55 research outputs found

    Study of feedback retrial queueing system with working vacation, setup time, and perfect repair

    Get PDF
    This manuscript analyses a retrial queueing system with working vacation, interruption, feedback, and setup time with the perfect repair. In the proposed model, the server takes vacation whenever the system gets empty but it still serves the customers at a relatively lower speed. The concept of power saving is included in the model. To save the power the server is turned off immediately on being empty at vacation completion instant. The customer who arrives when the system is turned off activates the server and he has to wait for his turn till the server is turned on. The unreliable server may sometimes fail to activate during setup. It is then sent for repair and repaired server immediately starts serving the waiting customers. Using probability generating function, explicit expressions for system size and different states of server for the model are obtained and results are analyzed graphically using MATLAB software

    Analysis of M[X1],M[X2]/G1,G2/1 retrial queueing system with priority services, working breakdown, collision, Bernoulli vacation, immediate feedback, starting failure and repair

    Get PDF
    This paper considers an M[X1] , M[X2] /G1,G2/1 general retrial queueing system with priority services. Two types of customers from different classes arrive at the system in different independent compound Poisson processes. The server follows the non-pre-emptive priority rule subject to working breakdown, Bernoulli vacation, starting failure, immediate feedback, collision and repair. After completing each service, the server may go for a vacation or remain idle in the system. The priority customers who find the server busy are queued in the system. If a low-priority customer finds the server busy, he is routed to orbit that attempts to get the service. The system may become defective at any point of time while in operation. However, when the system becomes defective, instead of stopping service completely, the service is continued to the interrupted customer only at a slower rate. Using the supplementary variable technique, the joint distribution of the server state and the number of customers in the queue are derived. Finally, some performance measures are obtained

    Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue with balking and starting failures under at most J vacations

    Get PDF
    In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with two types of services and negative customers. Any arriving batch of positive customers finds the server is free, one of the customers from the batch enters into the service area and the rest of them get into the orbit. The negative customer, is arriving during the service time of a positive customer, will remove the positive customer in-service and the interrupted positive customer either enters the orbit or leaves the system. If the orbit is empty at the service completion of each type of service, the server takes at most J vacations until at least one customer is received in the orbit when the server returns from a vacation. While the busy server may breakdown at any instant and the service channel may fail for a short interval of time. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Numerical illustrations are discussed to see the effect of the system parameters

    Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue with balking and starting failures under at most J vacations

    Get PDF
    In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with two types of service and negative customers. Any arriving batch of positive customers finds the server is free, one of the customers from the batch enters into the service area and the rest of them join into the orbit. The negative customer, arriving during the service time of a positive customer, will remove the positive customer in-service and the interrupted positive customer either enters into the orbit or leaves the system. If the orbit is empty at the service completion of each type of service, the server takes at most J vacations until at least one customer is received in the orbit when the server returns from a vacation. The busy server may breakdown at any instant and the service channel will fail for a short interval of time. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Numerical illustrations are discussed to see the effect of system parameters

    Analysis of the finite-source multiclass priority queue with an unreliable server and setup time

    Get PDF
    In this article, we study a queueing system serving multiple classes of customers. Each class has a finite-calling population. The customers are served according to the preemptive-resume priority policy. We assume general distributions for the service times. For each priority class, we derive the steady-state system size distributions at departure/arrival and arbitrary time epochs. We introduce the residual augmented process completion times conditioned on the number of customers in the system to obtain the system time distribution. We then extend the model by assuming that the server is subject to operation-independent failures upon which a repair process with random duration starts immediately. We also demonstrate how setup times, which may be required before resuming interrupted service or picking up a new customer, can be incorporated in the model

    (R1971) Analysis of Feedback Queueing Model with Differentiated Vacations under Classical Retrial Policy

    Get PDF
    This paper analyzes an M/M/1 retrial queue under differentiated vacations and Bernoulli feedback policy. On receiving the service, if the customer is not satisfied, then he may join the retrial group again with some probability and demand for service or may leave the system with the complementary probability. Using the probability generating functions technique, the steady-state solutions of the system are obtained. Furthermore, we have obtained some of the important performance measures such as expected orbit length, expected length of the system, sojourn times and probability of server being in different states. Using MATLAB software, we have represented the graphical interpretation of the results obtained. Finally, the cost is optimized using the parabolic method

    The impact of disruption characteristics on the performance of a server

    Get PDF
    In this paper, we study a queueing system serving N customers with an unreliable server subject to disruptions even when idle. Times between server interruptions, service times, and times between customer arrivals are assumed to follow exponential distributions. The main contribution of the paper is to use general distributions for the length of server interruption periods/down times. Our numerical analysis reveals the importance of incorporating the down time distribution into the model, since their impact on customer service levels could be counterintuitive. For instance, while higher down time variability increases the mean queue length, for other service levels, can prove to be improving system performance. We also show how the process completion time approach from the literature can be extended to analyze the queueing system if the unreliable server fails only when it is serving a customer

    Unreliable Retrial Queues in a Random Environment

    Get PDF
    This dissertation investigates stability conditions and approximate steady-state performance measures for unreliable, single-server retrial queues operating in a randomly evolving environment. In such systems, arriving customers that find the server busy or failed join a retrial queue from which they attempt to regain access to the server at random intervals. Such models are useful for the performance evaluation of communications and computer networks which are characterized by time-varying arrival, service and failure rates. To model this time-varying behavior, we study systems whose parameters are modulated by a finite Markov process. Two distinct cases are analyzed. The first considers systems with Markov-modulated arrival, service, retrial, failure and repair rates assuming all interevent and service times are exponentially distributed. The joint process of the orbit size, environment state, and server status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD) process, and we provide a necessary and sufficient condition for the positive recurrence of LDQBDs using classical techniques. Moreover, we apply efficient numerical algorithms, designed to exploit the matrix-geometric structure of the model, to compute the approximate steady-state orbit size distribution and mean congestion and delay measures. The second case assumes that customers bring generally distributed service requirements while all other processes are identical to the first case. We show that the joint process of orbit size, environment state and server status is a level-dependent, M/G/1-type stochastic process. By employing regenerative theory, and exploiting the M/G/1-type structure, we derive a necessary and sufficient condition for stability of the system. Finally, for the exponential model, we illustrate how the main results may be used to simultaneously select mean time customers spend in orbit, subject to bound and stability constraints
    corecore