1,912 research outputs found

    Retrieval of video scenes by structural descriptors

    Get PDF
    Structural information, on the form of shot patterns and timing, plays an important role in scripted video, being consistently used by filmmakers as a way to convey meaning and significance into their work. For this reason, a video retrieval system can benefit from exploiting this kind of information. In this paper we propose a novel method for the retrieval of video scenes according to their structural similarity, based on graph-theoretical measures and vector quantization techniques. We show the results of our method in some scene retrieval experiments on a data set of 802 movie scenes, extracted from a set of 180 mainstream movies

    Automated generation of movie tributes

    Get PDF
    O objetivo desta tese é gerar um tributo a um filme sob a forma de videoclip, considerando como entrada um filme e um segmento musical coerente. Um tributo é considerado um vídeo que contém os clips mais significativos de um filme, reproduzidos sequencialmente, enquanto uma música toca. Nesta proposta, os clips a constar do tributo final são o resultado da sumarização das legendas do filme com um algoritmo de sumarização genérico. É importante que o artefacto seja coerente e fluido, pelo que há a necessidade de haver um equilíbrio entre a seleção de conteúdo importante e a seleção de conteúdo que esteja em harmonia com a música. Para tal, os clips são filtrados de forma a garantir que apenas aqueles que contêm a mesma emoção da música aparecem no vídeo final. Tal é feito através da extração de vetores de características áudio relacionadas com emoções das cenas às quais os clips pertencem e da música, e, de seguida, da sua comparação por meio do cálculo de uma medida de distância. Por fim, os clips filtrados preenchem a música cronologicamente. Os resultados foram positivos: em média, os tributos produzidos obtiveram 7 pontos, numa escala de 0 a 10, em critérios como seleção de conteúdo e coerência emocional, fruto de avaliação humana.This thesis’ purpose is to generate a movie tribute in the form of a videoclip for a given movie and music. A tribute is considered to be a video containing meaningful clips from the movie playing along with a cohesive music piece. In this work, we collect the clips by summarizing the movie subtitles with a generic summarization algorithm. It is important that the artifact is coherent and fluid, hence there is the need to balance between the selection of important content and the selection of content that is in harmony with the music. To achieve so, clips are filtered so as to ensure that only those that contain the same emotion as the music are chosen to appear in the final video. This is made by extracting vectors of emotion-related audio features from the scenes they belong to and from the music, and then comparing them with a distance measure. Finally, filtered clips fill the music length in a chronological order. Results were positive: on average, the produced tributes obtained scores of 7, on a scale from 0 to 10, on content selection, and emotional coherence criteria, from human evaluation

    Identifying Video Content Consistency by Vector Quantization

    Get PDF
    Many post-production videos such as movies and cartoons present well structured story-lines organized in separated visual scenes. Accurate grouping of shots into these logical segments could lead to semantic indexing of scenes for interactive multimedia retrieval and video summaries. In this paper we introduce a novel shot-based analysis approach which aims to cluster together shots with similar visual content. We demonstrate how the use of codebooks of visual codewords (generated by a vector quantization process) represents an effective method to identify clusters containing shots with similar long-term consistency of chromatic compositions. The clusters, obtained by a single-link clustering algorithm, allow the further use of the well-known scene transition graph framework for logical story unit detection and pattern investigation

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    이야기형 설명문을 활용한 대규모 비디오 학습 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2021. 2. 김건희.Extensive contributions are being made to develop intelligent agents that can recognize and communicate with the world. In this sense, various video-language tasks have drawn a lot of interests in computer vision research, including image/video captioning, video retrieval and video question answering. It can be applied to high-level computer vision tasks and various future industries such as search engines, social marketing, automated driving, and robotics support through QA / dialog generation for the surrounding environment. However, despite these developments, video-language learning suffers from a higher degree of complexity. This thesis investigates methodologies for learning the relationship between videos and free-formed languages, including explanations, conversations, and question-and-answers, so that the machine can easily adapt to target downstream tasks. First, we introduce several methods to learn the relationship between long sentences and videos efficiently. We introduce the approaches for supervising human attention transfer for the video attention model, which shows the video attention mechanism can benefit from explicit human gaze labels. Next, we introduce the end-to-end semantic attention method, which further reduces the visual attention algorithm's complexity by using the representative visual concept word detected by the attention-based detector. As a follow-up study on previous methods, we introduce a JSFusion (Joint Sequence Fusion) method that enables efficient video search and QA by enabling many-to-many matching of attention model. Next, we introduce the CiSIN(Character in Story Identification Network), which uses Attention to increase the performance of character grounding and character re-identification in the movie. Finally, we introduce Transitional Adaptation, which promotes the caption generation models to generates coherent narratives for long videos. In summary, this thesis presents a novel approaches for automatic video description generation/retrieval and shows the benefits of extracting linguistic knowledge for object and motion in the video as well as the advantage of multimodal audio-visual learning for understanding videos. Since the proposed methods are easily adapted to any video-language tasks, it is expected to be applied to the latest models, bringing additional performance improvements. Moving forward, we plan to design an unsupervised video learning framework that can solve many challenges in the industry by integrating an unlimited amount of video, audio, and free-formed language data from the web.시각-언어 학습은 이미지/비디오 캡션(Image/Video captioning), 시각 질의응답(Visual Question and Answering), 비디오 검색(Video Retrieval), 장면 이해(scene understanding), 이벤트 인식(event detection) 등 고차원의 컴퓨터 비전 태스크(task)뿐만 아니라 주변 환경에 대한 질의 응답 및 대화 생성(Dialogue Generation)으로 인터넷 검색 뿐만 아니라 최근 활발한 소셜 마케팅(Social Marketing) 자율 주행(Automated Driving), 로보틱스(Robotics)을 보조하는 등 여러 미래 산업에 적용될 수 있어 활발히 연구되고 있는 중요한 분야이다. 컴퓨터 비젼과 자연어 처리는 이러한 중요성을 바탕으로 각자 고유한 영역에서 발전을 거듭해 왔으나, 최근 딥러닝의 등장과 함께 눈부시게 발전하면서 서로를 보완하며 학습 결과를 향상시키는 등 큰 시너지 효과를 발휘하게 되었다. 하지만 이런 발전에도 불구하고, 비디오-언어간 학습은 문제의 복잡도가 한층 높아 어려움을 겪게 되는 경우가 많다. 본 논문에서는 비디오와 이에 대응하는 설명, 대화, 질의 응답 등 더 나아가 자유 형태의 언어 (Free-formed language)간의 관계를 더욱 효율적으로 학습하고, 목표 임무에 잘 대응할 수 있도록 개선하는 것을 목표로 한다. 먼저, 시각적 복잡도가 이미지보다 높은 비디오와 긴 문장 사이의 관계를 효율적으로 학습하기 위한 여러 방법들을 소개한다. 인간의 주의 인식(Attention) 모델을 비디오-언어 모델에 지도 학습 하는 방법을 소개하고, 이어서 비디오에서 우선 검출된 대표 시각 단어를 매개로 하여 주의 인식(Attention) 알고리즘의 복잡도를 더욱 줄이는 의미 중심 주의 인식 (Semantic Attention) 방법, 어텐션 모델의 다대다 매칭을 기반으로 효율적인 비디오 검색 및 질의응답을 가능케 하는 비디오-언어간 융합 (Joint Sequence Fusion) 방법 등 비디오 주의 인식을 효율적으로 학습시킬 수 있는 방법들을 제시한다. 다음으로는, 주의 인식(Attention) 모델이 물체-단어 간 관계를 넘어 비디오 상에서 인물 검색 (Person Searching) 그리고 인물 재 식별 (Person Re-Identification)을 동시에 수행하며 상승작용을 일으키는 스토리 속 캐릭터 인식 신경망 (Character in Story Identification Network) 을 소개하며, 마지막으로 자기 지도 학습(Self-supervised Learning)을 통해 주의 인식(Attention) 기반 언어 모델이 긴 비디오에 대한 설명을 연관성 있게 잘 생성할 수 있도록 유도하는 방법을 소개한다. 요약하자면, 이 학위 논문에서 제안한 새로운 방법론들은 비디오-언어 학습에 해당하는 비디오 캡션(Video captioning), 비디오 검색(Video Retrieval), 시각 질의응답(Video Question and Answering)등을 해결할 수 있는 기술적 디딤돌이 되며, 비디오 캡션 학습을 통해 학습된 주의 인식 모듈은 검색 및 질의응답, 인물 검색 등 각 네트워크에 이식되면서 새로운 문제들에 대해 동시에 최고 수준(State-of-the-art)의 성능을 달성하였다. 이를 통해 비디오-언어 학습으로 얻은 언어 지식의 이전은 시각-청각을 아우르는 비디오 멀티모달 학습에 큰 도움이 되는 것을 실험적으로 보여준다. 향후 작업 방향 (Future Work)으로는 앞서 연구한 내용들을 기반으로 웹 속에 존재하는 대규모의 언어, 비디오, 오디오 데이터를 통합해 학습에 활용하여 산업계의 많은 난제를 해결할 수 있는 비지도 학습 모델을 만들고자 한다.Chapter 1 Introduction 1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . .8 Chapter 2 Related Work 2.1 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2 Video Retrieval with Natural Language . . . . . . . . . . . . . . 12 2.3 Video Question and Answering . . . . . . . . . . . . . . . . . . . 13 2.4 Cross-modal Representation Learning for Vision and LanguageTasks . . . . 15 Chapter 3 Human Attention Transfer for Video Captioning18 3.1 Introduction 3.2 Video Datasets for Caption and Gaze . . . . . . . . . . . . . . . 21 3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Video Pre-processing and Description . . . . . . . . . . . 22 3.3.2The Recurrent Gaze Prediction (RGP) Model . . . . . . . 23 3.3.3Construction of Visual Feature Pools . . . . . . . . . . . . 24 3.3.4The Decoder for Caption Generation . . . . . . . . . . . . 26 3.3.5Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.1Evaluation of Gaze Prediction . . . . . . . . . . . . . . . . 29 3.4.2Evaluation of Video Captioning . . . . . . . . . . . . . . . 32 3.4.3Human Evaluation via AMT . . . . . . . . . . . . . . . . 35 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 4 Semantic Word Attention for Video QA and VideoCaptioning 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.2An Attention Model for Concept Detection . . . . . . . . 42 4.2.3Video-to-Language Models . . . . . . . . . . . . . . . . . 45 4.2.4A Model for Description . . . . . . . . . . . . . . . . . . . 45 4.2.5A Model for Fill-in-the-Blank . . . . . . . . . . . . . . . . 48 4.2.6A Model for Multiple-Choice Test . . . . . . . . . . . . . 50 4.2.7A Model for Retrieval . . . . . . . . . . . . . . . . . . . . 51 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1The LSMDC Dataset and Tasks . . . . . . . . . . . . . . 52 4.3.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 54 4.3.3Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 5 Joint Sequnece Fusion Attention for Multimodal Sequence Data 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.1Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.2The Joint Semantic Tensor . . . . . . . . . . . . . . . . . 65 5.3.3The Convolutional Hierarchical Decoder . . . . . . . . . . 66 5.3.4An Illustrative Example of How the JSFusion Model Works 68 5.3.5Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.6Implementation of Video-Language Models . . . . . . . . 69 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.1LSMDC Dataset and Tasks . . . . . . . . . . . . . . . . . 71 5.4.2MSR-VTT-(RET/MC) Dataset and Tasks . . . . . . . . . 73 5.4.3Quantitative Results . . . . . . . . . . . . . . . . . . . . . 74 5.4.4Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter 6 Character Re-Identification and Character Ground-ing for Movie Understanding 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.1Video Preprocessing . . . . . . . . . . . . . . . . . . . . . 84 6.3.2Visual Track Embedding . . . . . . . . . . . . . . . . . . . 85 6.3.3Textual Character Embedding . . . . . . . . . . . . . . . 86 6.3.4Character Grounding . . . . . . . . . . . . . . . . . . . . 87 6.3.5Re-Identification . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.6Joint Training . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.4.1Experimental Setup . . . . . . . . . . . . . . . . . . . . . 92 6.4.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 93 6.4.3Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Chapter 7 Transitional Adaptation of Pretrained Models forVisual Storytelling 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1The Visual Encoder . . . . . . . . . . . . . . . . . . . . . 104 7.3.2The Language Generator . . . . . . . . . . . . . . . . . . 104 7.3.3Adaptation training . . . . . . . . . . . . . . . . . . . . . 105 7.3.4The Sequential Coherence Loss . . . . . . . . . . . . . . . 105 7.3.5Training with the adaptation Loss . . . . . . . . . . . . . 107 7.3.6Fine-tuning and Inference . . . . . . . . . . . . . . . . . . 107 7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.4.1Experimental Setup . . . . . . . . . . . . . . . . . . . . . 109 7.4.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 112 7.4.3Further Analyses . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.4Human Evaluation Results . . . . . . . . . . . . . . . . . 115 7.4.5Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 116 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 8 Conclusion 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Bibliography ... 123 요약 ... 148 Acknowledgements ... 150Docto
    corecore