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ABSTRACT 
 
Many post-production videos such as movies and 
cartoons present well structured story-lines organized in 
separated visual scenes. Accurate grouping of shots into 
these logical segments could lead to semantic indexing of 
scenes for interactive multimedia retrieval and video 
summaries. In this paper we introduce a novel shot-based 
analysis approach which aims to cluster together shots 
with similar visual content. We demonstrate how the use 
of codebooks of visual codewords (generated by a vector 
quantization process) represents an effective method to 
identify clusters containing shots with similar long-term 
consistency of chromatic compositions. The clusters, 
obtained by a single-link clustering algorithm, allow the 
further use of the well-known scene transition graph 
framework for logical story unit detection and pattern 
investigation.  
 
 

1. INTRODUCTION 
 
Shot segmentation and keyframe extraction are commonly 
considered as the prior steps for performing content-
based video indexing, browsing and summarization tasks. 
Building upon these, recent research activities have been 
focusing on developing techniques towards higher level 
semantic content abstraction with respect to a shot-based 
decomposition. In particular, efforts are invested towards 
grouping shots into logical units that share a common 
semantic thread. 

Some methods dealing with automatic high-level 
movie segmentation can be found in literature. In [6], [9], 
[10] and [11] various approaches based on a time-
constrained clustering are presented. In particular in [9] 
interesting results are provided by first measuring visual 
similarity between shots by means of pixel-color 
correlation between their respective keyframes, then 
followed by the use of predefined memory models for 
recognizing patterns inside the story. In [3] the concept of 
Logical Story Unit (LSU) was introduced as “a series of 
temporally contiguous shots, characterized by 
overlapping links that connect shots with similar visual 
content.” The dissimilarity between any two shots is 
estimated by measuring the correlation between 

keyframes by block matching. Yet another group of 
algorithms chooses to measure probable scene boundaries 
by calculating a short term memory-based model of shot-
to-shot ‘coherence’ as proposed in [4] and [7]. 

In this current work we present a novel and effective 
method to group shots into logical story units (LSU) 
starting from an MPEG-1 video stream, using a “shot-to-
shot” similarity measure based on vector quantization 
(VQ) codebooks of the visual content of their keyframes.  
We use these codebooks so as to effectively represent 
clusters of shots (as proposed in [6]), allowing then to 
establish a “cluster-to-cluster” similarity. The proposed 
algorithm effectively clusters basic video segments into 
compact and visually coherent structures that lend 
themselves easily to further processing. In fact, using an 
already proposed method such as the scene transition 
graph (STG) [9], it is possible to find out the fundamental 
elements of the semantic structure (LSU) and eventually 
recognize patterns (such as dialogues) and repeats (distant 
similar shots) along the video.  

The paper is organized as follows. The next section 
discusses shot-based visual content representation and 
similarity metric. Sections 3 and 4 are devoted to the 
presentation of the shot clustering algorithm and the 
technique for further LSU detection, respectively. The 
experimental results are discussed in Section 5, while 
paper conclusions are drawn in Section 6. 
 

2. VISUAL CONTENT REPRESENTATION 
 
Assuming that the segmented video shots are already 
given, the video content of each shot is first represented 
by means of a Vector Quantization (VQ) method [2]. This 
means that a visual codebook is built starting from the 
color information of one or more selected keyframes [6]. 
In our experiments, the central frame of each shot is 
chosen, though the procedure is designed to be 
functionally scalable, being easily adapted to the case 
when more than one keyframe per shot is needed to gain a 
proper representation of the visual content.   
 
2.1. VQ codebook for shots 

The selected keyframe is decoded as a still 352x288 
image and represented in the LUV color space. The image 
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is then sub-sampled by a factor 2 in both directions 
(QCIF resolution) and further subjected to a de-noising 
Gaussian filtering. The processed keyframe is subdivided 
into blocks of 4x4 pixels in order to exploit spatial color 
correlation. For each block, the three LUV components of 
each pixel are concatenated in a raster scan order to form 
a D–dimensional vector (where D=48=3x16). These 
vectors, 1584 in total for a QCIF sized image, constitute 
the training set for the VQ codebook generation process. 
The procedure starts with a randomly generated 
codebook, which is then iteratively refined by the 
Generalized Lloyd Algorithm [2]. Once the algorithm 
converges according to a predefined distortion criterion, 
the centroids (or codewords) {µj} of the finally obtained 
Voronoi partitions represent good candidate features to 
reproduce the color content of the shot.  

The codebook thus generated for each visual shot 
contains: i) the cj codewords of D dimension each, which 
are the centroids µj of each Voronoi partition in the final 
codebook; ii) the variances σj of the codewords; iii) the 
normalized weights wj which estimate the probability 
mass associated to each region. In our studies, the 
dimension of the codebook is set to 100 codewords. 
 
2.2. VQ codebook distance metric 

After the codebook for each shot is created, a “shot-to-
shot” similarity measure between shot A and B can be 
defined in terms of the distance between their respective 
codebooks. An effective method can be derived from the 
fast earth mover’s distance computation found in [1]. 
First, each codebook vector of shot A, yA={y1,…,yC}, is 
compared with those of shot B, zB={z1,…,zC}, to produce 
a distance matrix di,j=d{yi,zj}: 
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with i,j=1,…,C. Then, the VQ codebook distance metric 
between shots A and B can be defined as: 
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where the weight w is determined as w=max(wi,wj).  
 

3. SHOT CLUSTERING ALGORITHM 
 
Having defined the “shot-to-shot” distance metric, the 
next step in our proposed content processing chain is to 
group similar shots into compact clusters. 
 
3.1. Time unconstrained analysis 

First, the clustering is conducted over a global view of the 
whole video segment, relying only on the shot visual 
content without considering any temporal constraints. The 
objective of such a time-unconstrained approach is 
twofold: on one hand, it does not set an a priori time limit 

 

 
Figure 1: Illustration of a merge operation in clustering 

for an LSU extent (which is an issue in [9]) and on the 
other hand, it can be useful for certain retrieval purposes, 
like user defined queries searching for repeats (e.g., a 
viewer may like to see all the shots set at one specific 
location in a movie, even if distant in time).  
At the start, each cluster only contains a single shot, so 
forming the Original Shot Graph (OSG), in which nodes 
correspond to single shots, and edges indicate the 
transitions between shots. The VQ codebook “shot-to-
shot” distances can be computed between all shots along 
the timeline, so as to explore exhaustively the visual 
similarities of the entire video. 

At each step, the algorithm merges a reference cluster 
R with its visually most similar test cluster T  (i.e. the one 
having the minimal VQ distance metric) to form a new 
cluster R’. All the shots belonging, respectively, to R and 
T, then become the shots of the new cluster R’, and all 
transitions from/to R and T are properly updated to keep 
the correct temporal flow of the story (Figure 1 shows an 
example of such a merge operation). For the new 
combined cluster R’, a new VQ codebook is now needed 
to represent its visual content.  
 
3.2. VQ codebook update 

As a simple extension of the case for a single shot, a VQ 
codebook can also be created to represent a cluster of 
shots. The same codebook generation process used before 
is applied, but since the new cluster contains more than 
one shot, the keyframes of all the shots belonging to the 
cluster contribute equally to the training set.  

Once the codebook of the cluster R’ is generated, the 
“cluster-to-cluster” distances can now be computed 
between R’ and all the other clusters before proceeding to 
the next iteration.  
 
3.3. Online statistical analysis on VQ distortion 

It should be noted that while the VQ codebook generated 
at the OSG step is specific for each shot, the VQ 
codebook, which represents the visual content of a cluster 
with multiple shots, usually becomes less specific. This 
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means that, for each shot, the best representing VQ 
codebook is the one prior to the first merging. From then 
on, the distortion of representing the original shot with its 
cluster VQ codebook is likely to increase.  

So, at each iteration k the newly formed cluster Rk' 
introduces a VQ distortion with respect to the OSG step, 
where each cluster contains only a single shot. This 
distortion can be computed, using the proposed VQ 
distance, as the sum of the distances between the 
codebook of the newly formed clusters Rk’ and the 
codebooks of its shots computed at the OSG step. The 
accumulated distortion VQ_Err introduced from the 
beginning of the process until step k is: 
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With the increase in a cluster’s size, its VQ codebook is at 
the risk of losing the specificity in representing any of its 
constituent shots. To prevent this degenerative process, a 
statistical analysis is performed on the distortion 
generated by the latest merging step. At each iteration k, 
we compute the first derivative of the VQ distortion as, 

( ) [ ])VQ_Err(kVQ_Err(k)kVQ_Err 1−−=∆ , 

together with its mean µ and standard deviation σ with 
respect to the previous steps. Specifically, observing that 
after some initial steps (in which very similar shots 
collapse in the same clusters) the ∆VQ_Err tends to be 
gaussianly distributed, if: 

( ) ( ){ } ( ){ }jErrVQthrsjErrVQkErrVQ
jj

___ ∆⋅+∆>∆ σµ  

with j=1,2,...k-1, and thrs∈[2,3], this means that the 
distortion introduced by the newly formed cluster is too 
large and that the VQ codebook fails to represent all the 
cluster components. In such a case, this latest merging 
between cluster R and T is discarded. Besides, these 
clusters are since locked, being excluded from any future 
clustering process and a new reference and test cluster, 
currently unlocked, are selected according to the next 
minimal value of VQ distance metric. The above iteration 
process is repeated until no more unlocked clusters are 
available for merging. Experimental trials demonstrated 
that in order to prevent a cluster codebook from growing 
too much and losing specificity, it is useful to lock the 
cluster at a certain size (e.g., 12-15 shots in practice). 
 
3.4. Intra-cluster time analysis 

The clusters generated from the time-unconstrained 
analysis provide the first level representation of video 
content hierarchy. Each cluster now contains shots with 
high visual similarity to each other even if they may not 
be temporally adjacent, which, as discussed before, is 
already desirable for certain retrieval purposes. 

However, in order to separate one LSU from another, 
it is necessary that further analysis looks into the temporal 

locality of shots within each cluster so as to introduce a 
second level representation in the cluster hierarchy. To do 
this, a temporal analysis is performed with a view to 
splitting each cluster into a few temporally consistent sub-
clusters (see Figure 2) according to the following 
criterion: inside each cluster, two subsequent shots are 
considered to belong to the same sub-cluster if the 
temporal distance between them is less than a predefined 
interval DW (in terms of number of shots). 

 
Figure 2: Cluster hierarchy: time local sub-clusters 

The length of DW=8 shots chosen for our tests is not a 
critical value: it only determines the maximally explored 
range for a shot with similar visual content (e.g., in a 
pattern like ABCDEFGA…, it allows the two shots A to 
be included in the same sub-cluster), whereas similar 
shots usually occur quite closely to each other.  
 

4.  LSU SEGMENTATION WITH STG 
 
Based on the outcome of processing in Section 3, the 
Scene Transition Graph (STG) framework proposed in 
[9] can be conveniently employed to detect the LSU and 
extract the story structure without a priori knowledge of 
the video. In this case, the clusters and transitions form a 
directed graph: it comprises nodes (local sub-clusters) 
that contain a number of visually similar and temporally 
close shots, and the edges between nodes (transitions 
between shots) that represent the time evolution of the 
story. A special type of transition between two nodes is 
the so-called ‘cut-edge’, which, if removed, will lead to 
the decomposition of the graph into two disconnected 
sub-graphs. Therefore, a cut edge defines an LSU 
boundary. As shown in Figure 3, each connected sub-
graph after the removal of cut-edges represents an LSU 
while the collection of all cut-edges represent all the 
transitions from one LSU to the next, thus reflecting the 
natural evolution of the video flow. 
 
4.1. Pattern investigation inside logical story units 

The STG as discussed above allows further analysis of 
different shot-patterns inside the detected LSUs and to 
distinguish between three main types of actions [7]: the 
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Figure 3: LSU detection through cut-edges 

dialogues (e.g., ABAB or ABCABC), progressive actions 
(e.g., ABCD) and a hybrid of the two (ABCBCD).  

Starting from the detected LSUs and the derived 
action patterns therein, a hierarchical organization of the 
story structure of the video can be easily created. Besides, 
a hierarchical segment decomposition MPEG-7 compliant 
is automatically produced, which can be useful for further 
developing effective browsing tools for navigation or 
summarization [5] of the video document. 
 

5. EXPERIMENTAL RESULTS 
 
A prototype software has been realized based on the 
preceding discussion, and experiments carried out using 
video segments from two feature movies and two cartoons 
with quite distinct story structures: a 50 min excerpt from 
the comedy “Notting Hill”, a 17 min one from “A 
Beautiful Mind”, and two 20 min segments taken from the 
cartoons “Don Quixote” and “Lucky Luke”.  

Although some LSU segmentation methods have 
been reported in literature, a common accepted ground-
truth data set for comparison is still missing. To evaluate 
our system appropriately we choose to use the criteria 
discussed in the latest and most complete work on logical 
story unit segmentation evaluation [8], which proposes 
some measures on the effectiveness of segmentation 
results more meaningful and reliable than the counts of 
false positive and false negative. In particular, measures 
of Coverage χ and Overflow Ω on LSUs are proposed; 
Coverage χ is the fraction of shots of automatically 
generated LSU λj that overlap the most with the ground-
truth LSU Λt, while Overlap Ω measures the overlap of 
automatically generated LSUs λj covering Λt, with the 
previous and subsequent ground-truth LSUs (see [8] for 
more details). The two measurements, averaged over the 
entire test video sequence for every candidate LSU, are 
presented in Table 1, where very low values of Overflow 
and the high scores of Coverage reveal the good 
performance of the proposed shot clustering algorithm 
that precedes the final STG analysis.  

 
Table 1: Detected LSU in term of Coverage χ and Overflow Ω 

Video # shots # Λt # λi χ (%) Ω (%) 
N-H 521 23 45 78.9 % 3.9 % 

A-B-M 203 9 13 91.1 % 0.0 % 
D-Q 167 13 17 86.7 % 2.3 % 
L-L 197 15 22 84.2 % 2.7 % 

 
6. CONCLUSIONS 

 
In this work we have presented a novel content-based 
video analysis method for logical story unit detection 
based on visual VQ shot representation. The method aims 
to address three key issues: a time-unconstrained shot 
clustering, a method to automatically determine the 
number of clusters, and a procedure to analyze the 
temporal consistency of the visual content associated to 
each cluster. The output clusters and temporal links lend 
themselves easily to STG analysis to obtain desired LSUs. 
Experiments on feature movies and cartoons have 
demonstrated the promising results of this approach. 
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