9 research outputs found

    Web Spambot Detection Based on Web Navigation Behaviour

    Get PDF
    Web robots have been widely used for various beneficial and malicious activities. Web spambots are a type of web robot that spreads spam content throughout the web by typically targeting Web 2.0 applications. They are intelligently designed to replicate human behaviour in order to bypass system checks. Spam content not only wastes valuable resources but can also mislead users to unsolicited websites and award undeserved search engine rankings to spammers' campaign websites. While most of the research in anti-spam filtering focuses on the identification of spam content on the web, only a few have investigated the origin of spam content, hence identification and detection of web spambots still remains an open area of research.In this paper, we describe an automated supervised machine learning solution which utilises web navigation behaviour to detect web spambots. We propose a new feature set (referred to as an action set) as a representation of user behaviour to differentiate web spambots from human users. Our experimental results show that our solution achieves a 96.24% accuracy in classifying web spambots

    Research trends on CAPTCHA: A systematic literature

    Get PDF
    The advent of technology has crept into virtually all sectors and this has culminated in automated processes making use of the Internet in executing various tasks and actions. Web services have now become the trend when it comes to providing solutions to mundane tasks. However, this development comes with the bottleneck of authenticity and intent of users. Providers of these Web services, whether as a platform, as a software or as an Infrastructure use various human interaction proof’s (HIPs) to validate authenticity and intent of its users. Completely automated public turing test to tell computer and human apart (CAPTCHA), a form of IDS in web services is advantageous. Research into CAPTCHA can be grouped into two -CAPTCHA development and CAPTCH recognition. Selective learning and convolutionary neural networks (CNN) as well as deep convolutionary neural network (DCNN) have become emerging trends in both the development and recognition of CAPTCHAs. This paper reviews critically over fifty article publications that shows the current trends in the area of the CAPTCHA scheme, its development and recognition mechanisms and the way forward in helping to ensure a robust and yet secure CAPTCHA development in guiding future research endeavor in the subject domain

    Implementasi Prosedur Forensik Untuk Analisis Artefak Whatsapp Pada Ponsel Android

    Get PDF
    Dengan maraknya penggunaan smartphone terutama yang berbasis Android yang menguasai hampir mencapai 85% pasar smartphone juga mendorong peningkatan jumlah penggunaan aplikasi pertukaran pesan seperti WhatsApp, facebook Messenger dan lainnya. Pengguna aplikasi WhatsApp messenger di seluruh dunia sejak April 2016 telah mencapai lebih dari 1 milyar mengungguli aplikasi sejenis. Di sisi lain pada beberapa kasus kejahatan dan kasus perdata yang sedang marak, mulai menggunakan barang bukti  berupa percakapan, gambar, rekaman video dan lainnya yang berasal dari aplikasi WhatsApp.        Untuk itu pada penelitian ini menghasilkan prosedur yang bisa dijadikan rujukan dalam melakukan investigasi forensic aplikasi WhatsApp untuk mendapatkan barang bukti berupa sesi percakapan, data media seperti audio, no kontak, foto dan lainnya. Penelitian ini menggunakan teknik dekripsi file database aplikasi WhatsApp untuk membaca file database backup yang terenkripsi yang menyimpan sesi percakapan yang sudah dihapus

    Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis

    Get PDF
    Human Interactive Proofs (HIPs 1 or CAPTCHAs 2) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All the most widespread, successful or interesting CAPTCHA designs put to scrutiny have been successfully broken. Many of these attacks have been side-channel attacks. New designs are proposed to tackle these security problems while improving the human interface. FunCAPTCHA is the first commercial implementation of a gender classification CAPTCHA, with reported improvements in conversion rates. This article finds weaknesses in the security of FunCAPTCHA and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without using meaningful image analysis. This simple yet effective security analysis can be applied with minor modifications to other HIPs proposals, allowing to check whether they leak enough information that would in turn allow for simple side-channel attacks

    Addressing the new generation of spam (Spam 2.0) through Web usage models

    Get PDF
    New Internet collaborative media introduce new ways of communicating that are not immune to abuse. A fake eye-catching profile in social networking websites, a promotional review, a response to a thread in online forums with unsolicited content or a manipulated Wiki page, are examples of new the generation of spam on the web, referred to as Web 2.0 Spam or Spam 2.0. Spam 2.0 is defined as the propagation of unsolicited, anonymous, mass content to infiltrate legitimate Web 2.0 applications.The current literature does not address Spam 2.0 in depth and the outcome of efforts to date are inadequate. The aim of this research is to formalise a definition for Spam 2.0 and provide Spam 2.0 filtering solutions. Early-detection, extendibility, robustness and adaptability are key factors in the design of the proposed method.This dissertation provides a comprehensive survey of the state-of-the-art web spam and Spam 2.0 filtering methods to highlight the unresolved issues and open problems, while at the same time effectively capturing the knowledge in the domain of spam filtering.This dissertation proposes three solutions in the area of Spam 2.0 filtering including: (1) characterising and profiling Spam 2.0, (2) Early-Detection based Spam 2.0 Filtering (EDSF) approach, and (3) On-the-Fly Spam 2.0 Filtering (OFSF) approach. All the proposed solutions are tested against real-world datasets and their performance is compared with that of existing Spam 2.0 filtering methods.This work has coined the term ‘Spam 2.0’, provided insight into the nature of Spam 2.0, and proposed filtering mechanisms to address this new and rapidly evolving problem

    CAPTCHA Types and Breaking Techniques: Design Issues, Challenges, and Future Research Directions

    Full text link
    The proliferation of the Internet and mobile devices has resulted in malicious bots access to genuine resources and data. Bots may instigate phishing, unauthorized access, denial-of-service, and spoofing attacks to mention a few. Authentication and testing mechanisms to verify the end-users and prohibit malicious programs from infiltrating the services and data are strong defense systems against malicious bots. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is an authentication process to confirm that the user is a human hence, access is granted. This paper provides an in-depth survey on CAPTCHAs and focuses on two main things: (1) a detailed discussion on various CAPTCHA types along with their advantages, disadvantages, and design recommendations, and (2) an in-depth analysis of different CAPTCHA breaking techniques. The survey is based on over two hundred studies on the subject matter conducted since 2003 to date. The analysis reinforces the need to design more attack-resistant CAPTCHAs while keeping their usability intact. The paper also highlights the design challenges and open issues related to CAPTCHAs. Furthermore, it also provides useful recommendations for breaking CAPTCHAs
    corecore