105,612 research outputs found

    Reverse Derivative Categories

    Get PDF
    The reverse derivative is a fundamental operation in machine learning and automatic differentiation. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by Cartesian differential categories for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts.Comment: Extended version of paper to appear at CSL 202

    Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits

    Get PDF
    We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for machine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can be used to learn the parameters of models which are expressed as morphisms of such categories. Our motivating example is boolean circuits: we show how our algorithm can be applied to such circuits by using the theory of reverse differential categories. Note our methodology allows us to learn the parameters of boolean circuits directly, in contrast to existing binarised neural network approaches. Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine learning datasets.Comment: In Proceedings ACT 2020, arXiv:2101.0788

    An axiomatic approach to differentiation of polynomial circuits

    Get PDF
    Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular model classes: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose polynomial circuits as a suitable machine learning model class. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values

    An axiomatic approach to differentiation of polynomial circuits

    Get PDF
    Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular model classes: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose polynomial circuits as a suitable machine learning model class. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values

    Categorical Foundations of Gradient-Based Learning

    Get PDF
    We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses, parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy, shedding new light on their similarities and differences. Our approach to gradient-based learning has examples generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our framework with an implementation in Python.Comment: 14 page

    CHAD for Expressive Total Languages

    Full text link
    We show how to apply forward and reverse mode Combinatory Homomorphic Automatic Differentiation (CHAD) to total functional programming languages with expressive type systems featuring the combination of - tuple types; - sum types; - inductive types; - coinductive types; - function types. We achieve this by analysing the categorical semantics of such types in ÎŁ\Sigma-types (Grothendieck constructions) of suitable categories. Using a novel categorical logical relations technique for such expressive type systems, we give a correctness proof of CHAD in this setting by showing that it computes the usual mathematical derivative of the function that the original program implements. The result is a principled, purely functional and provably correct method for performing forward and reverse mode automatic differentiation (AD) on total functional programming languages with expressive type systems.Comment: Under review at MSC

    Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior

    Get PDF
    Despite the availability of very detailed data on financial market, agent-based modeling is hindered by the lack of information about real trader behavior. This makes it impossible to validate agent-based models, which are thus reverse-engineering attempts. This work is a contribution to the building of a set of stylized facts about the traders themselves. Using the client database of Swissquote Bank SA, the largest on-line Swiss broker, we find empirical relationships between turnover, account values and the number of assets in which a trader is invested. A theory based on simple mean-variance portfolio optimization that crucially includes variable transaction costs is able to reproduce faithfully the observed behaviors. We finally argue that our results bring into light the collective ability of a population to construct a mean-variance portfolio that takes into account the structure of transaction costsComment: 26 pages, 9 figures, Fig. 8 fixe
    • …
    corecore