9,004 research outputs found

    PuLSE-I: Deriving instances from a product line infrastructure

    Get PDF
    Reusing assets during application engineering promises to improve the efficiency of systems development. However, in order to benefit from reusable assets, application engineering processes must incorporate when and how to use the reusable assets during single system development. However, when and how to use a reusable asset depends on what types of reusable assets have been created.Product line engineering approaches produce a reusable infrastructure for a set of products. In this paper, we present the application engineering process associated with the PuLSE product line software engineering method - PuLSE-I. PuLSE-I details how single systems can be built efficiently from the reusable product line infrastructure built during the other PuLSE activities

    SOA and BPM, a Partnership for Successful Organizations

    Get PDF
    In order to stay effective and competitive, companies have to be able to adapt themselves to permanent market requirements, to improve constantly their business process, to act as flexible and proactive economic agents. To achieve these goals, the IT systems within the organization have to be standardized and integrated, in order to provide fast and reliable data access to users both inside and outside the company. A proper system architecture for integrating company’s IT assets is a service oriented one. A service-oriented architecture (SOA) is an IT architectural style that allows integration of the company’s business as linked, repeatable tasks called services. A subject closely related to SOA is Business Process Management (BPM), an approach that aims to improve business processes. The paper also presents some aspects of this topic, as well as the relationship between SOA and BPM. They complement each other and help companies improve their business performance.Information Systems, SOA, Web Services, BPM

    Leading the Practice in Layered Enterprise Architecture

    Get PDF
    While Enterprise Architecture (EA) causes organisations to think, work and model in domains, there are inadequacies in such a waterfall approach. By restating domains as layers, i.e. LEAD (Layered Enterprise Architecture Design/ Development) based on the LEAD Enterprise Ontology, EA performs better in enterprise layers and levels of abstraction. Through LEAD, the domain relationships are also better captured, hence leading the advancement of agile EA

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Software Product Line

    Get PDF
    The Software Product Line (SPL) is an emerging methodology for developing software products. Currently, there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques have been developed to assist engineers in dealing with the complications of variability management. The principal goal of modelling variability techniques is to configure a successful software product by managing variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new techniques for modelling and new methods for SPL analysis

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Toward Understanding Enterprise Architecture Management’s Role in Strategic Change: Antecedents, Processes, Outcomes

    Get PDF
    As organizations face accelerated economic dynamics, it isincreasingly important to improve the capability of reacting agileto changes in the marketplace. This requires implementing andadapting internal structures in a timely manner and ensuringbusiness-IT coordination throughout the process. Enterprisearchitecture management (EAM) is frequently proposed as a meanto arrive at organizational forms that allow for timelyreconfiguration and to guide strategy-aligned change. Thisexplorative study seeks to contribute to an overall understandingof EAM’s application in strategic change processes. It is based onan in-depth content analysis of existing research in the field.Specifically, it identifies common EAM practices that have beensuggested for application throughout the planning andimplementation of strategic change. Furthermore, it revealsantecedents and outcomes of this application. The articlediscusses these findings in detail and summarizes the results in apreliminary process model of applying EAM for agile strategicchange
    corecore