li : Gi ; lj : Gj}i∈I\j ]
#G[p→ q : {li : Gi ; lj : ˆ̂Gj}i∈I\j ]

(BVal1) G[p→ ˆ̂ q : 〈U〉.G]#G[ ˆ̂ p→ q : 〈U〉.G]

(BVal2) G[p→ q : 〈U〉. ˆ̂G]#G[p→ ˆ̂ q : 〈U〉.G]

(BCho1) G[p→ ˆ̂ q : {li : Gi ; lj : Gj}i∈I\j ]#G[ ˆ̂ p→ q : {li : Gi}i∈I ]

(BCho2) G[p→ q : {li : Gi ; lj : ˆ̂Gj}i∈I\j ]#G[p→ ˆ̂ q : {li : Gi}i∈I ]

Figure 3. Semantics of Global Types (Forward & Backwards).

Then, following the function defined in Fig. 2, we have the projections of G onto local
types:

G↓V = A?〈title〉.{A, B}!〈price〉.B?〈OK〉.B?〈address〉.B!〈date〉.end
G↓A = V!〈title〉.V?〈price〉.B!〈share〉.B?〈OK〉.end
G↓B = V?〈price〉.A?〈share〉.{A, V}!〈OK〉.C!〈share〉.C!〈{{�}}〉.V!〈address〉.V?〈date〉.end
G↓C = B?〈share〉.B?〈{{�}}〉.end

2.1.3. Semantics of Protocols. The semantics of global types comprises forward and backward
transition relations, denoted

#
and # , respectively (Fig. 3).

To formalize backward steps, we require some auxiliary notions. We use global contexts,
ranged over by G,G′, . . . with holes ‘•’, to record previous actions, including the choices
discarded and committed:

G ::= • | G[p→ q : 〈U〉.G] | G[p→ q : {li : Gi ; lj : G}i∈I\j ]

We also use global types with history, ranged over by H,H′, . . ., to record the current protocol
state. This state is denoted by the cursor ˆ̂ , which we introduced in [MP16].

Definition 2.2 (Global Types with History). The syntax of global types with history is
defined as follows:

H,H′ ::= ˆ̂G | G ˆ̂ | p→ ˆ̂ q : 〈U〉.G | p→ q : 〈U〉. ˆ̂G

| p→ ˆ̂ q : {li : Gi ; lj : Gj}i∈I\j | p→ q : {li : Gi ; lj : ˆ̂Gj}i∈I\j
We write pa(H) to denote the set of participants in a global type with history H.

The syntax of global types with history follows some basic intuitions. A directed
exchange such as p→ q : 〈U〉.G has three intermediate states, characterized by the decoupled
involvement of p and q in the intended asynchronous model:
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u,w ::= n | x, y, z n, n′ ::= a, b | s[p] v, v′ ::= tt | ff | · · ·
V,W ::= a, b | x, y, z | v, v′ | λx. P
P,Q ::= u!〈V 〉.P | u?(x).P | u / {li.Pi}i∈I | u . {li : Pi}i∈I

| P | Q | X | µX.P | V u | (ν n)P | 0

♠ ::= � | ♦ m ::= V | l h, k ::= ε | h ◦ (p , q , m)

M,N ::= 0 | ` {a!〈x〉.P} | ` {a?(x).P} |M | N | (ν n)M

| ` : *C ; P + | s : (h ? k) | κb(V u) , `c | sbH · x̃ · σc♠

C, C′ ::= 0 | u / {li.Pi}i∈I | u . {li : Pi}i∈I | C1, C2

α ::= q?(U) | q!〈U〉

T, S ::= end | α.S | q⊕{li : Si}i∈I | q&{li : Si}i∈I

H,K ::= ˆ̂ S | S ˆ̂ | α1. · · · .αn. ˆ̂ S | q⊕{li : Si ; lj : Hj}i∈I | q&{li : Si , lj : Hj}i∈I

Figure 4. Syntax of processes (P,Q), configurations (M,N), stacks (C, C′)

local types (T, S), and local types with history (H,K). Constructs in boxes
appear only at run-time.

(1) The first state, denoted ˆ̂ p→ q : 〈U〉.G, describes the situation prior to the exchange.
(2) The second state represents the point in which p has sent a value of type U but this

message has not yet reached q; this is denoted as p→ ˆ̂ q : 〈U〉.G.
(3) The third state represents the point in which q has received the message from p and the

continuation G is ready to execute; this is denoted as p→ q : 〈U〉. ˆ̂G.

These intuitions extend similarly to p→ q : {li : Gi}i∈I , with the following caveat: the
second state should distinguish the choice made by p from the discarded alternatives; we
write p→ ˆ̂ q : {li : Gi ; lj : Gj}i∈I\j to denote that p has selected lj and that this choice is
still to be received by q. Once this occurs, a state p→ q : {li : Gi ; lj : ˆ̂Gj}i∈I\j is reached.

We may now describe the forward and backward transition rules for global types, given
in Fig. 3. For a forward directed exchange of a value, Rule (FVal1) formalizes the transition
from the first to the second state; Rule (FVal2) denotes the transition from the second to
the third state. Rules (FCho1) and (FCho2) are their analogues for the forward directed
communication of a label. Rules (BVal1) and (BVal2) undo the step performed by
Rules (FVal1) and (FVal2), respectively. Also, Rules (BCho1) and (BCho2) undo the
step performed by Rules (FCho1) and (FCho2), respectively.

2.2. Processes and Configurations.
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2.2.1. Syntax. The syntax of processes and configurations is given in Fig. 4. For processes
P,Q, . . . we follow the syntax of HOπ, the core higher-order session π-calculus studied
in [KPY16, KPY19]. (Actually, our syntax of processes is related to HO, the sub-language
of HOπ without name-passing.) The syntax of configurations builds upon that of processes.

Names a, b, c (resp. s, s′) range over shared (resp. session) names. We use session
names indexed by participants, denoted s[p], s[q]. Names n, n′ are session or shared names.
First-order values v, v′ include base values and constants. Variables are denoted by x, y
and recursion variables are denoted by X,Y . We write x̃ to denote a sequence of variables,
sometimes treated as a set. To define configurations, we use fresh name identifiers (keys),
denoted κ, κ′, . . ., and also identifiers `, `′, . . ., which denote a process location or site (as in,
e.g., the distributed π-calculus [Hen07]).

The syntax of values V includes shared names, first-order values, but also abstractions
λx. P , where P is a process. Abstractions are higher-order values, as they denote functions
from names to processes. As shown in [KPY16, KPY19], abstraction passing suffices to
express name passing (delegation).

Process terms include prefixes for sending and receiving values V , written u!〈V 〉.P and
u?(x).P , respectively. Given a finite index set I, processes u / {li.Pi}i∈I and u . {li : Pi}i∈I
implement selection and branching (internal and external labeled choices, respectively). The
selection u / {li.Pi}i∈I is actually a non-deterministic choice over I. In an improvement with
respect to [MP16, MP17b], here we consider parallel composition of processes P | Q and
recursion µX.P (which binds X in process P ). Process V u is the application which leads
to substitute name u on the abstraction V . Constructs for restriction (ν n)P and inaction 0
are standard.

Session restriction (ν s)P simultaneously binds all the participant endpoints in P . We
write fv(P ) and fn(P ) to denote the sets of free variables and names in P . We assume V in
u!〈V 〉.P does not include free recursion variables X. If fv(P ) = ∅, we call P closed.

The syntax of configurations M,N, . . ., includes inaction 0, the parallel composition
M | N , and name restriction (ν n)M . Also, it includes constructs for session initiation:
configuration ` {a!〈x〉.P} denotes the request of a service identified with a implemented in
P as x; conversely, configuration ` {a?(x).P} denotes service acceptance.

Configurations also include the following run-time elements:

• Running processes are of the form ` : *C ; P +, where ` is a location that hosts a process P
and a (process) stack C. A stack is simply a list of processes, useful to record/reinstate
the discarded alternatives in a labeled choice.

• Monitors are of the form sbH · x̃ · σc♠, where s is the session being monitored, H is a
local type with history (i.e. in which the cursor ˆ̂ acts as a “memory”), x̃ is a set of
free variables, the store σ records the value of such variables (see Def. 2.4), and ♠ is the
monitor’s tag (see next).

These five elements allow us to track the current protocol and state of the monitored
process. The tag ♠ can be either empty (denoted ‘♦’) or full (denoted ‘�’). When first
created, all monitors have an empty tag; a full tag indicates that the running process
associated to the monitor is currently involved in a decoupled reversible step. We often omit

the empty tag (so we write sbH · x̃ · σc instead of sbH · x̃ · σc♦) and write sbH · x̃ · σc�
to emphasize the reversible (red) nature of a monitor with full tag.
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• Following [KYHH16], we have message queues s : (h ? k), where s is a session, h is the
input part of the queue, k is the output part of the queue, and ‘?’ acts as a delimiter
between the two.

Each queue contains messages of the form (p , q , m), which is read: “message m is
sent from p to q”. As we will see, an output prefix in a process places the message in its
corresponding output queue; conversely, an input prefix retrieves the first message from
its input queue. Messages in the queue are never consumed : a process reads a message
(p , q , m) by moving it from the (tail of) queue k to the (top of) queue h. This way, the
delimiter ? distinguishes the past of the queue from its future.

• We use running functions κb(V u) , `c to reverse an application V u. While κ is a fresh
identifier (key) for this term, ` is the location of the running process that contains the
application.

As customary, we write
∏
i∈{1..n} Pi to stand for the process P1 | P2 | · · · | Pn (and

similarly for configurations). We shall write P and M to indicate the set of processes and
configurations, respectively. We call agent an element of the set A =M∪P. We let P,Q
to range over P; also, we use L,M,N to range over M and A,B,C to range over A.

2.2.2. Example: The Three-Buyer Seller Protocol (II). Continuing with the example in
§2.1.2, we now give processes for each participant:

Seller = d!〈x : G↓V〉.x?(t).x!〈price(t)〉.x!〈price(t)〉.x?(ok).x?(a).x!〈date〉.0
Alice = d?(y : G↓A).y!〈‘Logicomix’〉.y?(p).y?(s).y?(ok).0

Betty = d?(z : G↓B).z?(p).z?(s).z!〈ok〉.z!〈ok〉.z!〈s〉.z!
〈
{{z!〈‘Urbino, 61029’〉.z?(d).0}}

〉
.0

Carol = d?(w : G↓C).w?(s).w?(code).(code ∗)

where we assume price(·) returns a value of type price given a title. Observe how Betty’s
implementation sends part of its protocol to Carol in the form of a thunk containing her
session name z and address. This is how abstraction passing implements session delegation.

The whole system, given by configuration M below, is obtained by placing these process
implementations in appropriate locations:

M = `1 {Seller} | `2 {Alice} | `3 {Betty} | `4 {Carol} (2.1)

2.3. A Decoupled Semantics for Configurations. We define a reduction relation on
configurations, coupled with a structural congruence on processes and configurations. Our
reduction semantics defines a decoupled treatment for reversing communication actions within
a protocol. Reduction is thus defined as −→⊂M×M, whereas structural congruence is
defined as ≡⊂ P2 ∪M2.

2.3.1. Preliminaries. We require auxiliary definitions for contexts, stores, and type contexts.
Evaluation contexts are configurations with one hole ‘•’, as defined by the following

grammar:

E ::= • |M | E | (ν n)E
General contexts C are processes or configurations with one hole •: they are obtained by
replacing one occurrence of 0 (either as a process or as a configuration) with •. A congruence
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A | 0 ≡ A A | B ≡ B | A A | (B | C) ≡ (A | B) | C
A | (ν n)B ≡ (ν n)(A | B) (n /∈ fn(A)) (ν n)0 ≡ 0

µX.P ≡ P{µX.P/X} A ≡ B if A ≡α B

Figure 5. Structural Congruence

on processes and configurations is an equivalence relation < that is closed under general
contexts: P <Q =⇒ C[P ]<C[Q] and M<N =⇒ C[M ]<C[N ].

We define ≡ as the smallest congruence on processes and configurations that satisfies
the rules in Fig. 5 and is closed under the equivalence on queues defined below.

Definition 2.3 (Equivalence on message queues). We define the structural equivalence on
queues, denoted ≡q, as follows:

h ◦ (p1 , q1 , m1) ◦ (p2 , q2 , m2) ◦ h′ ≡q h ◦ (p2 , q2 , m2) ◦ (p1 , q1 , m1) ◦ h′

whenever p1 6= p2 ∧ q1 6= q2. The equivalence ≡q extends to configurations as expected.

A relation < on configurations is evaluation-closed if it satisfies the following rules:

(Ctx)
M <N

E[M ]<E[N ]
(Eqv)

M ≡M ′ M ′<N ′ N ′ ≡ N
M <N

The state of monitored processes is formalized as follows:

Definition 2.4 (Store). The store σ is a mapping from variables to values. Given a store σ,
a variable x, and a value V , the update σ[x 7→ V ] and the reverse update σ \ x are defined
as follows:

σ[x 7→ V ] =

{
σ ∪ {(x, V )} if x 6∈ dom(σ)

undefined otherwise

σ \ x =

{
σ1 if σ = σ1 ∪ {(x, V )}
σ otherwise

The evaluation of value V under store σ, written σ(V ), is defined as follows:

σ(V ) =

{
W if V = x and σ = σ′ ∪ {(x,W )}
V otherwise

Together with local types with history, the following notion of type context allows us to
record the current protocol state:

Definition 2.5. We define type contexts as (local) types with one hole, denoted ‘•’:

T,S ::= • | q⊕ {lw : T ; li : Si}i∈I\w | q&{lw : T , li : Si}i∈I\w | α.T | κ.T | (`, `1, `2).T
Type contexts κ.T and (`, `1, `2).T will be instrumental in formalizing reversibility of name
applications and thread spawning, respectively, which are not described by local types.

As already mentioned, abstraction passing can represent name passing in a fully abstract
way (cf. [KPY16, KPY19]). Such a representation suffices to implement a form of session
delegation, by including free session names (indexed by participant identities) in the body
of an abstraction (cf. Betty’s implementation, discussed above). The following definition
identifies those names:
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(Init)

pa(G) = {p1, · · · , pn} T1 = G↓p1 · · · Tn = G↓pn∏
i∈{1..n}

Li y (ν s)
(
s : (ε ? ε) |

∏
i∈{1..n}

Mi | Ni

)
where:

L1 = `1 {a!〈x1 : T1〉.P1} Mi = `i[pi] : *0 ; Pi{s[pi]/xi} + for i = 1..n

Lj = `j {a?(xj : Tj).Pj} for j = 2..n Ni = spib ˆ̂ Ti · xi · [xi 7→ a]c for i = 1..n

(Out)

p = r ∨ p ∈ roles(r, h)

M | N | s : (h ? k) yM ′ | N ′ | s : (h ? k′)

where:

M = `[r] : *C ; s[p]!〈V 〉.P + N = spbT [ ˆ̂ q!〈U〉.S] · x̃ · σc k′ = k ◦ (p , q , σ(V ))

M ′ = `[r] : *C ; P + N ′ = spbT [q!〈U〉. ˆ̂ S] · x̃ · σc
(In)

p = r ∨ p ∈ roles(r, h)

M | N | s : (h ? k) yM ′ | N ′ | s : (h′ ? k′)

where:

M = `[r] : *C ; s[p]?(y).P + N = spbT [ ˆ̂ q?〈U〉.S] · x̃ · σc
M ′ = `[r] : *C ; P + N ′ = spbT [q?〈U〉. ˆ̂ S] · x̃, y · σ[y 7→ V ]c
k = (q , p , V ) ◦ k′ h′ = h ◦ (q , p , V )

Figure 6. Decoupled semantics for configurations: Forward reduction (y )
- Part 1/2.

Definition 2.6. Let h and p be a queue and a participant, respectively. Also, let
{(q1 , p , λx1. P1), . . . , (qk , p , λxk. Pk)} denote the (possibly empty) set of messages in
h containing abstractions sent to p. We write roles(p, h) to denote the set of participant
identities occurring in P1, . . . , Pk.

2.3.2. Reduction. We define −→ as the union of two relations: the forward and backward
reduction relations, denoted y and y , respectively. That is, −→= y ∪ y . Relations
y and y are the smallest evaluation-closed relations satisfying the rules in Figs. 6 – 9.
We indicate with −→∗, y∗ , and y∗ the reflexive and transitive closure of −→, y , and
y , respectively.

We now discuss the forward reduction rules (Fig. 6 and Fig. 7), omitting empty tags ♦:

I Rule (Init) initiates a given protocol G with n participants. Given the composition of one
service request and n− 1 service accepts (all along a, available in different locations `i),
this rule establishes the session by setting up the run-time elements: running processes
and monitors—one for each participant, with empty tag (omitted)—and the empty session
queue. A unique session identifier (s in the rule) is also created. The processes are inserted
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(Sel)

p = r ∨ p ∈ roles(r, h) w ∈ J J ⊆ I
M | N | s : (h ? k) yM ′ | N ′ | s : (h ? k′)

where:

M = `[r] : *C ; s[p] / {li.Pi}i∈I+ N = spbT [ ˆ̂ q⊕{lj : Sj}j∈J ] · x̃ · σc
M ′ = `[r] : *C, s[p] / {li.Pi}i∈I\w ; Pw+ N ′ = spbT

[
q⊕{lj : Sj , lw : ˆ̂ Sw}j∈J\w

]
· x̃ · σc

k′ = k ◦ (p , q , lw)

(Bra)

p = r ∨ p ∈ roles(r, h) w ∈ J J ⊆ I
M | N | s : (h ? k) yM ′ | N ′ | s : (h′ ? k′)

where:

M = `[r] : *C ; s[p] . {li : Pi}i∈I+ N = spbT [ ˆ̂ q&{lj : Sj}j∈J ] · x̃ · σc
M ′ = `[r] : *C, s[p] . {li : Pi}i∈I\w ; Pw+ N ′ = spbT

[
q&{lj : Sj , lw : ˆ̂ Sw}j∈J\w

]
· x̃ · σc

k = (q , p , lw) ◦ k′ h′ = h ◦ (q , p , lw)

(Beta)

σ(V ) = λx. P

M | N y (ν κ)
(
M ′ | N ′ | κb(V w) , `c

)
where:

M = `[p] : *C ; (V w)+ N = spbT [ ˆ̂ S] · x̃ · σc
M ′ = `[p] : *C ; P{σ(w)/x}+ N ′ = spbT [κ. ˆ̂ S] · x̃ · σc

(Spawn)

σ(V ) = λx. P

M | N y (ν `1, `2)
(
M ′ | `1[p] : *0 ; P + | `2[p] : *0 ; Q + | N ′

)
where:

M = `[p] : *C ; P | Q+ N = spbT [ ˆ̂ S] · x̃ · σc
M ′ = `[p] : *C ; 0+ N ′ = spbT [(`, `1, `2). ˆ̂ S] · x̃ · σc

Figure 7. Decoupled semantics for configurations: Forward reduction (y )
- Part 2/2.

in their respective running structures, and instantiated with an appropriate session name.
The local types for each participant are inserted in their respective monitor, with the
cursor ‘ ˆ̂ ’ at the beginning.

I Rule (Out) starts the output of value V from p to q. Given an output-prefixed process as
running process, and a monitor with a local type supporting an output action, reduction
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adds the message (p , q , σ(V )) to the output part of the session queue (where σ is the
current store). Also, the cursor within the local type is moved accordingly. In this rule
(but also in several other rules), the premise p = r ∨ p ∈ roles(r, h) allows performing
actions on names previously received via abstraction passing.

I Rule (In) allows a participant p to receive a value V from q: it takes the first element of
the output part of the queue and places it in the input part. The cursor of the local type
and the state in the monitor for p are adjusted accordingly.

I Rule (Sel) is the forward rule for labeled selection, which in our case entails a non-
deterministic choice between pairwise different labels indexed by I. We require that I
(the set that indexes the choice in the process) is contained in J (the set that indexes the
choice in the protocol). After reduction, the selected label (lw in the rule) is added to
the output part of the queue, and the continuation Pw is kept in the running process; to
support reversibility, alternatives different from lw are stored in the stack C with their
continuations. The cursor is also adjusted in the monitor accordingly.

I Rule (Bra) is similar to Rule (Sel): it takes a message containing a label lw as the first
element in the output part of the queue, and places it into the input part. This entails a
selection between the options indexed by I; the continuation Pw is kept in the running
process, and all those options different from lw are kept in the stack. Also, the local type
in the monitor is adjusted accordingly.

I Rule (Beta) handles applications, which in our setting are always name applications.
Reduction creates a fresh identifier (κ in the rule) for the running function, which keeps
(i) the structure of the process prior to application, and (ii) the identifier of the running
process that “invokes” the application. Notice that κ is recorded also in the monitor: this
is needed to undo applications in the right order. We use the store σ to determine the
actual abstraction and the name applied.

I Rule (Spawn) handles parallel composition. Location ` is “split” into running processes
with fresh identifiers (`1, `2 in the rule). This split is recorded in the monitor.

Now we comment on the backward rules (Fig. 8, Fig. 9, and Fig. 10) which, in most cases,
change the monitor tags (♦ and �):

J Rule (RInit) reverses session establishment. It requires that local types for every
participant are at the beginning of the protocol, and that session queue and process
stacks are empty. Run-time elements are discarded; located service accept/requests are
reinstated.

J Rule (RollS) starts to reverse an input-output synchronization between p and q. Enabled
when there are complementary session types in the two monitors, this rule changes the
monitor tags from ♦ to �. This way, the undoing of input and output actions occurs
in a decoupled way. Rule (RollC) is the analog of (RollS) but for synchronizations
originated in labeled choices.

J Rule (ROut) reverses an output. This is only possible for a monitor tagged with �,
exploiting the first message in the input queue. After reduction, the process prefix is
reinstated, the cursor is adjusted, the message is removed from the queue, and the monitor
is tagged with ♦. Rule (RIn) is the analog of Rule (ROut). In this case, we also need
to update the state of the store σ.

J Rule (RBra) reverses the input part of a labeled choice: the choice context is reinstated;
the cursor is moved; the last message in the input part of the queue is moved to the
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(RInit)

pa(G) = {p1, · · · , pn} T1 = G↓p1 · · · Tn = G↓pn
(ν s)

(
s : (ε ? ε) |

∏
i∈{1..n}

Mi | Ni

)
y ∏

i∈{1..n}

Li

where:

L1 = `1 {a!〈x1 : T1〉.P1} Mi = `i[pi] : *0 ; Pi{s[pi]/xi} + for i = 1..n

Lj = `j {a?(xj : Tj).Pj} for j = 2..n Ni = spib ˆ̂ Ti · xi · [xi 7→ a]c♦ for i = 1..n

(ROut)

p = r ∨ p ∈ roles(r, h)

M | N | s : (h ? k) yM ′ | N ′ | s : (h ? k′)

where:

M = `[r] : *C ; P + N = spbT [q!〈U〉. ˆ̂ S] · x̃ · σc� k = (p , q , V ) ◦ k′

M ′ = `[r] : *C ; s[p]!〈V 〉.P + N ′ = spbT [ ˆ̂ q!〈U〉.S] · x̃ · σc♦

(RIn)

p = r ∨ p ∈ roles(r, h)

M | N | s : (h ? k) yM ′ | N ′ | s : (h′ ? k′)

where:

M = `[r] : *C ; P + N = spbT [q?〈U〉. ˆ̂ S] · x̃, y · σc� h = (q , p , V ) ◦ h′

M ′ = `[r] : *C ; s[p]?(y).P + N ′ = spbT [ ˆ̂ q?〈U〉.S] · x̃ · σ \ yc♦ k′ = (q , p , V ) ◦ k

Figure 8. Decoupled semantics for configurations: Backwards reduction
(y ) - Part 1/3.

output part. Rule (RSel) is the analog of (RBra), but for the output part of the labeled
choice. The non-deterministic selection is reinstated.

J Rule (RBeta) undoes β-reduction, reinstating the application. The running function
disappears, using the information in the monitor (k in the rule). Rule (RSpawn) undoes
the spawn of a parallel thread, using the identifiers in the monitor.

2.3.3. Example: The Three-Buyer Seller Protocol (III). We conclude the example in § 2.1.2
and § 2.2.2 by illustrating the semantics of configurations (y and y ).
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(RollS)

N♦1 | N
♦
2 | s : (h ? k) yN�1 | N

�
2 | s : (h ? k)

where:

N1 = spbT [q?〈U〉. ˆ̂ T ] · x̃ · σ1c N2 = sqbS [p!〈U〉. ˆ̂ S] · ỹ · σ2c
(RollC)

N♦1 | N
♦
2 | s : (h ? k) yN�1 | N

�
2 | s : (h ? k)

where:

N1 = spbT
[
q&{lz : ˆ̂ Sz , lw : Sw}z∈J\w

]
· x̃ · σ1c

N2 = sqbS
[
p⊕{lz : ˆ̂ Sz , lw : Sw}z∈J\w

]
· ỹ · σ2c

Figure 9. Decoupled semantics for configurations: Backwards reduction
(y ) - Part 2/3.

Consider configuration M as in (2.1). The session starts with an application of Rule
(Init):

My (ν s)
(
`1[V] : *0 ; S1{s[V]/x} + | sVb ˆ̂G↓V · x · [x 7→ d]c♦

| `2[A] : *0 ; A1{s[A]/y} + | sAb ˆ̂G↓A · y · [y 7→ d]c♦

| `3[B] : *0 ; B1{s[B]/z} + | sBb ˆ̂G↓B · z · [z 7→ d]c♦

| `4[C] : *0 ; C1{s[C]/w} + | sCb ˆ̂G↓C · w · [w 7→ d]c♦ | s : (ε ? ε)
)

= M1

where S1, A1, B1, and C1 stand for the continuation of processes Seller, Alice, Betty, and
Carol after the service request/declaration. This way, e.g., A1 = y!〈‘Logicomix’〉.y?(p).y?(s).y?(ok).0.
We use configuration M1 to illustrate some forward and backward reductions.

From M1 we could either undo the reduction (using Rule (RInit)) or execute the
communication from Alice to Seller (using Rules (Out) and (In)). This latter option would
proceed as follows:

M1y (ν s)( `2[A] : *0 ; s[A]?(p).s[A]?(s).s[A]?(ok).0+

| sAbV!〈title〉. ˆ̂ V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y 7→ d]c♦

| N2 | s : (ε ? (A , V , ‘Logicomix’)) ) = M2

where N2 stands for the running processes and monitors for Seller, Betty, and Carol, not
involved in the reduction. We now have:

M2y (ν s)( `1[V] : *0 ; s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

| sVbA?〈title〉. ˆ̂ {A, B}!〈price〉.TV · x, t · σ3c♦ | N3 | s : ((A , V , ‘Logicomix’) ? ε) ) = M3

where N3 stands for the participants not involved in the reduction, σ3 stands for the resulting
store [x 7→ d], [t 7→ ‘Logicomix’], and TV = B?〈OK〉.B?〈address〉.B!〈date〉.end. Observe that
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(RSel)

p = r ∨ p ∈ roles(r, h) w ∈ J J ⊆ I
M | N | s : (h ? k) yM ′ | N ′ | s : (h ? k′)

where:

M = `[r] : *C, s[p] / {li.Pi}i∈I\w ; Pw+ N = spbT
[
q⊕{lj : Sj , lw : ˆ̂ Sw}j∈J\w

]
· x̃ · σc�

M ′ = `[r] : *C ; s[p] / {li.Pi}i∈I+ N ′ = spbT [ ˆ̂ q⊕{lj : Sj}j∈J ] · x̃ · σc♦
k = (p , q , lw) ◦ k′

(RBra)

p = r ∨ p ∈ roles(r, h) w ∈ J J ⊆ I
M | N | s : (h ? k) yM ′ | N ′ | s : (h′ ? k′)

where:

M = `[r] : *C, s[p] . {li : Pi}i∈I\w ; Pw+ N = spbT
[
q&{lj : Sj , lw : ˆ̂ Sw}j∈J\w

]
· x̃ · σc�

M ′ = `[r] : *C ; s[p] . {li : Pi}i∈I+ N ′ = spbT [ ˆ̂ q&{lj : Sj}j∈J ] · x̃ · σc♦
h = h′ ◦ (q , p , lw) k′ = k ◦ (q , p , lw)

(RBeta)

(ν k)
(
M | N | κb(V w) , `c

)
yM ′ | N ′

where:

M = `[p] : *C ; P + N = spbT [κ. ˆ̂ S] · x̃ · σc
M ′ = `[p] : *C ; (V w)+ N ′ = spbT [ ˆ̂ S] · x̃ · σc

(RSpawn)

(ν `1, `2)
(
M | `1[p] : *0 ; P + | `2[p] : *0 ; Q + | N

) yM ′ | N ′

where:

M = `[p] : *C ; 0+ N = spbT [(`, `1, `2). ˆ̂ S] · x̃ · σc
M ′ = `[p] : *C ; P | Q+ N ′ = spbT [ ˆ̂ S] · x̃ · σc

Figure 10. Decoupled semantics for configurations: Backwards reduction
(y ) - Part 3/3.

the cursors in monitors sV and sA have evolved, and that the message from A to V has now
been moved to the input queue.

We illustrate reversibility by showing how to return to M1 starting from M3. We need
to apply three rules: (RollS), (RIn), and (ROut). Reversibility is decoupled in the sense
that there is no fixed order in which the latter two rules should be applied; below we just
illustrate a possible sequence. First, Rule (RollS) modifies the tags of monitors sV and sA,
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leaving the rest unchanged:

M3
y (ν s)( `1[V] : *0 ; s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

| sVbA?〈title〉. ˆ̂ {A, B}!〈price〉.TB · x, t · σ3c�

| `2[A] : *0 ; s[A]?(p).s[A]?(s).s[A]?(ok).0+

| sAbS!〈title〉. ˆ̂ S?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y 7→ d]c�

| N4 | s : ((A , V , ‘Logicomix’) ? ε) ) = M4

where, as before, N4 represents participants not involved in the reduction. M4 has several
possible forward and backward reductions. One particular reduction uses Rule (RIn) to
undo the input at V:

M4
y (ν s)( `1[V] : *0 ; s[V]?(t).s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

| sVb ˆ̂ A?〈title〉.{A, B}!〈price〉.TB · x · [x 7→ d]c♦

| `2[A] : *0 ; s[A]?(p).s[A]?(s).s[A]?(ok).0+

| sAbV!〈title〉. ˆ̂ V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y 7→ d]c�

| N4 | s : (ε ? (A , V , ‘Logicomix’)) ) = M5

Just as an application of Rule (RollS) need not be immediately followed by an application
of Rule (RIn), an application of Rule (RIn) need not be immediately followed by an
application of Rule (ROut). A particular reduction from M5 undoes the output at A:

M5
y (ν s)( `1[V] : *0 ; s[V]?(t).s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0+

| sVb ˆ̂ A?〈title〉.{A, B}!〈price〉.TB · x · [x 7→ d]c♦

| `2[A] : *0 ; s[A]!〈‘Logicomix’〉.s[A]?(p).s[A]?(s).s[A]?(ok).0+

| sAb ˆ̂ V!〈title〉.V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y 7→ d]c♦ | N4 | s : (ε ? ε) ) = M6

Clearly, M6 = M1. Summing up, the synchronization realized by the (forward) reduc-
tion sequence M1yM2yM3 can be reversed by the (backward) reduction sequence
M3

yM4
yM5

yM1.
To illustrate abstraction passing, let us assume that M3 above follows a sequence of

forward reductions until the configuration:

M7 = (ν s)( `3[B] : *0 ; s[B]!
〈
{{s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0}}

〉
.0+

| sBbT7 [ ˆ̂ C!〈{{�}}〉.V!〈address〉.V?〈date〉.end] · z, p, s · σ7c♦

| `4[C] : *0 ; s[C]?(code).(code ∗)+

| sCbT8 [ ˆ̂ B?〈{{�}}〉.end] · w, s · σ8c♦ | N5 | s : (h7 ? ε) )
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where 120 < price(‘Logicomix’) is the amount B may contribute and T7 [•], σ7, T8 [•], σ8,
and h7 capture past interactions as follows:

T7 [•] = V?〈price〉.A?〈share〉.{A, V}!〈OK〉.C!〈share〉.•
σ7 = [z 7→ d], [p 7→ price(‘Logicomix’)], [s 7→ 120]

T8 [•] = B?〈share〉. • σ8 = [w 7→ d], [s 7→ 120]

h7 = (A , V , ‘Logicomix’) ◦ (V , A , price(‘Logicomix’)) ◦ (V , B , price(‘Logicomix’))

◦ (A , B , 120) ◦ (B , A , ‘ok’) ◦ (B , V , ‘ok’) ◦ (B , C , 120)

If M7y yM8 by using Rules (Out) and (In) then we would have:

M8 = (ν s)( `3[B] : *0 ; 0 + | sBbT7 [C!〈{{�}}〉. ˆ̂ V!〈address〉.V?〈date〉.end] · z, p, s · σ7c♦

| `4[C] : *0 ; (code ∗) + | sCbT8 [B?〈{{�}}〉. ˆ̂ end] · w, s, code · σ9c♦

| N5 | s : (h7 ◦ (B , C , {{s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0}}) ? ε) )

where σ9 = σ8[code 7→ {{s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0}}].
We now may apply Rule (Beta) so as to obtain:

M8y (ν s)(ν κ)( `4[C] : *0 ; s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0 + | N6

| κb(code ∗) , `4c | sCbT8 [B?〈{{�}}〉.κ. ˆ̂ end] · w, s, code · σ9c♦

| s : (h7 ◦ (B , C , {{s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0}}) ? ε) ) = M9

where N6 stands for the rest of the system. Notice that this reduction has added a running
function on a fresh κ, which is also used within the type stored in the monitor sC.

The reduction M8yM9 completes the code mobility from B to C: the now active
thunk will execute B’s implementation from C’s location. This justifies the premise p =
r ∨ p ∈ roles(r, h) present in Rules (Out), (In), (Sel), and (Bra) (and in their backward
counterparts): when executing previously received mobile code, the participant mentioned in
the location (i.e., C) and that mentioned in the located process (i.e., B) may differ. Further
forward reductions from M9 will modify the cursor in the type stored in monitor sB based
on the process behavior located at `4[C].

2.4. A Protocol with Choices. We close this section by showcasing reversibility of labeled
choices. Consider the following global type, specifying a simple binary (two-party) protocol
between a Buyer (B) and a Seller (V):

G = B→ V : 〈title〉.V→ B : 〈price〉.
V→ B{ok : B→ V : 〈addr〉.V→ B : 〈date〉.end ; quit : end}

This way, after receiving a title from Buyer, Seller replies with the price of the requested
item; subsequently, a choice indicated by labels ok and quit takes place: Buyer can select
whether to continue with the transaction or to conclude it. The projection of G onto local
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types are:

G↓V = B?〈title〉.B!〈price〉.
B&{ok : B?〈addr〉.B!〈date〉.end ; quit : end}

G↓B = V!〈title〉.V?〈price〉.
V⊕ {ok : V!〈addr〉.V?〈date〉.end ; quit : end}

Possible implementations for the participants are as follows:

Seller = a!〈x : G↓V〉.x?(title).x!〈quote〉.x . {ok : x?(addr).x!〈date〉. ; quit : 0}
Buyer = a?(y : G↓B).y!〈title〉.y?(quote).y / {ok : y!〈addr〉.y?(date). ; quit : 0}

The whole system, given by configuration M below, is obtained by placing these process
implementations in appropriate locations:

M = `1 {Seller} | `2 {Buyer}

We may then have:

My∗ (ν s)( `1[V] : *0 ; s[V] . {ok : s[V]?(addr).s[V]!〈date〉.0 ; quit : 0}+

| sVbT1[ ˆ̂ B&{ok : B?〈addr〉.B!〈date〉.end ; quit : end}] · x1 · σ1c♦

| `2[B] : *0 ; s[B] / {ok : s[B]?(addr).s[B]!〈date〉.0 ; quit : 0}+

| sBbS1[ ˆ̂ V⊕ {ok : V!〈addr〉.V?〈date〉.end ; quit : end}] · x2 · σ2c♦ | s : (h1 ? ε) ) = M1

where M1 is the configuration obtained from M once the two participants have initiated
the session and exchanged the title and the corresponding price. Above, x1 and x2 are
the free variables of V and B after the first three interactions; also, σ1 and σ2 represent
their respective stores. Queue h1 contains the two messages related to title and price. The
context types are:

T1 [•] = B?〈title〉.B!〈price〉. • S1 [•] = S!〈title〉.S?〈price〉.•

In M1, Buyer can decide either (a) to accept the suggested price and continue with the
prescribed protocol or (b) to refuse it and exit. The first possibility may proceed using
Rule (Sel) as follows:

M1y (ν s)( `2[B] : *0, s[B] / {quit : 0} ; s[B]?(addr).s[B]!〈date〉.0+

| sBbS1[V⊕ {ok : ˆ̂ V!〈addr〉.V?〈date〉.end ; quit : end}] · x2 · σ2c♦

| s : (h1 ? (B , V , ok)) | N1 ) = M2

where N1 contains the rest of the Seller process and monitor of M1. As we can see, in M2

the cursor ˆ̂ of the Buyer monitor has been moved into the choice. Moreover, the process
stack of Buyer is updated in order to register the discarded branch of the choice (i.e., the
branch involving label quit). From M2, Seller can consume the message on top of the queue
(which details the choice by B), or Buyer can revert its choice. In the first case we have the
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following, using Rule (Bra):

M2y (ν s)( `1[V] : *0, s[V] . {quit : 0} ; s[V]?(addr).s[V]!〈date〉.0+

| sVbT1[B&{ok : ˆ̂ B?〈addr〉.B!〈date〉.end ; quit : end}] · x1 · σ1c♦

| `2[B] : *0, s[B] / {quit : 0} ; s[B]?(addr).s[B]!〈date〉.0+

| sBbS1[V⊕ {ok : ˆ̂ V!〈addr〉.V?〈date〉.end ; quit : end}] · x2 · σ2c♦

| s : (h1 ◦ (B , V , ok) ? ε) ) = M3

In the second case, we can revert the labeled choice by using Rule (RollC) from M3 first,
and then using Rules (RBra) and (RSel) in a decoupled fashion.

Having introduced and illustrated our process model and its reversible semantics, we
now move on to establish its key properties.

3. Main Results

We now establish our main result: we prove that reversibility in our model of multiparty
asynchronous communication is causally consistent. We proceed in three steps:

a) First, we introduce an alternative atomic semantics and show that it corresponds, in a
tight technical sense, to the decoupled semantics in § 2.3 (Theorems 3.9 and 3.12).

b) Second, in the light of this correspondence, we establish causal consistency for the atomic
semantics, following the approach of Danos and Krivine [DK04] (Theorem 3.21).

c) Finally, we state a fine-grained, bidirectional connection between the semantics of
(high-level) global types with the decoupled semantics of (low-level) configurations
(Theorem 3.27).

These steps allow us to transfer causal consistency to protocols expressed as global types.

3.1. An Atomic Semantics. Our main insight is that causal consistency for asynchronous
communication can be established by considering a coarser synchronous reduction relation.

Definition 3.1 (Atomic Reduction). We define atomic versions of the forward and backward
reduction relations, relying on the rules in Fig. 12 and 13.

• The forward atomic reduction, denoted ↪→, is the smallest evaluation-closed relation that
satisfies Rules (AC) and (AS) (Fig. 12), together with Rules (Init), (Beta), and (Spawn)
(Fig. 6 and 7).
• Similarly, the backward atomic reduction, denoted ↪→, is the smallest evaluation-closed

relation that satisfies Rules (RAC) and (RAS) (Fig. 13), together with Rules (RInit),
(RBeta), and (RSpawn) (Fig. 8 and 10).

We then define the atomic reduction relation � as ↪→∪ ↪→.

Figure 11 summarizes our notations for reductions. We start by introducing reachable
configurations:

Definition 3.2. A configuration M is initial if M ≡ (ν ñ)
∏
i∈I `i {Pi}, for some I. A

configuration is reachable, if it is derived from an initial configuration by using −→ (cf. § 2.3).
A configuration is atomically reachable, if it is derived from an initial configuration by using
�.
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Symbol Meaning
#

Forward transition for global types (Fig. 3)
# Backward transition for global types (Fig. 3)
y Forward decoupled reduction (Fig. 6 and 7)
y Backward decoupled reduction (Fig. 8, 9, and 10)
−→ y ∪ y
↪→ Forward atomic reduction (Fig. 12)
↪→ Backward atomic reduction (Fig. 13)
� ↪→∪ ↪→

Figure 11. Notations for transition and reduction relations.

(AC)

p = r1 ∨ p ∈ roles(r1, h) q = r2 ∨ q ∈ roles(r2, h)

M1 | N1 |M2 | N2 | s : (h ? k) ↪→ M ′1 | N ′1 |M ′2 | N ′2 | s : (h ◦ (q , p , V ) ? k)

where:

M1 = `1[r1] : *C1 ; s[p]!〈V 〉.P + N1 = spbT [ ˆ̂ q!〈U〉.S] · x̃1 · σc
M ′1 = `1[r1] : *C1 ; P + N ′1 = spbT [q!〈U〉. ˆ̂ S] · x̃1 · σc
M2 = `2[r2] : *C2 ; s[q]?(y).Q+ N2 = sqbS [ ˆ̂ p?〈U〉.T ] · x̃2 · σc
M ′2 = `2[r2] : *C2 ; Q+ N ′2 = sqbS [p?〈U〉. ˆ̂ T ] · x̃2, y · σ[y 7→ V ]c

(AS)

p = r1 ∨ p ∈ roles(r1, h) q = r2 ∨ q ∈ roles(r2, h)

M1 | N1 |M2 | N2 | s : (h ? k) ↪→ M ′1 | N ′1 |M ′2 | N ′2 | s : (h ◦ (p , q , lw) ? k)

where:

M1 = `1[r1] : *C1 ; s[p] / {li.Pi}i∈I+ N1 = spbS [ ˆ̂ q⊕{lj : Sj}j∈J ] · x̃1 · σc
M ′1 = `1[r1] : *C1, s[p] . {ll : Pl}l∈I\w ; Pw+ N ′1 = spbS

[
q⊕{lj : Sj , lw: ˆ̂ Sw}j∈J\w

]
· x̃1 · σc

M2 = `2[r2] : *C2 ; s[q] . {li : Qi}i∈I+ N2 = sqbT [ ˆ̂ p&{lj : Tj}j∈J ] · x̃2 · σc
M ′2 = `2[r2] : *C2, s[q] / {ll.Ql}l∈I\w ; Qw+ N ′2 = sqbT

[
p&{lj : Tj , lw: ˆ̂ Tw}j∈J\w

]
· x̃2 · σc

Figure 12. Atomic semantics for configurations: Forward reduction (↪→).

To relate the decoupled semantics −→ with the atomic reduction � (just defined), we
introduce the concept of stable configuration. Roughly speaking, in a stable configuration
there are no “ongoing” reduction steps. In the forward case, an ongoing step is witnessed
by non-empty output queues (which should eventually become empty to complete a syn-
chronization); in the backward case, an ongoing step is witnessed by a marked monitor
(which should be eventually unmarked when a synchronization is undone). This way, e.g., in
the example of § 2.3.3 configurations M3 and M7 are stable, whereas M2 and M4 are not.
Reduction � will move between stable configurations only. We therefore have:
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(RAC)

p = r1 ∨ p ∈ roles(r1, h) q = r2 ∨ q ∈ roles(r2, h)

M1 | N1 |M2 | N2 | s : (h ◦ (q , p , V ) ? k) ↪→ M ′1 | N ′1 |M ′2 | N ′2 | s : (h ? k)

where:

M1 = `1[r1] : *C1 ; P + N1 = spbT [q!〈U〉. ˆ̂ S] · x̃1 · σc
M ′1 = `1[r1] : *C1 ; s[p]!〈V 〉.P + N ′1 = spbT [ ˆ̂ q!〈U〉.S] · x̃1 · σc
M2 = `2[r2] : *C2 ; Q+ N2 = sqbS [p?〈U〉. ˆ̂ T ] · x̃2, y · σ[y 7→ V ]c
M ′2 = `2[r2] : *C2 ; s[p]?(y).Q+ N ′2 = sqbS [ ˆ̂ p?〈U〉.T ] · x̃2 · σc

(RAS)

p = r1 ∨ p ∈ roles(r1, h) q = r2 ∨ q ∈ roles(r2, h)

M1 | N1 |M2 | N2 | s : (h ◦ (p , q , lw) ? k) ↪→ M ′1 | N ′1 |M ′2 | N ′2 | s : (h ? k)

where:

M1 = `1[r1] : *C1, s[p] . {ll : Pl}l∈I\w ; Pw+ N1 = spbS
[
q&{lj : Sj , lw: ˆ̂ Sw}j∈J\w

]
· x̃1 · σc

M ′1 = `1[r1] : *C1 ; s[p] / {li.Pi}i∈I+ N ′1 = spbS [ ˆ̂ q&{lj : Sj}j∈J ] · x̃1 · σc
M2 = `2[r2] : *C2, s[q] / {ll.Ql}l∈I\w ; Qw+ N2 = sqbT

[
p⊕{lj : Tj , lw: ˆ̂ Tw}j∈J\w

]
· x̃2 · σc

M ′2 = `2[r2] : *C2 ; s[q] . {li : Qi}i∈I+ N ′2 = sqbT [ ˆ̂ p⊕{lj : Tj}j∈J ] · x̃2 · σc

Figure 13. Atomic semantics for configurations: Backward reduction (↪→).

Definition 3.3. A configuration M is stable, written sb(M), if

M ≡
∏
i

`i {Pi} | (ν sã)
(
s : (h1 ? ε) |

∏
j

`j [pj ] : *Cj ; Pj + | spibTi · x̃i · σic
♦
)

Reduction −→ does not preserve stability, but it can be recovered:

Lemma 3.4. Given a stable configuration M then

• if MyN with ¬sb(N) then there exists an N ′ such that NyN ′ and sb(N ′);
• if MyN with ¬sb(N) then there exists an N ′ such that Ny yN ′ and sb(N ′).

We may then have:

Corollary 3.5. If sb(M) and M −→∗ N with ¬sb(N), then there exists an N ′ such that
N −→∗ N ′ with sb(N ′).

Proof. By induction on the reduction sequence M −→∗ N .

We now show the Loop lemma [DK04], which offers a local consistency guarantee for the
interplay of forward and backward reductions: it ensures that every reduction step can be
reverted. This lemma will be crucial both in proving a correspondence between atomic and
decoupled semantics, but also in showing causal consistency of the atomic semantics.

Lemma 3.6 (Loop). Let M,N be stable and atomic reachable configurations. Then M↪→N
if and only if N↪→M .

Proof. By induction on the derivation of M↪→N for the if direction, and on the derivation
of N↪→M for the converse.
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The following lemma allow us to “reorder” decoupled reduction steps so to have the
generation of a message (e.g., an application of Rules (Out) or (Bra)) followed by its
consumption (e.g., an application of Rules (In) or (Sel)). This way, the two consecutive
decoupled reductions can be mimicked by one atomic step, which will be in turn instrumental
to relate the atomic and decoupled semantics. Below we write yi (and y

i ) to denote a
specific step in a reduction sequence.

Lemma 3.7 (Swap). Let M be a reachable configuration.

• If My∗ y1 y∗N1 and N1y2N2, where y1 denotes the use of Rule ( Out) or ( Sel)
and y2 denotes the respective use of Rule ( In) or ( Bra), then My∗ y1 y2Ny∗N2,
for some N .
• If My∗ y

1
y∗N1 and N1

y
2N2, where y

1 denotes the use of Rule ( ROut) or ( RSel)
and y

2 denotes the respective use of Rule ( RIn) or ( RBra), then My∗ y
1
y

2N
y∗N2,

for some N .

Example 3.8. To better understand Lemma 3.7, let us consider the following configurations:

M1 =`1[r1] : *0 ; s[r1]!〈1〉.s[r1]!〈2〉.P1+ N1 = sp1b ˆ̂ p2!〈U〉.p3!〈U〉.S1 · x̃1 · σ1c
M2 =`2[r2] : *0 ; s[p2]?(y).P2+ N2 = sp2b ˆ̂ p1?〈U〉.S2 · x̃2 · σ2c
M3 =`3[r3] : *0 ; s[p3]?(y).P3+ N3 = sp3b ˆ̂ p1?〈U〉.S3 · x̃3 · σ3c

Define the configuration Sys as:

Sys = (ν s)
(
s : (ε ? ε) |

∏
i∈{1,2,3}

Mi | Ni

)
From this configuration, by applying Rule (Out) twice, we obtain:

Sysy y (ν s)
(
s : (ε ? (p1 , p2 , 1) ◦ (p1 , p3 , 2)) |M ′1 | N ′1 |

∏
i∈{2,3}

Mi | Ni

)
= Syso

From Syso we can apply twice Rule (In) and obtain:

Sysoy y (ν s)
(
s : ((p1 , p2 , 1) ◦ (p1 , p3 , 2) ? ε) |

∏
i∈{1,2,3}

M ′i | N ′i
)

= Sysend

where

M ′1 =`1[r1] : *0 ; P1+ N ′1 = sp1bp2!〈U〉.p3!〈U〉. ˆ̂ S1 · x̃1 · σ1c
M ′2 =`2[r2] : *0 ; P2+ N ′2 = sp2bp1?〈U〉. ˆ̂ S2 · x̃′2 · σ′2c
M ′3 =`3[r3] : *0 ; P3+ N ′3 = sp3bp1?〈U〉. ˆ̂ S3 · x̃′3 · σ′3c

Now, Lemma 3.7 captures the following observation: starting from Sys, the configuration
Sysend can also be reached if after the first application of Rule (Out) the produced message
is immediately consumed, by applying Rule (In):

Sysy y (ν s)
(
M ′′1 | N ′′1 |M ′2 | N ′2 |M3 | N3 | s : ((p1 , p2 , 1) ? k)

)
y y Sysend

where

M ′′1 =`1[r1] : *0 ; s[r1]!〈2〉.P1+ N ′′1 = sp1bp2!〈U〉. ˆ̂ p3!〈U〉.S1 · x̃1 · σ1c
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The following theorem provides a first connection between decoupled and atomic reductions;
its proof is immediate from their definitions:

Theorem 3.9 (Relating −→ and �). Let M and N be stable configurations. We have:

• M↪→N if and only if either MyN or My yN ;
• M↪→N if and only if either MyN or My y yN .

We now embark ourselves in providing a tighter formal connection between −→ and�, using
back-and-forth bisimulations [LMS16]. We shall work with binary relations on configurations,
written < ⊆ M ×M. We now adapt the usual notion of barbs [SW01] to our setting:
rather than communication subjects (which are hidden/unobservable names in intra-session
communications), it suffices to use participant identities as observables:

Definition 3.10 (Barbs). A reachable configuration M has a barb p, written M �p, if

• M ≡ (ν ñ)(N | `[r] : *C ; P + | spbS[ ˆ̂ T ] · x̃ · σc♦) where either:
(i) P ≡ s[p]!〈V 〉.Q | R and T = q!〈U〉.T1 or
(ii) P ≡ s[p] / {li.Pi}i∈I | R and T = q⊕{lj : Tj}j∈J .

Notice that our definition of barbs is connected to the notion of stability: since in M �p we
require a monitor with empty tag, this ensures that p is not involved in an ongoing backward
step. In a way, this allows us to consider just forward barbs (as in [AC17]).

We now adapt the definition of weak barbed back-and-forth (bf) bisimulation and
congruence [LMS16] in order to work with decoupled and atomic reduction semantics:

Definition 3.11. A relation < is a (weak) barbed bf simulation if whenever M<N
• M �p implies N −→∗�p;
• M↪→M1 implies Ny∗N1, with M1<N1;
• M↪→M1 implies Ny∗N1, with M1<N1.

A relation < is a (weak) barbed bisimulation if < and <−1 are weak bf barbed simulations.
The largest weak barbed bisimulation is (weak) barbed bisimilarity, noted ≈. We say that

M and N are (weakly) barbed congruent, written
·
≈, if for each context C such that C[M ]

and C[N ] are atomic reachable configurations, then C[M ] ≈ C[N ].

This way, in establishing M
·
≈ N we should consider that atomic reduction steps from M

are matched by N with decoupled reduction steps. This is how
·
≈ enables us to state our

second connection between decoupled and atomic reductions. To prove the correspondence
between the two semantics, we shall relate the same configuration M under the two different
semantics. Hence:

Theorem 3.12. For any atomic reachable configuration M , we have that M
·
≈M .

Proof. First, notice that showing C[M ] ≈ C[M ] is similar to show M1 ≈M1 with M1 = C[M ].
This allows us to just focus on the “hole” of the context. It is then sufficient to show that
the following relation is a bf weak bisimulation.

< =
{

(M,N) |My∗N via Rules Out or Sel ∧ My∗N via Rules ROut or RSel
}

Clearly, (M,M) ∈ <. We consider the requirements in Def. 3.11. Let us first consider barbs.

• Suppose that M challenges N with a barb. We distinguish two cases: N is stable or not.
If sb(N) then N has the same barb. Otherwise, if ¬sb(N), by Corollary 3.5 there exists
an N1 such that N −→∗ N1 and sb(N1). Since M −→∗ N we may derive M −→∗ N1 with
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both stable configurations. By applying Theorem 3.9 on M −→∗ N1 we infer M �∗ N1;
then, by applying the Loop Lemma (Lemma 3.6) we further infer N1�∗ M . Using again
Theorem 3.9 we infer that N1 −→∗ M ; since we have deduced that N −→∗ N ′ −→∗ M ,
we know that N weakly matches all the barbs of M , as desired.
• Suppose now that N challenges M with a barb. We proceed similarly as above: if sb(M)

then M has the same barb; otherwise, if ¬sb(M), since M −→∗ N , by Corollary 3.5 we
have that M −→∗ N −→∗ N1, with sb(N1). Let us note that the reductions in N −→∗ N1

do not add barbs to N1: they only finalize ongoing synchronizations; by definition of
barbs (Def. 3.10) parties involved in ongoing rollbacks do not contribute to barbs. We can
conclude by applying Theorem 3.9 and deriving M �∗ N1, which has the same barbs of
N , as desired.

Let us now consider reductions. We will just focus on synchronizations due to in-
put/output and branching/selection reduction steps, since these are the cases in which −→
and � differ; indeed, reductions due to Rules Spawn and Beta can be trivially matched.

Let us consider challenges from M . There are two cases: M↪→M1 and M↪→M1. In the
first case, as we distinguish two sub-cases: either N has already started the synchronization
or not. In the first sub-case, N can conclude the step: NyN ′. Now we have that
My∗NyN ′. Thanks to Lemma 3.7 we can rearrange such a reduction sequence as follows:
My yM1y∗N ′. We then have that the pair (M1, N

′) ∈ <, as desired. In the second
sub-case, N can match the step with 2 reductions: Ny yN ′. Also in this case we can
rearrange the reduction sequence so as to obtain My yM1y∗N ′, with (M1, N

′) ∈ <, as
desired. The case M↪→M1 (i.e., the challenge is a backward move) is handled similarly.

We now consider challenges from N , focusing only on synchronizations, just as before.
If NyN ′, we distinguish two cases: whether the reduction ends an ongoing input/output
and branching/selection, or it opens a new one. In the second case M matches the move
with an idle move, i.e., (M,N ′) ∈ <. In the other case we can rearrange the reduction
My∗NyN ′ into a similar reduction sequence M −→∗ N1y∗N ′ with sb(N1), and all
reductions in N1y∗N ′ just start new synchronizations. Thanks to Theorem 3.9, M can
mimick the same reduction to N1, i.e., M↪→∗N1, and we have that (N1, N

′) ∈ <, as desired.
The case in which NyN ′ (i.e., the challenge is a backward move) is similar. This concludes
the proof.

By observing that the set of atomic configurations is a subset of reachable configurations,
this result can also be formulated as full abstraction. Let f be the (injective, identity)
mapping from atomic reachable configurations to reachable configurations. We then have:

Corollary 3.13 (Full Abstraction). Let f be the injection from atomic reachable configura-
tions to reachable configurations, and let M,N be two atomic reachable configurations. Then

we have f(M)
·
≈ f(N) if and only if M

·
≈ N .

Proof. From Theorem 3.12 we have M
·
≈ f(M) and N

·
≈ f(N). The thesis follows then by

transitivity of
·
≈.

The results above ensure that the loss of atomicity preserves the reachability of configu-
rations yet does not make undesired configurations reachable.
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3.2. Causal Consistency. Theorems 3.9 and 3.12 allow us to focus on the atomic reduction
� for the purposes of establishing causal consistency. We follow the approach we developed
in our prior work [MP16, MP17b], here considering the more general multiparty setting with
asynchronous, higher-order communication; in turn, our prior approach adapts to the proof
technique by Danos and Krivine [DK05] (developed for a reversible CCS).

In a nutshell, causal consistency concerns traces of transitions, each one endowed
with an appropriate stamp. The proof of causal consistency relies on square, rearranging,
and shortening lemmas, which together express properties of traces and transitions that
characterize flexible and consistent reversible steps. We start by defining transitions:

Definition 3.14 (Transitions and Stamps). A transition t is a triplet of the form t : M
η
=⇒ N

where M � N (cf. Def. 3.1) and the transition stamp η is defined as follows:

• η = {`1, p1, · · · , `n, pn}, if Rule (Init) or (RInit) is used;
• η = {p, q}, if one of Rules (AC), (AS), (RAC) and (RAS) is used;
• η = {`, p}, if one of Rules (Beta), (Spawn), (RBeta) or (RSpawn) is used.

Some terminology on transitions, taken from [MP16, MP17b], is in order.

Definition 3.15 (Terminology for Transitions). Suppose a transition t : M
η
=⇒ N .

• We say M and N are the source and target of t (written src(t) and trg(t), respectively).

• Transition t : M
η
=⇒ N is forward if M↪→N and backward if M↪→N .

• The inverse of t, denoted t, is the transition t : N
η
=⇒M .

• Two transitions are coinitial if they have the same source; cofinal if they have the same
target; composable if the target of the first one is the source of the other.

• Given coinitial transitions t1 : M
η1
=⇒ N1 and t2 : M

η2
=⇒ N2, we define t2/t1 (read “t2

after t1”) as N1
η2
=⇒ N2, i.e., the transition with stamp η2 that starts from the target of t1

and ends in the target of t2.

Two important classes of transitions are conflicting and concurrent ones:

Definition 3.16. Two coinitial transitions t1 : M
η1
=⇒ M1 and t2 : M

η2
=⇒ M2 are said to

be in conflict if η1 ∩ η2 6= ∅. Two transitions are concurrent if they are not in conflict.

We now consider the so-called Square Lemma [DK04], which may be informally described as
follows. Assume a configuration from which two transitions are possible: if these transitions
are concurrent then the order in which they are executed does not matter, and the same
configuration is reached.

Lemma 3.17 (Square). If t1 : M
η1
==⇒M1 and t2 : M

η2
==⇒M2 are coinitial and concurrent

transitions, then there exist cofinal transitions t2/t1 = M1
η2
==⇒ N and t1/t2 = M2

η1
==⇒ N .

Proof. By case analysis on the possible rules used to derive M
η1
=⇒M1 and M

η2
=⇒M2. To

define the valid combinations of rules, we define sets

Rule = {Init,AC,AS,Beta,Spawn} Rule = {RInit,RAC,RAS,RBeta,RSpawn}
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The licit combinations are given by pairs of rules in the set {(ri, rj) | {ri, rj} ⊂ Rule∪Rule}.
Let us note that the definition of concurrent transitions (Definition 3.16) ensures that the
pairs (ri, rj) concern rule applications that involve different participants.

All valid cases are treated similarly; we content ourselves by considering only the case
(RAS, AC), in which queue equivalence (Definition 2.3) plays an important role. We have
that:

M ≡(ν ñ)(N | `1[r1] : *C1 ; s[p1]!〈V 〉.P + | sp1bT [ ˆ̂ q1!〈U〉.S] · x̃1 · σ1c |
`2[r2] : *C2 ; s[q1]?(y).Q + | sq1bS [ ˆ̂ p1?〈U〉.T ] · x̃2 · σ2c |
`3[r3] : *C3, s[p2] . {ll : Pl}l∈I\w ; Pw + | sp2bS

[
q2&{lj : Sj , lw: ˆ̂ Sw}j∈J\w

]
· x̃3 · σ3c |

`4[r4] : *C4, s[q2] / {ll.Ql}l∈I\w ; Qw + | sq2bT
[
p2⊕{lj : Tj , lw: ˆ̂ Tw}j∈J\w

]
· x̃4 · σ4c |

s : (h ◦ (p2 , q2 , lw) ? k)

From M we have two possible reductions: either p1, q1 communicate or p2, q2 undo the
selection. By Definition 3.14, η1 = {p1, q1} and η2 = {p2, q2}. By Rule AC we have:

M
η1
=⇒(ν ñ)(N | `1[r1] : *C1 ; P + | sp1bT [q1!〈U〉. ˆ̂ S] · x̃1 · σ1c |

`2[r2] : *C2 ; Q + | sq1bS [p1?〈U〉. ˆ̂ T ] · x̃2, y · σ2[y 7→ V ]c |
`3[r3] : *C3, s[p2] . {ll : Pl}l∈I\w ; Pw + | sp2bS

[
q2&{lj : Sj , lw: ˆ̂ Sw}j∈J\w

]
· x̃3 · σ3c |

`4[r4] : *C4, s[q2] / {ll.Ql}l∈I\w ; Qw + | sq2bT
[
p2⊕{lj : Tj , lw: ˆ̂ Tw}j∈J\w

]
· x̃4 · σ4c |

s : (h ◦ (p2 , q2 , lw) ◦ (p1 , q1 , V ) ? k) = M1

and by Rule RAS we have:

M
η2
=⇒(ν ñ)(N | `1[r1] : *C1 ; s[p1]!〈V 〉.P + | sp1bT [ ˆ̂ q1!〈U〉.S] · x̃1 · σ1c |

`2[r2] : *C2 ; s[q1]?(y).Q + | sq1bS [ ˆ̂ p?〈U〉.T ] · x̃2 · σ2c |
`3[r3] : *C3 ; s[p2] . {ll : Pl}l∈I + | sp2bS [ ˆ̂ q2&{lj : Sj}j∈J ] · x̃3 · σ3c |
`4[r4] : *C4 ; s[q2] / {ll.Ql}l∈I + | sq2bT [ ˆ̂ p2⊕{lj : Tj}j∈J ] · x̃4 · σ4c |
s : (h ? k) = M2

Now it is easy to see that there is an N such that M1
η2
=⇒ N and M2

η1
=⇒ N :

M1
η2
=⇒(ν ñ)(N | `1[r1] : *C1 ; P + | sp1bT [q1!〈U〉. ˆ̂ S] · x̃1 · σ1c |

`2[r2] : *C2 ; Q + | sq1bS [p1?〈U〉. ˆ̂ T ] · x̃2, y · σ2[y 7→ V ]c |
`3[r3] : *C3 ; s[p2] . {ll : Pl}l∈I + | sp2bS [ ˆ̂ q2&{lj : Sj}j∈J ] · x̃3 · σ3c |
`4[r4] : *C4 ; s[q2] / {ll.Ql}l∈I + | sq2bT [ ˆ̂ p2⊕{lj : Tj}j∈J ] · x̃4 · σ4c |
s : (h ◦ (p1 , q1 , V ) ? k) = N
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M2
η1
=⇒(ν ñ)(N | `1[r1] : *C1 ; P + | sp1bT [q1!〈U〉. ˆ̂ S] · x̃1 · σ1c |

`2[r2] : *C2 ; Q + | sq1bS [p1?〈U〉. ˆ̂ T ] · x̃2, y · σ2[y 7→ V ]c |
`3[r3] : *C3 ; s[p2] . {ll : Pl}l∈I + | sp2bS [ ˆ̂ q2&{lj : Sj}j∈J ] · x̃3 · σ3c |
`4[r4] : *C4 ; s[q2] / {ll.Ql}l∈I + | sq2bT [ ˆ̂ p2⊕{lj : Tj}j∈J ] · x̃4 · σ4c |
s : (h ◦ (p1 , q1 , V ) ? k) = N

Let us note that in M1 the equivalence on queues (cf. Definition 2.3) allows the swapping of
the two messages (p2 , q2 , lw) ◦ (p1 , q1 , V ) so to enact the Rule RAS.

We now turn our attention to traces, sequences of pairwise composable transitions. We
let ρ range over traces. Notions of target, source, composability and inverse extend naturally
from transitions to traces. We write εM to denote the empty trace with source M , and
ρ1; ρ2 to denote the composition of two composable traces ρ1 and ρ2.

Definition 3.18. We define � as the least equivalence between traces that is closed under
composition and that obeys: i) t1; t2/t1 � t2; t1/t2; ii) t; t � εsrc(t); iii) t; t � εtrg(t).

Intuitively, � says that: (a) given two concurrent transitions, the traces obtained by swapping
their execution order are equivalent; (b) a trace consisting of opposing transitions is equivalent
to the empty trace.

The proof of causal consistency follows that in [DK04], but with simpler arguments
(because of our simpler transition stamps), which mirror those in [MP16, MP17b].

The following lemma says that, up to causal equivalence, traces can be rearranged so as
to reach the maximum freedom of choice, first going only backwards, and then going only
forward.

Lemma 3.19 (Rearranging). Let ρ be a trace. There are forward traces ρ′, ρ′′ such that
ρ � ρ′; ρ′′.

Proof. By lexicographic induction on the length of ρ and on the distance between the
beginning of ρ and the earliest pair of opposing transitions in ρ. The analysis uses both the
Loop Lemma (Lemma 3.6) and the Square Lemma (Lemma 3.17).

If trace ρ1 and forward trace ρ2 start from the same configuration and end up in the same
configuration, then ρ1 may contain some “local steps”, not present in ρ2, which must be
eventually reversed—otherwise there would be a difference with respect to ρ2. Hence, ρ1
could be shortened by removing such local steps and their corresponding reverse steps.

Lemma 3.20 (Shortening). Let ρ1, ρ2 be coinitial and cofinal traces, with ρ2 forward. Then,
there exists a forward trace ρ′1 of length at most that of ρ1 such that ρ′1 � ρ1.

Proof. By induction on the length of ρ1, using Square and Rearranging Lemmas (Lemmas 3.17
and 3.19). The proof uses the forward trace ρ2 as guideline for shortening ρ1 into a forward
trace, relying on the fact that ρ1 and ρ2 share the same source and target.

We may now state our main result:

Theorem 3.21 (Causal consistency). Let ρ1 and ρ2 be coinitial traces, then ρ1 � ρ2 if and
only if ρ1 and ρ2 are cofinal.
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∅; ∅ ` true :: bool ∅; ∅ ` false :: bool

Γ; ∆, x : T ` P
Γ; ∆ ` λx. P :: T→�

Γ; ∆ ` P u 6∈ dom(∆)

Γ; ∆, u : end ` P Γ; ∅ ` 0

Γ; ∆ ` V :: T→� ` u :: T

Γ; ∆ ` V u

u : T ∈ ∆1,∆2 Γ; ∆1 ` P Γ; ∆2 ` V :: U

Γ; ((∆1,∆2) \ u : T ), u : p!〈U〉.T ` u!〈V 〉.P
Γ; ∆, u : T, x : U ` P

Γ; ∆, u : p?(U).T ` u?(x).P

∀i ∈ {1, . . . , n}.(Γ; ∆, u : Ti ` Pi)

Γ; ∆, u : q⊕{li : Ti}i∈{1,...,n} ` u / {li.Pi}i∈{1,...,n}

∀i ∈ {1, . . . , n}.(Γ; ∆, u : Ti ` Pi)

Γ; ∆, u : q&{li : Ti}i∈{1,...,n} ` u . {li : Pi}i∈{1,...,n}

Γ, X:∆; ∆ ` X
Γ, X:∆; ∆ ` P
Γ; ∆ ` µX.P

Figure 14. Well-formed processes.

Proof. The ‘if’ direction follows by definition of � and trace composition. The ‘only if’
direction uses Square, Rearranging, and Shortening Lemmas (Lemmas 3.17, 3.19, and 3.20).

At this point one may object that causal-consistency has been proved on the atomic
semantics and not on the decoupled semantics, and wonder whether the chosen behavioural
equivalence (cf. Definition 3.11) is causal-preserving. First, we observe that our notion of
equivalence is a congruence, and that the only visible event in a message-passing system
is the receipt of a message itself. Then it is easy to see that our equivalence preserves the
order of messages sent, and hence that the decoupled semantics respects the same notion of
causality of the atomic semantics.

3.3. Connecting (Reversible) Protocols and (Reversible) Configurations. We now
connect the two levels of abstraction in our reversible model by relating protocols and
configurations. This is the content of Theorem 3.27, which relies on a few auxiliary definitions.

We introduce a notion of well-formed processes and configurations that implement a
given local type. Figure 14 reports a set of rules for decreeing well-formed processes: it is
inspired by the type system for higher-order session processes defined in [KPY16].

Our system for well-formedness is simple, and relies on two contexts: Γ (for recursion
variables) and ∆ (for assignments of variables to local types). We omit these contexts when
empty and/or unimportant. Well-formedness uses the following judgments:

• ` u :: T says that u is a name of local type T
• Γ; ∆ ` V :: U says that V is a well-formed value of type U
• Γ; ∆ ` P says that P is a well-formed process

The first three rules in Figure 14 are for values: booleans and abstractions (rules for other
base values are similar). Then we have a rule enforcing a weakening principle, and rules for
inaction and application, which are as expected. The rule for output enables us to account
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for processes in which a communicated abstraction specifies a protocol which is continued
outside the output action; this is case for process Betty in § 2.2.2, in which part of the
protocol on z is sent around as a thunk. The remaining rules, for input, selection, branching,
and recursive processes, are self-explanatory. Notice that for the sake of simplicity, we
consider restriction-free, single-threaded processes (i.e., no processes of the form (ν n)P and
P1 | P2).

We are interested in well-formed processes that implement a single session with local
type T along u (a session name or a variable):

Definition 3.22 (Well-Formed Processes). We say process P is well-formed if ∅; {u : T} ` P
in the system of Figure 14, for some u and T . This is denoted P

u
n T .

We may then define the configurations that implement a global type with history
(cf. Def. 2.2). First, an auxiliary definition:

Definition 3.23 (Reachable Global Types). We say the global type with history H is
reachable if it can be obtained from a global type G via a sequence of

#
and # transitions

(cf. Fig. 3).

Definition 3.24 (Configurations Implementing Global Types). Let G be a global type,
with pa(G) = {p1, · · · , pn}.
• We say that configuration M initially implements G, written M

o
./ G, if we have

M ≡ (ν s)
(
s : (ε ? ε) |

∏
i∈{1,··· ,n}

`i[pi] : *0 ; Pi{s[pi]/xi} + | spib ˆ̂G↓pi · xi · σic
)

with Pi
xi
n G↓pi , for all i ∈ {1,· · ·, n}, for some stores σ1, . . . , σn.

• A configuration N implements the global type with history H, written N ./ H, if there

exist M,G such that (i) H is reachable from G, (ii) M
o
./ G, and (iii) N is reachable from

M .

Observe how M
o
./ G formalizes M as the result of initializing the configuration,

following Rule (Init) (cf. Fig. 6). This way, N ./ H reflects the evolution from an initial
implementation, with H being reachable from G and N being reachable from M following
forward and backward rules. The following proposition details the shape of a configuration

that is reachable from M
o
./ G:

Proposition 3.25. Let N ./ H with pa(H) = {p1, · · · , pn}. Then we have

M ≡ (ν s, ñ)
( ∏
i∈{1,··· ,n}

`i[pi] : *Ci ; Qi + | spibTi [ ˆ̂ Si] · x̃i · σic♠ | s : (hi1 ? h
i
2)
)

where, for all i ∈ {1,· · ·, n}, *Ci ; Qi+
s[pi]
n Ti [ ˆ̂ Si] holds as in Figure 15.

Proof. Immediate from Definition 3.2 (reachable configuration), Definition 3.24 (“initially
implements”), and the reduction semantics −→.

Recall that ♠ can be either full � or empty ♦; thus, if M ./ H then M may not be
stable.

The last ingredient required is a swapping relation over global types, denoted ≈sw, which
enables behavior-preserving transformations among causally independent communications.
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P
u
n T

*0 ; P +
u
n ˆ̂ T

*C ; u!〈V 〉.P +
u
n T [ ˆ̂ q!〈U〉.S]

*C ; P +
u
n T [q!〈U〉. ˆ̂ S]

*C ; u?(y).P +
u
n T [ ˆ̂ q?〈U〉.S]

*C ; P +
u
n T [q?〈U〉. ˆ̂ S]

*C ; u / {li.Pi}i∈I+
u
n T [ ˆ̂ q⊕{lj : Sj}j∈J ] w ∈ I, J

*C, u / {ll.Pl}l∈I\w ; Pw+
u
n T

[
q⊕{lj : Sj , lw : ˆ̂ Sw}j∈J\w

]
*C ; u . {li.Pi}i∈I+

u
n T [ ˆ̂ q&{lj : Sj}j∈J ] w ∈ I, J

*C, u . {ll.Pl}l∈I\w ; Pw+
u
n T

[
q&{lj : Sj , lw : ˆ̂ Sw}j∈J\w

]
*C ; P +

u
n T [q!〈U〉. ˆ̂ S] ` V :: U

*C ; u!〈V 〉.P +
u
n T [ ˆ̂ q!〈U〉.S]

*C ; P +
u
n T [q?〈U〉. ˆ̂ S] y : U ` P :: S

*C ; u?(y).P +
u
n T [ ˆ̂ q?〈U〉.S]

*C, u / {ll.Pl}l∈I ; Pw+
u
n T [q⊕{lj : Sj , lw : ˆ̂ Sw}j∈J ]

*C ; u / {li.Pi}i∈I∪w+
u
n T [ ˆ̂ q⊕{lj : Sj}j∈J∪w]

*C, u . {ll.Pl}l∈I ; Pw+
u
n T [q&{lj : Sj , lw : ˆ̂ Sw}j∈J ]

*C ; u . {li.Pi}i∈I∪w+
u
n T [ ˆ̂ q&{lj : Sj}j∈J∪w]

Figure 15. Well-formed configurations with respect to a local type with
history.

(Sw1)
{p1, q1}#{p2, q2}

p1 → q1 : 〈U1〉.(p2 → q2 : 〈U2〉.G) ≈sw p2 → q2 : 〈U2〉.(p1 → q1 : 〈U1〉.G)

(Sw2)
{p1, q1}#{p2, q2}

p1 → q1 : 〈U1〉.(p2 → q2 : {li : Gi}i∈I) ≈sw p2 → q2 : {li : (p1 → q1 : 〈U1〉.Gi)}i∈I

(Sw3)
{p1, q1}#{p2, q2}

p1 → q1 : {li:(p2 → q2 : {lj :Gj}j∈J)}i∈I ≈sw p2 → q2 : {lj :(p1 → q1 : {li:Gi}i∈I)}j∈J

Figure 16. Swapping on global types. We write A#B if A and B are
disjoint sets.

Definition 3.26 (Swapping). We define ≈sw as the smallest congruence on G that satisfies
the rules in Fig. 16 (where we omit the symmetric versions of (Sw1), (Sw2), and (Sw3)).
We extend ≈sw to global types with history H as follows: G[ ˆ̂G1] ≈sw G′[ ˆ̂G2] if G[end] ≈sw

G′[end] and G1 ≈sw G2.

Notice that Definition 2.3 and swapping play similar rôles but at different levels:
queues/configurations and global types, respectively.

We comment on the statement of Theorem 3.27, given next, which relates (i) transitions
in the semantics of (high-level) global types (with history) with (ii) reductions in the
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semantics of their (low-level) process implementations. It is in two parts, which capture an
asymmetry between a global type H and a configuration M , with M ./ H: while Part (a)
shows that the behavior of H can be closely mimicked by M , Part (b) shows that M may
have more immediate behaviors than H: this is because M may include several independent
(and immediate) reductions (written MyNi and MyNi below), which are matched by
H up to swapping. The asymmetry can then be interpreted as configurations being more
concurrent (less sequential) than a global type.

Below, My jM ′ denotes a sequence of j ≥ 0 reduction steps (if j = 0 then M = M ′).
Also, we write H≈sw

#
H′′ to mean that H ≈sw H

′ ∧ H′
#

H′′, for some H′ (and similarly for
# ).

Theorem 3.27. Let H be a reachable global type with history (cf. Def. 3.23). Suppose
M ./ H.

a) If H
#

H′ then MyM ′ and M ′ ./ H′, for some M ′.
Also, if H#H′ then My jM ′ (with j = 1 or j = 2) and M ′ ./ H′, for some M ′.

b) For all Ni such that MyNi, there exist Hi,H
′, and M ′, such that H≈sw

#
Hi, Ni ./ Hi,

Niy∗M ′, Hi
#∗H′, and M ′ ./ H′ (and similarly for y , # ).

Proof. We consider both parts separately:

Part (a): By induction on the transitions H
#

H′ and H#H′, with a case analysis on the
last applied rule (Fig. 3).

For H
#

H′ there are four possible transitions, we have a one-to-one correspondence:
• a transition derived using Rule (FVal1) is matched by M using Rule (Out);
• a transition derived using Rule (FVal2) is matched by M using Rule (In);
• a transition derived using Rule (FCho1) is matched by M using Rule (Sel);
• a transition derived using Rule (FCho2) is matched by M using Rule (Bra).

The analysis for H#H′ is similar, but we may require an additional reduction step
from M , depending on the tag of the corresponding monitor (cf. Prop. 3.25). If the
tag of M is � then the transition can be immediately matched as follows (j = 1):
• a transition derived using Rule (BVal1) is matched by M using Rule (ROut);
• a transition derived using Rule (BVal2) is matched by M using Rule (RIn);
• a transition derived using Rule (BCho1) is matched by M using Rule (RSel);
• a transition derived using Rule (BCho2) is matched by M using Rule (RBra).
Otherwise, if the tag of M is ♦, then j = 2 because an additional reduction (using
Rule (RollS) or (RollC)) is required in order to reach a configuration with tag �.

Part (b): By induction on transitions MyN and MyN , with a case analysis on the
last applied rule, following similar lines. There are two main cases:

(i) There is exactly one reduction MyN (and MyN), which involves participants
that appear at the top-level in H.

(ii) There are one or more reductions MyNi (and MyNi) whose involved partic-
ipants cannot be found at the top-level in H.

We discuss case (i) first. Suppose MyN : then the reduction was obtained using
one of the following Rules (Out), (In), (Sel), (Bra), and (Beta). Notice that
a reduction with Rule (Spawn) is not possible under our definition of well-formed
processes (and configurations). For the first four cases, a corresponding transition
H
#

H′ can be easily obtained, as in the analysis for Part (a); a reduction obtained
with Rule (Beta) does not involve the global type, and so H′ = H. In either case,
N ./ H′ holds easily. Now suppose MyN . Here the analysis depends on the tag in
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M : if it is � then the reduction was derived using Rules (ROut), (RIn), (RSel),
(RBra), or (RBeta). Here again a reduction via Rule (RSpawn) is not possible. As
before, in the first four cases the reduction can be mimicked directly by one transition
H#H′; in the last one, there is no global type transition (H′ = H). If the tag is ♦
then the reduction is derived using Rules (RollS) or (RollC). This reduction is
not mimicked by H but enables a reduction NyM ′, using one of the Rules (Out),
(In), (Sel), (Bra), and (Beta), which can be mimicked as discussed for the case �,
ensuring M ′ ./ H′.

In case (ii) we use ≈sw to obtain behavior-preserving transformations H∗i of H in
which the participants involved in the reductions (MyNi or MyNi) appear at
the top-level. Such transformations exist, because of assumption M ./ H. This way,
the reductions from M can be matched by H∗i , following the analysis described in
case (i); after all the independent communication actions have been performed and
matched (there are finitely many of them), it is easy to obtain M ′ and H′ such that
M ′ ./ H′.

Summing up, we have that Theorem 3.21 ensures that reversibility in the atomic semantics
is causally consistent. Theorem 3.12 transfers this result to decoupled semantics; since by
Theorem 3.27 decoupled semantics defines a sound local implementation, we conclude that
reversibility for global types is also causally consistent.

4. Discussion and Related Work

4.1. An Alternative Semantics. Our decoupled semantics for asynchronous communica-
tion, given by y ∪ y , relies on a single (global) queue for all the participants in the session.
This is different from the semantics in works such as [HYC08, KY13, KY14], where there is
a queue per channel/participant. Here we discuss an alternative decoupled semantics with a
dedicated (local) queue per participant, and argue that our main results hold also in such
an alternative semantics.

The syntax of processes and configurations, given in Fig. 4, is kept largely unchanged; we
only need to consider multiple queues sp : (h ? k) for each participant p in the session (where
h is the input part h and k is the output part, as before). Intuitively, the communication of
a message m from p to q now operates as follows. First, the process implementation for p

enqueues a message 〈q,m〉 to the output part of its own queue; subsequently, the message is
moved to the input part of q’s queue, where it is renamed as 〈p,m〉 to make its provenance
explicit.

More formally, the rules in Fig. 17 and Fig. 18 define the alternative evaluation-closed
forward and backward reduction relations, denoted ⇀ and ⇁ .1 Rule (Init∗) is similar
to Rule (Init) in Fig. 6 but it initialises a local queue for each participant in the given
protocol G. Rules (Out∗) and (In∗) make the above intuitions formal by defining how
communication operates when using separate queues for participants, ensuring that output
and input steps must be supported by appropriate types in the monitors for p and q. In
particular, notice how Rule (In∗) involves the two different local queues (for p and for
q) and renames the participant mentioned in the message. Rules (RInit∗), (RollS∗),

1For conciseness, Fig. 17 contains only rules for input-output communication; other rules follow similar
lines.
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(Init∗)

pa(G) = {p1, · · · , pn} T1 = G↓p1 · · · Tn = G↓pn∏
i∈{1..n}

Li ⇀ (ν s)
( ∏
i∈{1..n}

spi : (ε ? ε) |Mi | Ni

)
where:

L1 = `1 {a!〈x1 : T1〉.P1} Mi = `i[pi] : *0 ; Pi{s[pi]/xi} + for i = 1..n

Lj = `j {a?(xj : Tj).Pj} for j = 2..n Ni = spib ˆ̂ Ti · xi · [xi 7→ a]c for i = 1..n

(Out∗)

p = r ∨ p ∈ roles(r, h)

M | N | sp : (h ? k) ⇀M ′ | N ′ | sp : (h ? k ◦ 〈q, σ(V )〉)
where:

M = `[r] : *C ; s[p]!〈V 〉.P + N = spbT [ ˆ̂ q!〈U〉.S] · x̃ · σc
M ′ = `[r] : *C ; P + N ′ = spbT [q!〈U〉. ˆ̂ S] · x̃ · σc

(In∗)

p = r ∨ p ∈ roles(r, h1)

M | N | sp : (h1 ? k1) | sq : (h2 ? 〈p, V 〉 ◦ k2) ⇀
M ′ | N ′ | sp : (h1 ◦ 〈q, V 〉 ? k1) | sq : (h2 ? k2)

where:

M = `[r] : *C ; s[p]?(y).P + N = spbT [ ˆ̂ q?〈U〉.S] · x̃ · σc
M ′ = `[r] : *C ; P + N ′ = spbT [q?〈U〉. ˆ̂ S] · x̃, y · σ[y 7→ V ]c

Figure 17. An alternative decoupled semantics for configurations (⇀ , ⇁ ).

(ROut∗), and (RIn∗) are the corresponding backward rules, which are defined similarly as
before because the tags ‘♦’ and ‘�’ are attached to monitors, rather than to queues. The
equivalence on queues given by Definition 2.3 needs to be revised as follows:

Definition 4.1 (Equivalence on message queues, revised). We define the structural equiva-
lence on queues, denoted ≡q, as follows:

h ◦ 〈p1,m1〉 ◦ 〈p2,m2〉 ◦ h′ ≡q h ◦ 〈p2,m2〉 ◦ 〈p1,m1〉 ◦ h′

whenever p1 6= p2. The equivalence ≡q extends to configurations M as expected.

The difference between the two decoupled semantics is in the shape of the queues. The
following definition makes this difference precise.
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(RInit∗)

pa(G) = {p1, · · · , pn} T1 = G↓p1 · · · Tn = G↓pn
(ν s)

( ∏
i∈{1..n}

spi : (ε ? ε) |Mi | Ni

)
⇁

∏
i∈{1..n}

Li

where:

Mi = `i[pi] : *0 ; Pi{s[pi]/xi} + for i = 1..n L1 = `1 {a!〈x1 : T1〉.P1}
Ni = spib ˆ̂ Ti · xi · [xi 7→ a]c♦ for i = 1..n Li = `i {a?(xi : Ti).Pi} for i = 2..n

(RollS∗)

N♦1 | N
♦
2 |M ⇁N�1 | N

�
2 |M

where:

M =
∏
i∈{1..n} spi : (hi ? ki) N1 = spbT [q?〈U〉. ˆ̂ T ] · x̃ · σ1c

N2 = sqbS [p!〈U〉. ˆ̂ S] · ỹ · σ2c
(ROut∗)

p = r ∨ p ∈ roles(r, h)

M | N | sp : (h ? k ◦ 〈q, σ(V )〉) ⇁M ′ | N ′ | sp : (h ? k)

where:

M = `[r] : *C ; P + N = spbT [q!〈U〉. ˆ̂ S] · x̃ · σc�

M ′ = `[r] : *C ; s[p]!〈V 〉.P + N ′ = spbT [ ˆ̂ q!〈U〉.S] · x̃ · σc♦

(RIn∗)

p = r ∨ p ∈ roles(r, h1)

M | N | sp : (h1 ◦ 〈q, V 〉 ? k1) | sq : (h2 ? k2)
⇁M ′ | N ′ | sp : (h1 ? k1) | sq : (h2 ? 〈p, V 〉 ◦ k2)

where:

M = `[r] : *C ; P + N = spbT [q?〈U〉. ˆ̂ S] · x̃, y · σc�

M ′ = `[r] : *C ; s[p]?(y).P + N ′ = spbT [ ˆ̂ q?〈U〉.S] · x̃ · σ \ yc♦

Figure 18. An alternative decoupled semantics for configurations (⇀ , ⇁ ).

Definition 4.2 (From Single to Local Queues). Given s : (h ? k), a single queue as defined
in Fig. 4, the local queue of participant p is sp : (hbp ? kcp), where:

hbp =


ε if h = ε

〈qi, Vi〉 ◦ (h′bp) if h = (qi , p
′ , Vi) ◦ h′ and p = p′

h′bp if h = (qi , p
′ , Vi) ◦ h′ and p 6= p′

kcp =


ε if k = ε

〈qi, Vi〉 ◦ (k′cp) if k = (p′ , qi , Vi) ◦ k′ and p = p′

k′cp if k = (p′ , qi , Vi) ◦ k′ and p 6= p′
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Given a reachable configuration M (Def. 3.2) for a protocol with participants {p1, · · · , pn},
we write [M ]�� to denote the configuration obtained from M by (i) removing the single queue
s : (h ? k) and (ii) adding in parallel a local queue spi : (hbpi ? kcpi) for each pi ∈ {p1, · · · , pn}.

Example 4.3. Recall configuration M7 as in § 2.3.3:

M7 = (ν s)( `3[B] : *0 ; s[B]!
〈
{{s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0}}

〉
.0+

| sBbT7 [ ˆ̂ C!〈{{�}}〉.V!〈address〉.V?〈date〉.end] · z, p, s · σ7c♦

| `4[C] : *0 ; s[C]?(code).(code ∗)+

| sCbT8 [ ˆ̂ B?〈{{�}}〉.end] · w, s · σ8c♦ | N5

| s : (h7 ? ε) )

where T7 [•], σ7, T8 [•], σ8, are as before and h7 is as follows:

h7 = (A , V , ‘Logicomix’) ◦ (V , A , price(‘Logicomix’)) ◦ (V , B , price(‘Logicomix’))

◦ (A , B , 120) ◦ (B , A , ‘ok’) ◦ (B , V , ‘ok’) ◦ (B , C , 120)

Then, applying Def. 4.2, we obtain:

[M7]�� = (ν s)( `3[B] : *0 ; s[B]!
〈
{{s[B]!〈‘Urbino, 61029’〉.s[B]?(d).0}}

〉
.0+

| sBbT7 [ ˆ̂ C!〈{{�}}〉.V!〈address〉.V?〈date〉.end] · z, p, s · σ7c♦

| `4[C] : *0 ; s[C]?(code).(code ∗)+

| sCbT8 [ ˆ̂ B?〈{{�}}〉.end] · w, s · σ8c♦ | N5

| sA : (hA ? ε) | sB : (hB ? ε) | sC : (hC ? ε) | sV : (hV ? ε) )

where the difference with respect to M7 is in the last line, with the following local queues:

hA = 〈V, price(‘Logicomix’)〉 ◦ 〈B, ‘ok’〉
hB = 〈V, price(‘Logicomix’)〉 ◦ 〈A, ‘ok’〉
hC = 〈B, 120〉
hV = 〈A, ‘Logicomix’〉 ◦ 〈B, ‘ok’〉

We now relate the decoupled semantics (given by y ∪y ) with the alternative decoupled
semantics (given by ⇀ ∪⇁ ) by means of the following correspondence:

Proposition 4.4. Let M be a reachable configuration. We have:

(1) MyM ′ if and only if [M ]��⇀ [M ′]��.
(2) [M ]�� y [M ′]�� if and only if M⇁M ′.

Proof. Immediate from the definitions of [·]��, y , and ⇀ (resp. y and ⇁ ).

This tight correspondence between the original and alternative decoupled semantics
ensures that our main results (in particular, causal consistency) carry over to a setting in
which each participant handles its own queue for messages.
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4.2. Related Work. Reversibility in concurrency has received much attention in the last
decade. A detailed overview of the literature on the intersection between reversibility and
behavioral contracts/types appears in [MSG+20]. Within this research line, the works most
related to ours are [TY16, DG16, CDG17, CDG19, FMT18, FMT20, BLd18, NY17, Kap20].

Tiezzi and Yoshida [TY16] study the cost of implementing different ways of reversing
binary and multiparty sessions; since they work in a synchronous setting, these alternatives
are simpler or incomparable to our asynchronous, decoupled rollback.

In a series of works, Dezani-Ciancaglini et al. have developed multiparty session types
with checkpoints [DG16, CDG17, CDG19]. These checkpoints are choice points in the global
protocol to which the computation may return. The initial theory has been presented in
[DG16] and further developed in [CDG17], with improvements that include a more liberal
syntax for processes and types and refined representations for past communications. The
work in [CDG19] extends [CDG17] with flexible choices and connecting communications,
allowing for different sets of participants in each branch. The intuition is that in some parts
of the protocol (as delimited by a choice construct) some participants are required to take
part in the interaction, while some others may be optional.

We briefly compare our approach with respect to the framework in [CDG17]. While
our reversible actions are embedded in/guaranteed by the semantics, rollbacks in [CDG17]
should specify the name of the checkpoint to which computation should revert. Defining
reversibility in [CDG17] requires modifying both processes and types. In contrast, we
consider untyped processes governed by local types (with cursors) as monitors. While we
show causal consistency with a direct proof, in [CDG17] causal consistency follows indirectly,
as a consequence of typing. Another difference with respect to [CDG17] is that reversibility
in our model is fine-grained, in that we allow reversible actions concerning exactly two of the
protocol participants; in [CDG17], when a checkpoint is taken, also parties not related with
that choice are forced to return to a checkpoint. A distinctive aspect of [CDG17] is that
when a branch of a choice is reversed, it is discarded: this way, the same choice is not redone
in the future. We have chosen to be more liberal, as the same action can be done and redone
infinite times. To encode this behavior, we could use the reversibility modes—annotations
that describe the reversibility capabilities of the processes governed by types)—that we
introduced in [MP17b].

Similarly to our work, Francalanza et al. [FMT18, FMT20] use monitors that enact
reversibility by storing the decision points (e.g., distributed choices) that the different
participants may take, and by coordinating with each other in order to bring the system
back to a previous consistent state when certain conditions are met. To do so, they extend
the global graphs by Tuosto and Guanciale [TG18] (a formalism that expresses the behaviour
of a message passing system from a global point of view) with a decoration on choices,
which includes a condition dictating when a computation on a particular branch of a
distributed choice should be reversed. Then, these extended global descriptions can be used
to (i) synthesise actors implementing the normal (forward) local behaviour of the system
prescribed by the global graph, but also (ii) synthesise monitors that are able to coordinate a
distributed rollback when certain conditions (denoting abnormal behaviour) are met. Their
synthesis algorithm produces Erlang code, with two actors per participant derived from
the global graph: one implements the normal/forward behaviour of the participant; the
second one (a monitor) implements its backward behaviour. Reversibility is confined into
distributed choices, and triggered by conditions on the internal state of some participants. In
contrast, in our framework every communication step can be undone; the mechanism devised
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in [FMT18, FMT20] can be encoded in an extension of our framework with conditional
reversibility.

Neykova and Yoshida [NY17] develop a recovery algorithm for Erlang programs by
exploiting causal information induced by global protocols. They then show that their
recovery algorithm outperforms Erlang’s built-in recovery algorithm.

Behavioural contracts are abstract descriptions of expected communication patterns
followed by either clients or servers during their interaction. They come naturally equipped
with a notion of compliance: when a client and a server follow compliant contracts, their
interaction is guaranteed to progress or successfully complete. Barbanera et al. [BLd18] study
two extensions of behavioural contracts: (i) retractable contracts dealing with backtracking
and (ii) speculative contracts dealing with speculative execution. These two extensions give
rise to the same notion of compliance. As a consequence, they also give rise to the same
subcontract relation, which determines when one server can be replaced by another while
preserving compliance.

From a global specification (e.g., a global graph) an abstract semantics can be derived
[GT19]. The semantics is abstract since it is given in terms of a partial order of events,
representing the causality induced by the global specification. Recently, Kapus-Kolar [Kap20]
has enhanced this abstract semantics to account for reversibility. Here, the assumption is that
a global graph is realizable (i.e., the projection function can be defined on all participants)
and that each automata implementing the behaviour of a single participant has an inverse.
Then, it is shown that the causality induced by the global specification is preserved also
while going backwards.

5. Concluding Remarks

We have presented a process framework of reversible, multiparty protocols built upon session-
based concurrency. As illustrated throughout the paper, the distinguishing features of our
framework (decoupled rollbacks and abstraction passing, including delegation) endow it with
substantial expressiveness, improving on and distinguishing it from prior works.

Our processes/configurations are untyped, but their (reversible) behaviour is governed
by monitors derived from local (session) types. In our view, our monitored approach to
reversibility is particularly appropriate for specifying and reasoning about systems with
components whose behaviour may not be statically analyzed (e.g., legacy components or
services available as black-boxes). A monitored approach is general enough to support also
the analysis of reversible systems that combine typed and untyped components.

We proved that our reversible semantics is causally consistent, which ensures that
reversing a computation leads to a state that could have been reached by performing only
forward steps. The proof is challenging (and, in our view, also interesting), as we must
resort to an alternative atomic semantics for rollbacks (Fig. 12 and 13). We then connected
reversibility at the level of process/configurations with reversibility at the level of global types,
therefore linking the operational and declarative levels of abstraction typical of multiparty
sessions communication-centric software systems.

Extensions and Future Work. As already mentioned, our framework does not include
name passing, which is known to be representable, in a fully abstract way, using name
abstractions [KPY16]. Primitive support for name passing is not difficult, but would come
at the cost of additional notational burden. An extension with name passing would allow
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us to relate our framework with known typed frameworks for monitored networks (without
reversibility) based on multiparty sessions [BCD+17].

In future work, we plan to extend our framework with reversibility modes [MP17b],
which implement controlled reversibility [LMSS11] by specifying how many times a particular
protocol step can be reversed—zero (e.g., it is an atomic action), one, or infinite times.
(Currently, all actions can be reversed infinite times.) In a related vein, we plan to explore
variants of our model in which certain protocol branches are “forgotten” after they have
been reversed; this modification is delicate, because it would weaken the notion of causal
consistency.

On the practical side, the work [dVP19] describes a Haskell implementation of our
reversible model, where algebraic types are used to represent all the various formal ingredients
defined in § 2. We plan to keep improving this implementation, as we believe that pure
functional languages support natively reversibility. In this direction, it would be beneficial
to have a “reversible workbench” to test and compare all the different semantics of the
aforementioned reversible behavioural types.
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