
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Hernández-Castro, Carlos Javier and R-Moreno, María D. and Barrero, David F. and Gibson,
Stuart J. (2017) Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA
case analysis. Computers and Security, 70 . pp. 744-756. ISSN 0167-4048.

DOI

https://doi.org/10.1016/j.cose.2017.05.005

Link to record in KAR

http://kar.kent.ac.uk/63555/

Document Version

Publisher pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189717466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using machine learning to identify

common flaws in CAPTCHA design:

FunCAPTCHA case analysis

Carlos Javier Hernández-Castro a,*, María D. R-Moreno b,
David F. Barrero b, Stuart Gibson c

a Complutense University, Madrid, Spain
b Alcalá University, Madrid, Spain
c University of Kent, Canterbury, UK

A R T I C L E I N F O

Article history:

Received 8 June 2016

Received in revised form 28

February 2017

Accepted 16 May 2017

Available online

A B S T R A C T

Human Interactive Proofs (HIPs 1 or CAPTCHAs 2) have become a first-level security measure

on the Internet to avoid automatic attacks or minimize their effects. All the most wide-

spread, successful or interesting CAPTCHA designs put to scrutiny have been successfully

broken. Many of these attacks have been side-channel attacks. New designs are proposed

to tackle these security problems while improving their human interface. FunCAPTCHA is

the first commercial implementation of a gender classification CAPTCHA, with reported im-

provements in conversion rates.This article finds weaknesses in the security of FunCAPTCHA

and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack

that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without

using meaningful image analysis. This simple yet effective security analysis can be applied

with minor modifications to other HIP proposals to check if they leak enough information

as to allow simple side-channel attacks.

© 2017 Elsevier Ltd. All rights reserved.

Keywords:

HIP

CAPTCHA

Machine learning

Gender classification

Side-channel attack

1. Introduction

Free on-line services have become prevalent since the broad de-

ployment of the Internet in the late 90s. The abuse of such

services, using automated methods, is the first step towards more

sophisticated attacks that can result in substantial revenue for

the attackers (as twitterbots that push products, people or false

news on Twitter; automatic voters for different prize-awarding

sites; abuse of social networks; abuse of free cloud computing

services or on-line ticket selling services, and many others).

Naor (1996) was the first to propose a theoretical security

framework based on the idea of using problems that could be

solved easily by humans but were thought to be hard for com-

puters. He offered some suggestions for such problems: gender

classification, facial expression understanding (happy/sad), filling

in words in sentences, etc. A few of his suggestions were sub-

sequently used to create real CAPTCHAs, whilst other pioneers

developed alternative designs, all based on theoretically hard-

AI problems. Researchers at CMU3 improved the idea, listing

the desirable properties for CAPTCHAs, and presenting their

own design (von Ahn et al., 2003).

* Corresponding author.

E-mail address: chernandez@ucm.es (C.J. Hernández-Castro).
1 Human Interaction Proof, or also Human Interactive Proof.
2 Completely Automated Public Turing test to tell Computers and Humans Apart.
3 Carnegie Mellon University.

http://dx.doi.org/10.1016/j.cose.2017.05.005
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:chernandez@ucm.es
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE

This was the trend during the 2000s decade that saw the

publication of many new techniques enabling the breaking of

text-based word-image CAPTCHAs. Some of these tech-

niques relate to one particular CAPTCHA, or family of

CAPTCHAs, while others target a broader range. Among the best

known are.

In the next decade, there was a lot of research on new tech-

niques, enabling the breaking of text-based CAPTCHAs based

on the problem of optical character classification (OCR). These

attacks were not based on improvements in the state of the

art of OCR. Instead, they made clever use of some very simple

properties of the images comprising the challenge set. These

properties allowed the attackers to partially reverse the dis-

tortions applied to the characters and, in conjunction with other

design flaws, gave sufficient information to break these

CAPTCHAs, sometimes using very simple techniques as edge

detection, flood-fill variants, thresholding, shape-matching, clus-

tering, shrink and fill segmentation, principal component

analysis, independent component analysis, horizontal and ver-

tical histograms, skeletonization, erosion and dilation and

pattern matching (Mohamed et al., 2013, Zhu et al., 2010, Yan

and El Ahmad, 2008b, Wilkins, 2010, Wieser, 2007, Hindle et al.,

2008, Yan and El Ahmad, 2008a, Harry “Dark SEO, 2008a, 2008b,

Santamarta, 2008, Bursztein et al., 2011). The reaction from

various companies was to increase the distortion levels, cre-

ating very tough HIPs even for humans (Fidas et al., 2011).

Researchers started seeking new ideas for their CAPTCHA

designs, looking into other subfields of artificial intelligence

(AI), in particular into some of the different problems of com-

puter vision: image classification, object classification and scene

interpretation. The most frequently used idea was image clas-

sification. Warner proposed selecting photos of kittens to tell

computers and humans apart (Warner, 2009). The HumanAuth

CAPTCHA asked the user to distinguish between pictures de-

picting a nature-related scene (e.g. a flower, grass, the sea) and

pictures of human-made objects (e.g. a clock, a boat, or Big Ben).

Similarly, the creators of ASIRRA (Elson et al., 2007) based it

on cat/dog image classification problem, using a large data-

base of “more than 3 million photos”. Currently, “No CAPTCHA”

reCAPTCHA (by Google) asks the user to pick images related

to different categories or to select parts of an image pertain-

ing to a category.

These schemes have been broken, many times through side-

channel attacks that did not solve the base problem (Santamarta,

2008, Tam et al., 2008, Hindle et al., 2008, Yan and El Ahmad,

2008a, 2008b, Harry “Dark SEO, 2008b, Hernández-Castro et al.,

2010, Hernandez-Castro et al., 2009b, Hernández-Castro et al.,

2015, Hernandez-Castro and Ribagorda, 2009a), and in other oc-

casions using small improvements or state-of-the-art ML

algorithms (Golle, 2009; Sivakorn et al., 2016).The recent advance

in automatic image classification also poses a risk to image-

classification CAPTCHAs (Ciregan et al., 2012; Goodfellow et al.,

2013; Krizhevsky et al., 2012; LeCun et al., 1998), and although

some research has been done on the limits of these algo-

rithms (Goodfellow et al., 2014) and some propose to use them

to build new CAPTCHAs (Osadchy et al., 2017), DL4 can cur-

rently be a threat to them. Other proposals have appeared

recently and await scrutiny. Some of these are based on dif-

ferent tasks in image classification (Vikram et al., 2011), like

artificial vs human face classification (D’Souza et al., 2012).Recent

proposals enhance the typical OCR/text-based HIP (Alsuhibany,

2011). Another current trend is to try to analyse different client

metrics to detect possible access from bots, self-named as

“behavioural”, even though what they measure is typically a

series of metrics dependent on the platform of the client for

client fingerprinting – as No CAPTCHA reCAPTCHA by Google,

NuCAPTCHA, BadBehaviour or Mollom CAPTCHA. These pro-

posals avoid, in some cases, to show a typical CAPTCHA, and

use them when there is insufficient data. Other proposals use

the same behaviour analysis to vary the difficulty of the

CAPTCHA presented to the user.All of these schemes have been

so far proprietary. They have the added drawback that these

behavioural and client metrics are all taken remotely on the

client’s machine. These CAPTCHA authors try to protect their

measurement algorithms with obfuscation. This paradigm is

known as Security by Obscurity, and has a long tradition of failure

(Anderson, 2002; Hoepman and Jacobs, 2007; Swire, 2004). IT

security history suggests that this is not a sound way to go.

During these years, those CAPTCHAs and CAPTCHA pro-

posals that have gotten the interest of the researchers – might

it have been because of their originality, their commercial

success, or widespread use – and that have been scrutinized

have been found vulnerable to attacks.These attacks have been

either side-channel attacks or ML attacks that have used the

intended path of attack. New CAPTCHAs keep appearing, some

of which use original ideas, either applied to known CAPTCHA

types, or based on completely new paradigms. Known attacks

are typically not applicable to them. Thus, they await scru-

tiny from the IT security community. It is important to assess

their security, and even more, to find ways to assess semi-

automatically a basic security level for new CAPTCHA designs.

FunCAPTCHA is an original CAPTCHA implementation that

claims better strength and usability than a typical word-

classification CAPTCHA. FunCAPTCHA is not the first CAPTCHA

design to be based on image orientation and gender classifi-

cation (Gossweiler et al., 2009, Kim et al., 2010 and Kim et al.,

2014 respectively). However, to the best of our knowledge, it

is the first readily available gender classification CAPTCHA

system in production. The general problem of face identifica-

tion and interpretation can be considered currently unsolved

by ML, as “bad” inputs, like partial pictures of faces from an

angle, faces partially covered, faces with different garments

(glasses, hats, etc.) or facial expressions are still considered a

problem. It is possible to assume a similarly higher difficulty

in classifying the gender of faces that are similarly “bad”. Fur-

thermore, FunCAPTCHA uses synthetic images, which allows

its designers to choose creation parameters that are the most

difficult for a ML classifier.

In this article we demonstrate a novel attack against

FunCAPTCHA. Our attack does not follow the intended path

of attack by a gender classification CAPTCHA like FunCAPTCHA.

We neither perform sophisticated image analysis nor use novel

ML techniques. Instead, we perform a basic security analysis

of it, finding flaws that might enable a side-channel attack. We

then proceed to assess their real impact on the Security of

FunCAPTCHA using ML.

4 Deep Learning, or very deep neural networks, that typically
include convolutional layers (DCNNs) if they are dealing with images.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

2 c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

Flaws that allow side-channel attacks are common in new

CAPTCHA designs. Many CAPTCHA designers, following the

paradigm introduced by Naor and Von Ahn (Naor, 1996; von

Ahn et al., 2003), have presented proposals based on prob-

lems that they consider to be AI-hard. As most AI problems

have not been formalized, we have yet to prove that these prob-

lems are AI-hard.Worse, a CAPTCHA by design presents a subset

of what can be considered the full problem. This subset might

not be representative of the whole problem. In particular, it

might not be as hard for AI. It might significantly alter the pro-

portion of weak, easy to solve challenges. It might discard the

most complex examples. If any of these are the cases, it might

fall to side-channel attacks that do not deal at all with the base

problem. Thus, this type of analysis is important for new

CAPTCHA designs. We propose here a simple way of doing it

and show its results for FunCAPTCHA.

In the following sections, we introduce FunCAPTCHA and

then proceed to discuss its possible design flaws (Section 3).

In Section 5 we test how different well-known ML algorithms

can be used to exploit these flaws. In Section 6 we check if our

previous positive results can be turned into a novel attack. We

proceed to implement it and analyse its performance (Section

7), showing that it passes FunCAPTCHA on 90% of occasions.

We then discuss some possible countermeasures to our attack

and similar attacks (Section 8). We finish by presenting our

conclusions.

2. FunCAPTCHA

FunCAPTCHA tests are of two different main types, each one

appearing roughly 50% of the time. The first type requires the

user to rotate in 40° increments an image until it is in its correct

vertical orientation.This idea is not new (Gossweiler et al., 2009)

and has known drawbacks (Zhu et al., 2010) that make it of

little interest.

The second type of challenges is a gender classification chal-

lenge that requires the user to select a picture of a female face

among 8 pictures and drag and drop it to the centre of a 9 × 9

tile box. Because of its novelty, this is the test that interests

us and that we will study in this article.

Each of these two types of CAPTCHA has subtypes depend-

ing on how many tests are performed sequentially to pass the

CAPTCHA. In our tests, the whole CAPTCHA challenges have

consisted of either 1, 3 or 5 tests.

FunCAPTCHA has implemented different versions of the

gender classification test over time (Table 1). We are aware of

at least four different versions: using real human models, ren-

dering different 3D facial models in 2D in colour, using only

one model per gender in colour, and rendering them in

greyscale. Why the FunCAPTCHA designers did these changes

is uncertain.

Apart from its security, another strong point according to

FunCAPTCHA marketing is that it offers a significantly higher

conversion rate than other CAPTCHAs, as “FunCaptcha has a

96% completion rate” and “is completed 28% more than twisty-

lettered CAPTCHAs”.

FunCAPTCHA presents a last fake test in which it asks the

user to move the icon representing its favourite activity to the

centre (possibilities beingTV, sports, etc.).An example is shown

in Table 2.The user’s answer does not affect the outcome of the

challenge. From an IT security standpoint, we do not under-

stand the value of this question.After contacting FunCAPTCHA

designers, they comment that this test is not render for

Table 1 – Different FunCAPTCHA gender classification iteratens.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

3c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

security reasons, but for UI reasons: “[it is] better to give the user

something to do rather than make them look at a loading bar

or spinner”.

3. FunCAPTCHA design analysis

We analysed FunCAPTCHA from the viewpoint of an attacker

that wants to bypass it as a means to gain access to some on-

line service. Thus, we did not register with the API of

FunCAPTCHA, nor installed a client in our machines. We

analysed its protocol directly from the browser, using HTTP

analysis tools.

3.1. FunCAPTCHA initial analysis

The most basic challenge of FunCAPTCHA consists of a single

gender classification test. It is correct to argue that a chal-

lenge with a 12.5% brute-force success rate (
1

8
) is weak (0.6%

is enough to consider a CAPTCHA broken (Zhu et al., 2010), even

though we do not know in what cases FunCAPTCHA decides

that this simple challenge is enough. The chances of passing

the 3- and 5-test challenge by brute-force would be 1.5% and

0.003% respectively. Only the 5-test challenge has a strength

against brute-force attacks good enough for a production

CAPTCHA. We do not know whether the shorter tests are just

for demonstration purposes, so even though we will analyze

all cases, we will focus on the results of the 5-test challenge.

Given that the typical time to complete it is around 15 s, we

do not think that a version of FunCAPTCHA with more tests

per challenge would have the same conversion rates.

It seems that FunCAPTCHA relies on some tracking, maybe

based on IP tracking, to harden the test after a user sends a wrong

answer. FunCAPTCHA authors later confirmed this extreme.They

claim to use “other ways to trace a user’s identity besides IP”,

and that because of this, the 1-test challenge does not pose a

risk, as a bot (with low accuracy) would be identified.

During our analysis, we found that FunCAPTCHA is using

several obfuscation techniques to try to prevent its analysis.

Some of these techniques are JavaScript code obfuscation at

two levels, cyphering its communications using the AES5 cypher

in Counter-mode for the transmission of some values (in ad-

dition to using HTTPS), obfuscating the order in which it deploys

the face images on the client’s browser and using 2-level of

cross-domain IFrame nesting to prevent easy JavaScript de-

bugging. Each of these measures was rendered at least partially

useless after the following findings:

1. It was possible to partially revert JavaScript code obfusca-

tion, as a different JavaScript code was found thanks to

caches and using a smaller version name.

2. FunCAPTCHA uses the AES library from Chris Veness (which

can be found at http://www.movable-type.co.uk/scripts/

aes.html). Even though this AES library is protected by a MIT

license and requests a link to the original page and the origi-

nal copyright notice, we were not able to find those in

FunCAPTCHA’s site. Thanks to this finding, it was possible

to easily decipher its communications. In particular, it was

possible to see that the value of the form attribute guess was

being used to send back the answers to FunCAPTCHA after

each drag and drop. Its value was cyphered using AES in

Counter mode, initialized with a value partially time depen-

dent and partially pseudo-random.This value was transmitted

with the cyphered answer to allow for its decyphering at the

FunCAPTCHA server. The key used for cyphering was the

session_token, passed from the FunCAPTCHA server to the

client during the initial set-up of the test.

3. The other three obfuscation measures were all bypassed by

using a real browser to analyse and later bypass the

CAPTCHA. More details about this in Section 6.

The reasoning for some of these obfuscation measures is

not clear. As an example, encoding the answers using AES with

a key already delivered from the server does not increase its

security. Other measures are more of a nuisance to some analy-

sis that a real impediment to any attacker. After contacting

FunCAPTCHA designers, they claim that “obfuscation is asym-

metrical effort” that is “effective at slowing down the progress

of attackers”. We think this is at least controversial, especially

5 Advanced Encryption Standard, or Rijndael, an algorithm and
specification for the encryption of electronic published by US NIST.

Table 2 – Different FunCAPTCHA iteratens of the fake test.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

4 c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

http://www.movable-type.co.uk/scripts/aes.html
http://www.movable-type.co.uk/scripts/aes.html

given browser automation tools and open-source browsers. Our

attack, that can be easily modified to bypass the obfuscation,

is an example of this.

3.2. FunCAPTCHA image repository

Soon we knew enough of the client–server communications

protocol as to download several hundreds of images from

FunCAPTCHA. After downloading 500 images, we calculated the

MD56 and SHA17 Cryptographic hash functions for all the images

downloaded, using them as a simple fingerprint of the file con-

tents. We found 0 coincidences. The fact that there is no real

image repetition was somehow surprising, as many of the faces

look quite similar to the eye.

This leads us to affirm that FunCAPTCHA does render the

3D model each time using different parameters: different angle,

illumination and distance (field of view), so that no two images

are identical at the bit level.This initially looks as a sound imple-

mentation decision for FunCAPTCHA.

3.3. FunCAPTCHA protocol analysis

Even though FunCAPTCHA uses several obfuscation mecha-

nisms, it was possible to relate its client–server communications

to the different events happening at the browser. The com-

munications cyphered with AES were easily deciphered. We

were able to easily analyse the FunCAPTCHA communica-

tions protocol.

This allowed us to know whether a particular challenge was

of the orientation type or of the gender classification type (i.e.

if the value of the parameter challengeURL was 001 or 002 re-

spectively), to know how to request the different components

of a challenge to the server (POST petition at https://

funCAPTCHA.co/fc/gfct/ including the variables token and sid

among other sent before), how to send our answer to the server

(POST to https://funCAPTCHA.co/fc/ca/ sending the variable

guess encoded with AES), and how to know when such answer

is complete (all tests were answered) and correct (“response”:

“answered”, “solved”: true, …).

It is important to note that, when the answer is incorrect,

the server returns:

{“response”:“answered”,“solved”:false,“incorrect

_guess”:4,“score”:3}’

Where incorrect_guess is the ordinal of the answer that was

wrong.This is not a sound idea, as it allows an attacker to know

which tests within a full challenge have been correct, and thus,

to correctly label a subset of the images of the challenge and

gain knowledge for other attacks. This makes it easier for an

attacker create a labelled training set.

Using a proxy, we were able to programmatically intercept

the communications between the client (browser) and the

server. This allowed us to determine what type of challenge

we were facing – rotation or gender classification – and also

how many tests it contained. When we were dealing with a

gender classification task, we were also able to download the

challenge images. Finally, it allowed us to easily know whether

the answers sent to FunCAPTCHA were correct or not accord-

ing to their servers.

4. FunCAPTCHA design flaws

At this point of our research, we could list some decisions of

the FunCAPTCHA design that might be key to its security:

1. It uses only one male and one female 3D model.

2. The model does not show facial expressions nor other dis-

tortions, as the addition of glasses, different haircuts, etc.

3. Even though the served 2D images do not repeat at the bit

level, some of them look similar or very similar to images

shown before.

4. The background is always plain white.

5. The images do not have the same distance from the model.

For example, there are images that include the shoulders,

others show the neck partially, and others show mostly only

the face. The field of view changes from image to image.

A common mistake in novel CAPTCHA designs is that the

problem presented by the CAPTCHA is not as strong as the AI

problem in which it is based (Hindle et al., 2008, Yan and El

Ahmad, 2008a, 2008b, Harry “Dark SEO, 2008b, Hernández-Castro

et al., 2010, Hernandez-Castro et al., 2009b, 2011, 2014). Just by

analysing the raw tests and challenges of a CAPTCHA, it is dif-

ficult to know whether they have been carefully selected or

crafted to be hard against ML or not. We wanted to know if

this might be the case with FunCAPTCHA, and we wanted to

check it in a way that might be extensible to other CAPTCHAs.

Even given the limited number of models and rendering pa-

rameters, it is true that visually, there is no apparent way to

algorithmically classify male from female pictures.The number

of white pixels is more affected by the distance than any other

factor.The histogram of the use of the different grey shades used

does not seem significantly different in both cases. The head

of the male model is larger than the head of the female model,

but given that the distance and field of view changes ran-

domly, a histogram of white pixels or shades of grey will probably

not be relevant for classification. This seems to be the result of

some thought put into the CAPTCHA design and analysis, and

possibly this pushed the evolution of FunCAPTCHA through time.

To check whether this is the case, we employed a simple

classifier with the aim of distinguishing male faces from female

faces. We wanted to check whether the similarities of the

FunCAPTCHA images would allow a classifier to efficiently dis-

tinguish male vs. female images if fed with very simple statistics

from the images.

To test this hypothesis, we downloaded and manually clas-

sified 4320 images from FunCAPTCHA. Note that this was not

strictly necessary, it would have been possible to solve the 1-test

challenges with
1

8
12= %, and use these solved challenges as

a training set. Yet during our initial experiments with

FunCAPTCHA, it was only serving the 3-test and 5-test chal-

lenges, which would have made it quite slow for us to get the

training set size we wanted. Of those 4320 images, only 535

6 Message Digest 5, a widely used hash function producing a 128-
bit hash value.

7 Secure Hash Algorithm 1, a 160-bit cryptographic hash func-
tion designed by the US NSA and published by the US NIST.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

5c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

https://funCAPTCHA.co/fc/gfct/
https://funCAPTCHA.co/fc/gfct/
https://funCAPTCHA.co/fc/ca/

were images of females (not exactly 1 in 8 due to some time-

outs during the downloads). We used these images to extract

some very basic statistical information from them: the per-

centage of white pixels; the histograms of the use of different

grey intensities, in groups of 5, 10, 15 and 25 intervals; and the

size of the image compressed with JPEG8 using different quality

factors (from quality = 0 to 100).

Initially, we decided to use the k-nearest neighbours algo-

rithm. kNN has little parametrization: the number of neighbours

searched, how the weights are calculated regarding the

distances and the algorithm to use for the search. kNN is a good

representation of the idea of classifying by finding similari-

ties between examples. It can also show the previous known

examples that are found to be similar to the one being classi-

fied. This allows checking if the metrics and distances are

relevant for the classification we are trying to achieve.

We trained kNN using all the manually classified images. To

test it, we downloaded an additional 148 challenges, each one

composed of 5 tests (except of a few download errors). We pro-

ceeded with a semi-exhaustive search trying different values

for k and the rest of the parameters. We ordered the results

by their Cohen’s κ statistic values. We chose this statistic as

it measures a classifier against the expected accuracy, which

is more relevant for such an unbalanced training data than just

the accuracy. The best result was typically obtained selecting

only the closest neighbour, reaching an accuracy of 97% and

a κ statistic of 0.84 when tested on new images.

We run our experiment again to show the closest image to

each unknown image.The result of this experiment can be par-

tially seen in Table 3. In this table, the first six rows represent

a test image and the value of its different metrics, and the next

six rows are the training image representing the correspond-

ing class (i.e. the closest image to the test one) and the same

metrics for that training image. The metrics, in order of ap-

pearance from higher to lower, are: the number of white pixels

(% from maximum), histogram of grey-scales used divided in

5 bins, 15 and 25 bins, and the sizes of the image compressed

with JPEG and different quality settings. Table 3 shows two

wrongly and two correctly classified images, and the closest

one to each query.

5. Exploit of FunCAPTCHA design flaws using
machine learning

kNN is possibly the simplest ML algorithm. We wondered

whether other ML algorithms, using the same metrics, would

8 Joint Photographic Experts Group, which created a standard and
method for lossy compression of images.

Table 3 – Some FunCAPTCHA faces, both wrongly and correctly classified, and their associated metrics.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

6 c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

cope better with the problem proposed by FunCAPTCHA. To try

other algorithms, we checked the use of different ML frame-

works that allow the use of several ML classifiers and have some

integration with Python. In particular, we looked at Orange and

Weka (Hall et al., 2014). We decided to use Weka because of

the many more classifiers that Weka has out-of-the-box (79 vs.

11 in Orange).

We compared all compatible Weka classifiers with their

default parameters, testing them using 5-CV. The selection of

the best-performing algorithms was done using the κ metric,

as the classifiers have to be effective with a heavily unbal-

anced training and test set. It is worth to note this unbalanced

training set caused some problems to several classification

algorithms that went along with the they are all males classi-

fication. Other classifiers were much better at coping with it.

The results of these tests are available in Table 4. This table

shows the best and worst 12 performers of the whole set. It

turned out that the multilayer perceptron, IB1/k, KStar, and tree-

based algorithms are the ones that perform best.

6. Machine learning attack to the
FunCAPTCHA

The effectiveness of the ML classifiers for bypassing the dif-

ferent challenges presented by FunCAPTCHA was determined

and hence the strength of the design was assessed.

For that purpose, we created an attack that comprises the

following steps:

1. Start a local proxy for the HTTP and HTTPS protocols. We

use the proxpy Open-Source proxy (available at

https://code.google.com/p/proxpy/).

2. Open a web browser (Mozilla FireFox) and direct it to the

web-page at https://www.funCAPTCHA.com/contact-us/. We

control this browser instance thanks to the Selenium library.

This web-page contains the FunCAPTCHA CAPTCHA at its

bottom. We decided not to use the web-page at https://

www.funCAPTCHA.com/demo/ because of its frequent

changes during our analysis, including a period of over a

Table 4 – Best and worst classifiers for off-line gender classification with FunCAPTCHA.

Algorithm Weka class name Correct (%) κ statistic

A multilayer NN that uses backpropagation to classify instances. All the nodes

in the network are sigmoid.

MultilayerPerceptron 99.19 0.96

K* is an instance-based classifier, that is the class of a test instance is based

upon the class of those training instances similar to it. It uses an entropy-

based distance function (Cleary and Trigg, 1995).

KStar 98.94 0.95

Nearest-neighbour classifier: uses normalized Euclidean distance to find the

training instance closest to the given test instance.

IB1 98.91 0.95

K-nearest neighbours classifier: selects the appropriate value of K based on

cross-validation (Aha and Kibler, 1991).

IBk 98.91 0.95

Logistic Model Trees: classification trees with logistic regression functions at the

leaves (Landwehr et al., 2005).

LMT 97.73 0.89

Multinomial logistic regression model with a ridge estimator (le Cessie and van

Houwelingen, 1992).

Logistic 97.59 0.89

Linear logistic regression, with LogitBoost for fitting the logistic models

(Landwehr et al., 2005).

SimpleLogistic 97.43 0.88

Functional trees: classification trees that could have logistic regression

functions at the inner nodes and/or leaves (Gama, 2004).

FT 97.36 0.88

Stochastic variant of the Pegasos (Primal Estimated sub-GrAdient SOlver for

SVM) (Shalev-Shwartz et al., 2007).

SPegasos 97.43 0.88

John Platt’s sequential minimal optimization algorithm for training a support

vector classifier (Keerthi et al., 2001).

SMO 96.83 0.84

Forest of random trees (Breiman, 2001). RandomForest 96.74 0.83

Class is binarized and one regression model is built for each class value (Frank

et al., 1998).

ClassificationViaRegression 96.41 0.83

. . .

Voted perceptron algorithm by Freund and Schapire. VotedPerceptron 88.63 0.13

Normalized Gaussian radial basis function network: uses the k-means

clustering algorithm to provide the basis functions and learns a logistic

regression on top of that.

RBFNetwork 88.17 0.13

Locally weighted learning: an instance-based algorithm to assign instance

weights. Uses naive Bayes for classification.

LWL 87.75 0.03

Meta-classifier that uses a clusterer for classification, like simple k-Means. ClassificationViaClustering 55.56 0.01

Discriminative Multinomial Naive Bayes classifier. DMNBtext 87.71 0.01

Bayesian Logistic Regression for both Gaussian and Laplace Priors. BayesianLogisticRegression . 0

Uses some base classifiers that are “graded”. Grading 87.64 0

MultiBoosting can be viewed as combining AdaBoost with wagging. MultiBoostAB 87.64 0

Selects the best ZeroR classifier (can select others, but this is the default). MultiScheme 87.64 0

Implements a single conjunctive (“and”) rule learner. ConjunctiveRule 87.64 0

Class for building and using a 0-R classifier. Predicts the mode. ZeroR 87.64 0

Decision stump, classifies based on entropy. DecisionStump 87.64 0

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

7c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

https://code.google.com/p/proxpy/
https://www.funCAPTCHA.com/contact-us/
https://www.funCAPTCHA.com/demo/
https://www.funCAPTCHA.com/demo/

month during which it did not provide any challenge

demonstration.

3. We wait for the proxy to capture the value of the challenge_url

variable that indicates if we are facing an image orienta-

tion challenge or a gender classification one.

(a) If we are served an image orientation challenge

(challenge_url = 001), we restart the process, unless we

have done it 2 times already, in which case we wait a

random time in between 25 and 115 s.

(b) If we are served a gender classification challenge

(challenge_url = 002), we read how many images it is com-

posed of by looking at the contents of the array variable

image_urls_str in the page content.

4. We wait till all images are downloaded by the browser.

5. A classifier is run over the sets of 8 images (1, 3 or 5 sets or

tests). We use the Weka ML framework (Hall et al., 2014) and

the previously trained models in Section 5. We check that for

each set, one and only one image is classified as a woman.

(a) If the classifier fails to do so, not classifying one and

exactly one as a woman each 8 images, then the chal-

lenge is declared failed. This case is counted both as a

classification failure and an attack failure. A log is saved,

and the process starts again. Note that it is possible to

take more intelligent options here in order to increase

the success rate of the attack.

(b) If the classifier classifies one and only one image of each

set as a woman, we proceed to the next step in order

to send the answers to the server.

6. Send the answers to each classification test of the challenge:

(a) We locate the solution face on the screen using the

SWIFT algorithm as implemented in the OpenCV library.

(b) We drag and drop the face to the centre of the chal-

lenge using the pyautogui library (at GitHub (https://

github.com/asweigart/pyautogui).

(c) We wait for the answer from the FunCAPTCHA server.

It could be:

Fig. 1 – Flow chart of the attack.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

8 c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

https://github.com/asweigart/pyautogui
https://github.com/asweigart/pyautogui

• “not solved”: we proceed to send the next answer.

• “solved:false”: we log the challenge as failed (both for

the attack and the classifier).

• “solved:true”: we log the challenge as correct.

Fig. 1 shows a summarized flow chart of this attack. All steps

of the attack had a set time-out that, when reached, would

declare that challenge as failed and restart it.

7. Attack results

We ran our attack for the classifiers that performed best on our

off-line classification test, and also with the original kNN imple-

mentation.The behaviour of FunCAPTCHA adapted to the success

rate of our attack. In those cases when the attack kept solving

correctly the gender classification challenges composed of only

1 test, FunCAPTCHA almost never served us the more difficult

3-test or 5-test challenges. For this reason, we ran each experi-

ment in two versions for each one of ML algorithms used:

• the regular one already described (basic), in which we try

to solve all gender classification tests presented to us by

FunCAPTCHA, and

• the difficult one, in which we randomly answered all 1-test

challenges thus failing most of them, in order to receive more

3- and 5-test challenges.

With the many restrictions on speed as not to overload the

servers, our lengthiest experiments consisted of various series

of around 255 full challenges for each one of our experi-

ments. The 255 challenges were seldom reached, as we

frequently run into time-outs, errors downloading informa-

tion, or with the on-screen iteration.

Table 5 presents the success rate of the attacks to

FunCAPTCHA by different classification algorithms. This table

is relevant to know the success rate of our attack in the current

FunCAPTCHA implementation. In this table, the first column

is the Weka classifier name, the second column shows the clas-

sifier accuracy during the attack, and the third column shows

the success rate of the attack itself.

The classifier accuracy during the attack is measured per

full CAPTCHA challenge, independently of if they are 1-, 3- or

5-test challenges.

FunCAPTCHA is typically going to serve to us more 3- or

5-test challenges the more 1-test challenges we fail. Then a

slightly worse classification rate in 1-test challenges triggers

a feedback mechanism that can have a major effect on the clas-

sification accuracy rate, as it is here measured by full CAPTCHA

challenge.

The second half of Table 5 answers the question “what would

be the success rate of our attack if FunCAPTCHA used only the

harder 3-test or 5-test challenges?”. It presents the success rate

of the attacks to FunCAPTCHA by different classification al-

gorithms.We can see that MultilayerPerceptron and IBk are among

the top overall performers. We can also see that the differ-

ence in success rate between classifier and attack is higher than

in the first half of the table, as each challenge now involves

more communications with the server and thus is more prone

to errors.

Fig. 2 shows a combined result of both attacks, summing

the results obtained during both the basic and difficult set-

tings in order to obtain more 3- and 5-test challenges. The bars

indicate the success in a scale from 0% to 100% for each subtype.

Each bar is divided in two: the classifier success identifying the

correct one and only one woman in each of the n groups of 8

images for the whole challenge, and the attack success for the

whole n-test challenge. Along with each bar, we show the con-

fidence interval, estimated for a binomial distribution using

the Wald method. The multi-layer perceptron can solve 94.53%

of the 1-test challenges, 91.23% of the 3-test challenges and

82.05% of the full 5-test challenges (68.09% attack success).This

Table 5 – Attack results by classifier, for the basic and difficult attack. This table shows the success rate of our attack
against the current FunCAPTCHA implementation (basic attack) and answers the question of how successful would our
attack be if FunCAPTCHA were to use only their harder challenges (difficult attack).

Basic attack

Classifier % Classifier % Attack Number of n-test challenges

1 3 5

IB1 94.02 ± 0.02 90.42 ± 0.03 448 58 0

KStar 93.15 ± 0.03 89.19 ± 0.04 252 1 0

IBk 92.61 ± 0.03 88.15 ± 0.04 264 98 0

MultilayerPerceptron 94.68 ± 0.03 85.27 ± 0.04 266 6 1

Logistic 77.3 ± 0.05 76.05 ± 0.05 248 51 9

FT 80.59 ± 0.05 72.9 ± 0.05 251 2 0

kNN 55.65 ± 0.06 54.07 ± 0.06 70 69 107

Difficult attack

MultilayerPerceptron 88.35 ± 0.03 82.69 ± 0.04 110 46

IBk 83.07 ± 0.04 72.97 ± 0.05 98 48

KStar 75.83 ± 0.05 62.43 ± 0.05 116 47

IB1 53.63 ± 0.04 29.35 ± 0.04 72 255

FT 38.70 ± 0.05 28.98 ± 0.05 125 48

kNN 36.80 ± 0.05 23.71 ± 0.04 72 119

Logistic 24.18 ± 0.03 18.20 ± 0.03 236 132

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

9c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

means that even if FunCAPTCHA designers decided now to use

only their most secure 5-test challenges, this attack would break

their CAPTCHA 68.09% of the time.

8. Proposed improvements

In this section we will discuss some possible improvements

to the FunCAPTCHA both in general and against this particu-

lar attack.

8.1. Answer space

In general, FunCAPTCHA should never serve 1-test or even 3-test

challenges, only challenges composed of 5-tests. 5-tests chal-

lenges are the only viable option to make it resilient to brute

force attack, also preventing the attacker from easily obtain-

ing automatically labelled images using FunCAPTCHA as an

oracle.

As our attack can break the 1-test challenge 91% of the time,

if we want to reach a success rate lower than 0.4% (Zhu et al.,

2010), we would need to repeat this test log0.91(0.004) = 58.54

times.

If FunCAPTCHA authors add more possible answers, as our

best classifier is able to correctly differentiate the gender 99.19%

of the time, that is, correctly solve a 8-image test 99.198
= 93.7%

of the time (actually it is 94.5%, but here we are extrapolating

using our off-line results), we would need to have

log0.9919(0.004) = 678 faces among which to pick one female.That

seems a little bit too much from a usability point of view.

Fig. 2 – Success rate by classifier and challenge type, for both the basic and difficult attack. Each column corresponds to one

classifier. There are three bars per classifier, one per type of challenge (1, 3 and 5-tests). These bars are subdivided each in

classification accuracy (for 8-images tests) and attack success rate (lower, as it includes any additional problem during the

attack). They show the corresponding confidence interval at 95%. The table below shows the same information numerically.

The numbers are the classification success for the whole (1/3/5) 8-images tests, and the numbers between parenthesis are

the attack success rate for the same challenges.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

10 c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

8.2. ML analysis

There are some ways to try to prevent the ML attacks that we

have presented here. An obvious one would be to use a much

larger number of models. This would allow for a bigger chance

of collision of the metrics used. The models themselves can be

studied using the commented ML algorithms to discard those

that are too easily classified automatically.

Model rendering parameters could also be wider. It might

be possible that there exists a sweet spot in the rendering pa-

rameters (angle, light, etc.) in which ML classification does not

perform well while human classification still performs well due

to a number of reasons (clues about hair, etc.).

It is also possible to include measures to distort or homog-

enize the result of basic statistics from the images (i.e. histogram

of grey scales). The aim would be to render the most common

and/or trivial statistics completely useless for ML classification.

8.3. Resilience

Nothing prevents the authors of FunCAPTCHA from having new

models in their reserve to make A/B tests, either in general or

against a particular client This strategy would allow not only

to automatically detect attacks but to reply to them in real time.

If a large-enough number of models is present, this could

mean that in reality the CAPTCHA would be able to detect and

adapt to attack scenarios.

By everything mentioned above, it is unclear to us at this

point whether these measures would render FunCAPTCHA

secure against this kind of attack. After a new redesign, a full

new security analysis should be done. Even if the redesign can

cope with this attack and variants of it, it is certainly unclear

whether this subset of the gender classification problem would

be secure against the recent advances in image classifica-

tion, more precisely Deep Convolutional Neural Networks

(Ciregan et al., 2012; Krizhevsky et al., 2012; LeCun et al., 1998).

9. Conclusions

In this paper, we analyse the security of a production CAPTCHA

called FunCAPTCHA. It is the first commercial proposal to our

knowledge to implement the idea of gender classification as

the basic way to tell computers and humans apart. We analyse

its current implementation as of July to October 2015. The

authors of FunCAPTCHA claim it to be broadly used, never

broken, and with a high security level.

We analyse its security and find possible flaws in its design.

These weaknesses give a hint that the problem posed by the

CAPTCHA designers might be a small subset of the general

problem, not carefully chosen, and not representative.

To analyse whether this is the case, we use a general method

based on extracting simple and generic metrics and analyse

then using ML algorithms to try to find correlations between

the challenges and their correct answers.

We see that the particular problem proposed by

FunCAPTCHA can be solved. We confirm this through an attack

that can bypass FunCAPTCHA 90% of times. Even if the authors

of FunCAPTCHA would only use their most difficult 5-test chal-

lenges, this attack would be able to pass it at least 68% of the

time. Our attack does not solve the general gender classifica-

tion problem but exploits design weaknesses.

This is an unexpected result given the apparent complexity

of the base AI problem (at least when using the most demand-

ing examples) and the simple attack methods used.We thus find

the security of their CAPTCHA to be unexpectedly low.We present

some possible ways to partially solve these design flaws.

The security analysis we present is very generic and can be

applied to other CAPTCHA designs with minor variations. It con-

stitutes a low-cost way to check for flaws that would allow side-

channel attacks against them. We plan on using similar security

analysis techniques and ideas to test the security of other HIPs.

Acknowledgements

The work is supported by the Universidad de Alcalá project

2016/00351/001, and MINECO project Epheme-CH

TIN2014-56494-C4-4-P.

The first author wants to thank, in no particular order, Julio

H.O., Declan J. H.C., Julio C. H.C., Женя C., Carmen C.V. and Лена

C. for their contributions and support.

R E F E R E N C E S

Aha D, Kibler D. Instance-based learning algorithms. Mach Learn
1991;6:37–66.

Alsuhibany SA. Optimising CAPTCHA generation. In Availability,
Reliability and Security (ARES), 2011 Sixth International
Conference on, pages 740–745; 2011. doi:10.1109/
ARES.2011.114.

Anderson R. Security in open versus closed systems – the dance
of Boltzmann, Coase and Moore. at Open Source Software
Economics, 2002.

Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
Bursztein E, Martin M, Mitchell J. Text-based CAPTCHA strengths

and weaknesses. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages
125–138, New York, NY, USA; 2011. ACM. ISBN 978-1-4503-
0948-6. http://doi.acm.org/10.1145/2046707.2046724.

Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural
networks for image classification. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages
3642–3649. IEEE, 2012.

Cleary JG, Trigg LE. K*: an instance-based learner using an
entropic distance measure. In 12th International Conference
on Machine Learning, pages 108–114, 1995.

D’Souza D, Polina PC, Yampolskiy RV. Avatar CAPTCHA: telling
computers and humans apart via face classification. In
Electro/Information Technology (EIT), 2012 IEEE International
Conference on, pages 1–6, 2012. doi:10.1109/EIT.2012.6220734.

Elson J, Douceur JR, Howell J, Saul J. Asirra: a CAPTCHA that
exploits interest-aligned manual image categorization. In CCS
’07: Proceedings of the 14th ACM conference on Computer
and communications security, pages 366–374, New York, NY,
USA; 2007. ISBN 9781595937032. http://dx.doi.org/10.1145/
1315245.1315291.

Fidas CA, Voyiatzis AG, Avouris NM. On the necessity of user-
friendly CAPTCHA. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, pages
2623–2626, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0228-9. http://doi.acm.org/10.1145/1978942.1979325.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

11c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0010
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0010
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0015
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0015
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0015
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0015
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0020
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0020
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0020
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0025
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0030
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0030
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0030
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0030
http://doi.acm.org/10.1145/2046707.2046724
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0035
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0035
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0035
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0035
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0040
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0040
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0040
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0045
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0045
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0045
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0045
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0050
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0050
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0050
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0050
http://dx.doi.org/10.1145/1315245.1315291
http://dx.doi.org/10.1145/1315245.1315291
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0055
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0055
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0055
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0055
http://doi.acm.org/10.1145/1978942.1979325

Frank E, Wang Y, Inglis S, Holmes G, Witten IH. Using model trees
for classification. Mach Learn 1998;32(1):63–76.

Gama J. Functional trees. Mach Learn 2004;55(3):219–50.
Golle P. Machine learning attacks against the Asirra CAPTCHA.

In Proceedings of the 5th Symposium on Usable Privacy and
Security, SOUPS 2009, Mountain View, California, USA, July
15–17, 2009, ACM International Conference Proceeding Series.
ACM, 2009. ISBN 978-1-60558-736-3.

Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet VD. Multi-digit
number recognition from street view imagery using deep
convolutional neural networks. CoRR, abs/1312.6082; 2013.
Available from: http://arxiv.org/abs/1312.6082.

Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572; 2014.

Gossweiler R, Kamvar M, Baluja S. What’s up CAPTCHA?: a
CAPTCHA based on image orientation. In Proceedings of the
18th International Conference on World Wide Web, WWW ’09,
pages 841–850, New York, NY, USA; 2009. ACM. ISBN 978-1-
60558-487-4. http://doi.acm.org/10.1145/1526709.1526822.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH.
The Weka data mining software: an update. SIGKDD Explor.
Newsl, 2014.

Harry “Dark SEO”. Letter derrotation; 2008a. Available from:
https://web.archive.org/web/20080611182905/http://www
.darkseoprogramming.com/2008/04/05/letter-derotation/.

Harry “Dark SEO”. Phpbb3 CAPTCHA is super easy. 2008b.
Available from: https://web.archive.org/web/20080701082455/
http://www.darkseoprogramming.com/2008/05/12/phpbb3-
captcha-is-super-easy/.

Hernández-Castro CJ, Ribagorda Garnacho A, Saez Y. Side-
channel attack on the HumanAuth CAPTCHA. In Proceedings
of the International Conference on Security and Cryptography
(Secrypt), 2010.

Hernández-Castro CJ, R-Moreno MD, Barrero DF. Using jpeg to
measure image continuity and break Capy and other puzzle
CAPTCHAs. IEEE Internet Comput 2015;19(6):46–53.
doi:10.1109/MIC.2015.127. ISSN 1089-7801.

Hernandez-Castro CJ, Ribagorda A. Pitfalls in CAPTCHA design
and implementation: the math CAPTCHA, a case study.
Computers & Secur 2009a;doi:10.1016/j.cose.2009.06.006. ISSN
01674048.

Hernandez-Castro CJ, Ribagorda A, Saez Y. Side-channel attack
on labeling CAPTCHAs; 2009b. Available from: http://arxiv.org/
abs/0908.1185.

Hernandez-Castro CJ, Ribagorda A, Hernandez-Castro JC. On the
strength of egglue and other logic CAPTCHAs. In Proceedings
of the International Conference on Security and
Cryptography, pages 157–167; 2011.

Hernandez-Castro CJ, Barrero DF, R-Moreno MD. A machine
learning attack against the civil rights CAPTCHA. In
Proceedings of the 8th International Symposium on
Intelligent Distributed Computing – IDC2014, 2014.

Hindle A, Godfrey MW, Holt RC. Reverse engineering CAPTCHAs,
2008.

Hoepman J-H, Jacobs B. Increased security through open source.
Commun ACM 2007;50(1):79–83. doi:10.1145/1188913.1188921.
ISSN 0001-0782.

Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK.
Improvements to Platt’s SMO algorithm for SVM classifier
design. Neural Comput 2001;13(3):637–49.

Kim J, Kim S, Yang J, Ryu J-H, Wohn K. FaceCAPTCHA: a CAPTCHA
that identifies the gender of face images unrecognized by
existing gender classifiers. Multimed Tools Appl 2014;72(2):
1215–37. doi:10.1007/s11042-013-1422-z. ISSN 1380-7501.

Kim J-W, Chung W-K, Cho H-G. A new image-based CAPTCHA
using the orientation of the polygonally cropped sub-images.
Visual Comput 2010;26(6–8):1135–43. doi:10.1007/s00371-010
-0469-3. ISSN 0178-2789.

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification
with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc.; 2012.
Available from: http://papers.nips.cc/paper/4824
-imagenet-classification-with-deep-convolutional
-neural-networks.pdf.

le Cessie S, van Houwelingen JC. Ridge estimators in logistic
regression. Appl Stat 1992;41(1):191–201.

Landwehr N, Hall M, Frank E. Logistic model trees. Mach Learn
2005;95(1–2):161–205.

LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning
applied to document recognition. P IEEE 1998;86(11):2278–324.
doi:10.1109/5.726791. ISSN 0018-9219.

Mohamed M, Sachdeva N, Georgescu M, Gao S, Saxena N,
Zhang C, et al. Three-way dissection of a game-CAPTCHA:
automated attacks, relay attacks, and usability. CoRR, abs/
1310.1540, 2013.

Naor M. Verification of a human in the loop or identification via
the Turing test; 1996. Available from: http://www.wisdom
.weizmann.ac.il/~naor/PAPERS/human.ps.

Osadchy M, Hernandez-Castro J, Gibson S, Dunkelman O, Pérez-
Cabo D. ″No bot expects the DeepCAPTCHA! Introducing
Immutable Adversarial Examples with Applications to
CAPTCHA″. IEEE Transactions on Information Forensics and
Security, in print. 2017

Santamarta R. Breaking Gmail’s audio CAPTCHA; 2008. Available
from: http://blog.wintercore.com/?p=11.

Shalev-Shwartz S, Singer Y, Srebro N. Pegasos: primal estimated
sub-gradient solver for SVM. In 24th International Conference
on Machine Learning, pages 807–814, 2007.

Sivakorn S, Polakis I, Keromytis AD. I am robot: (deep) learning to
break semantic image CAPTCHAs. In Proceedings of the 1st
IEEE European Symposium on Security and Privacy, EuroSP
’16, 2016.

Swire P. A model for when disclosure helps security: what is
different about computer and network security? J Telecomm
High Tech Law 2004;2.

Tam J, Simsa J, Hyde S, von Ahn L. Breaking audio CAPTCHAs.
Advances in Neural Information Processing Systems (NIPS),
2008.

von Ahn L, Blum M, Hopper NJ, Langford J. CAPTCHA:
Using hard AI problems for security. In Proceedings of
Eurocrypt, volume 2656, pages 294–311; 2003. Available
from: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.13.3335.

Vikram S, Fan Y, Gu G. SEMAGE: a new image-based two-factor
CAPTCHA. In Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, pages 237–246,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0672-0.
http://doi.acm.org/10.1145/2076732.2076766.

Warner O. KittenAuth; 2009. Available from: http://www.thepcspy
.com/kittenauth.

Wieser W. CAPTCHA recognition via averaging; 2007. Available
from: http://www.triplespark.net/misc/captcha/.

Wilkins J. Strong CAPTCHA guidelines; 2010. Available from:
http://bitland.net/captcha.pdf.

Yan J, El Ahmad AS. Breaking visual CAPTCHAs with naïve
pattern recognition algorithms, 2008a.

Yan J, El Ahmad AS. A low-cost attack on a Microsoft CAPTCHA,
2008b.

Zhu BB, Yan J, Li Q, Yang C, Liu J, Xu N, et al. Attacks and design
of image recognition CAPTCHAs. In Proceedings of the 17th
ACM conference on computer and communications security,
CCS ’10, pages 187–200, New York, NY, USA; 2010. ACM. ISBN
978-1-4503-0245-6. http://doi.acm.org/10.1145/
1866307.1866329.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

12 c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0060
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0060
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0065
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0070
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0070
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0070
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0070
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0070
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0075
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0075
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0075
http://arxiv.org/abs/1312.6082
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0080
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0080
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0085
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0085
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0085
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0085
http://doi.acm.org/10.1145/1526709.1526822
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0090
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0090
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0090
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0095
https://web.archive.org/web/20080611182905/http://www.darkseoprogramming.com/2008/04/05/letter-derotation/
https://web.archive.org/web/20080611182905/http://www.darkseoprogramming.com/2008/04/05/letter-derotation/
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0100
https://web.archive.org/web/20080701082455/http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-is-super-easy/
https://web.archive.org/web/20080701082455/http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-is-super-easy/
https://web.archive.org/web/20080701082455/http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-is-super-easy/
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0105
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0105
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0105
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0105
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0110
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0110
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0110
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0110
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0115
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0115
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0115
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0115
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0120
http://arxiv.org/abs/0908.1185
http://arxiv.org/abs/0908.1185
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0125
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0125
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0125
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0125
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0130
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0130
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0130
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0130
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0135
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0135
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0140
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0140
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0140
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0145
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0145
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0145
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0150
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0150
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0150
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0150
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0155
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0155
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0155
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0155
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0160
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0160
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0160
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0160
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0160
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0165
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0165
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0170
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0170
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0175
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0175
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0175
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0180
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0180
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0180
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0180
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0185
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr9000
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr9000
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr9000
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr9000
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr9000
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0190
http://blog.wintercore.com/?p=11
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0195
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0195
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0195
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0200
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0200
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0200
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0200
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0205
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0205
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0205
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0210
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0210
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0210
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0215
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0215
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0215
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3335
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3335
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0220
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0220
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0220
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0220
http://doi.acm.org/10.1145/2076732.2076766
http://www.thepcspy.com/kittenauth
http://www.thepcspy.com/kittenauth
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0230
http://www.triplespark.net/misc/captcha/
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0235
http://bitland.net/captcha.pdf
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0240
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0240
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0245
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0245
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0250
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0250
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0250
http://refhub.elsevier.com/S0167-4048(17)30112-8/sr0250
http://doi.acm.org/10.1145/1866307.1866329
http://doi.acm.org/10.1145/1866307.1866329

David F. Barrero is an Associate Professor at the Escuela Politécnica
Superior of the Alcalá University in Madrid, Spain. His research in-
terests involve Evolutionary Computation and Data Analysis applied
to the empirical study of algorithms.

María Dolores Rodríguez Moreno is an Associate Professor at the
Escuela Politécnica Superior of the Alcalá University in Madrid, Spain.
She collaborates with the Planning and Scheduling Team group in
the STC-CNR of Rome. She contributes to the study of heuristics
for goal recognition and probabilistic planning with researchers at
NASA Ames Research Center. In collaboration with the Jet Propul-
sion Laboratory (JPL) she studies cognitive control architectures and

path-planning algorithms than can be use to plan the routes for
the Curiosity and MER-Opportunity rovers.

Stuart Gibson is a lecturer in the School of Physical Sciences, Uni-
versity of Kent, UK. HE is the co-inventor of the EFIT-V facial
composite system which is currently used by the majority of UK
police constabularies and in numerous other countries.

Carlos Javier Hernández Castro is a PhD candidate at the Alcalá
University in Madrid, Spain. His research interests include IT Se-
curity, machine learning, and their confluence: CAPTCHAs/HIPs. He
is also interested in ML and Security applied to Games and planning.

ARTICLE IN PRESS

Please cite this article in press as: Carlos Javier Hernández-Castro, María D. R-Moreno, David F. Barrero, Stuart Gibson, Using machine learning to identify common flaws

in CAPTCHA design: FunCAPTCHA case analysis, computers & security (2017), doi: 10.1016/j.cose.2017.05.005

13c om pu t e r s & s e cu r i t y ■■ (2 0 1 7) ■■ �■■

	 Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis
	 Introduction
	 FunCAPTCHA
	 FunCAPTCHA design analysis
	 FunCAPTCHA initial analysis
	 FunCAPTCHA image repository
	 FunCAPTCHA protocol analysis

	 FunCAPTCHA design flaws
	 Exploit of FunCAPTCHA design flaws using machine learning
	 Machine learning attack to the FunCAPTCHA
	 Attack results
	 Proposed improvements
	 Answer space
	 ML analysis
	 Resilience

	 Conclusions
	 Acknowledgements
	 References

