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Abstract

This paper considers an M [X1],M [X2]/G1, G2/1 general retrial queueing system with priority ser-
vices. Two types of customers from different classes arrive at the system in different independent
compound Poisson processes. The server follows the non-pre-emptive priority rule subject to work-
ing breakdown, Bernoulli vacation, starting failure, immediate feedback, collision and repair. After
completing each service, the server may go for a vacation or remain idle in the system. The priority
customers who find the server busy are queued in the system. If a low-priority customer finds the
server busy, he is routed to orbit that attempts to get the service. The system may become defective
at any point of time while in operation. However, when the system becomes defective, instead of
stopping service completely, the service is continued to the interrupted customer only at a slower
rate. Using the supplementary variable technique, the joint distribution of the server state and the
number of customers in the queue are derived. Finally, some performance measures are obtained.

Keywords: Batch arrival; Priority queue; Retrial queue; Feedback; Collision; Modified
Bernoulli vacation
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2 G. Ayyappan et al.

1. Introduction

The study on queuing models has become an indispensable area due to its wide applicability in
real life situations, all the models considered have the property that units proceed to service on
a first-come, first-served basis. This is obviously not only manner of service, and there are many
alternatives, such as last-come, first-served, the selection in random order and selection by priority.
In order to offer different quality of service for different kinds of customers, we often control a
queueing system by priority mechanism. This phenomenon is common in practice. For example,
in telecommunication transfer protocol, for guaranteeing different layers service for different cus-
tomers, priority classes control may appear in header of IP package or in ATM cell. Priority control
is also widely used in production practice and transportation management.

Retrial queues are characterized by the feature that arriving customers who find the server busy
join the retrial group to try their luck again after a random time period. Queues in which customers
are allowed to conduct retrials have been extensively used to model many problems in telephone
switching systems, telecommunication networks and computer systems for competing to gain ser-
vice from a central processor unit.

Several authors have studied a single server retrial queue with orbital search and some of them have
studied retrial with collisions. Ayyappan et al (2009, 2018) have studied an M/M/1 retrial queueing
system with non preemptive priority service and single vacation exhaustive service and retrial
queueing system with priority services, working vacations and vacation interruption, emergency
vacation, negative arrival and delayed repair, Atencia et al (2005) have studied a single-server
retrial queue with general retrial times and non-preemptive priority service. Kim et al. (2016) have
studied the M/G/1 queue with disasters and working breakdowns. Liou (2013) has discussed a
Markovian queue optimisation analysis with an unreliable server subject to working breakdowns
and impatient customers.

Yang et al. (2017) have studied the analysis of a finite-capacity system with working breakdowns
and retention of impatient customers. Choudhury et al (2012) have studied a batch arrival retrial
queue with general retrial times under Bernoulli vacation schedule for unreliable server and de-
laying repair, Gomez (1999) has studied a stochastic analysis of a single server retrial queue with
general retrial times, Haghighi et al. (2006, 2013, 2016) have studied a parallel priority queueing
system with finite buffers, Stochastic Three-stage Hiring Model as a Tandem Queueing Process
with Bulk Arrivals and Erlang Phase-Type Selection: MK/M (k,K)/1 −MY /Er/1 − ∞ and de-
layed network queues. Jain et al (2008) have studied a bulk arrival retrial queue with unreliable
server and priority subscribers.

Wang et al. (2010) have studied a batch arrival retrial queue with starting failures, feedback and
admission control. Kirupa et al. (2010) have studied a single-server retrial queueing system with
two different vacation policies. Krishnakumar et al. (2002) have discussed an M/G/1 retrial queue
with feedback and starting failures Krishnakumar et al. (2010) have studied a single server feed-
back retrial queue with collisions, Madan (2011) have studied a non-preemptive priority queueing
system with a single server serving two queues M/G/1 and M/D/1 with optional server va-
cations based on exhaustive service of the priority units, Chen et al. (2016) have studied a batch
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arrival retrial G-queue with orbital search and non-persistent customers Varalakshmi et al. (2016)
studied an M/G/1 retrial queueing system with two phases of service, immediate Bernoulli feed-
backs, single vacation and starting failures and Rajadurai et al. (2017) studied a M/G/1 feedback
retrial queue subject to server breakdown and repair under multiple working vacation policy. Yang
et al. (1994) have studied an approximation method for the M/G/1 retrial queue with general
retrial times.

In this paper we deal with the analysis of M [X1],M [X2]/G1, G2/1 general retrial queueing system
with priority services. Two types of customers from different classes arrive at the system in differ-
ent independent compound Poisson processes. The server follows the non-pre-emptive priority rule
subject to working breakdown, Bernoulli vacation, starting failure, immediate feedback, collision
and repair. After completing each service, the server may go for a vacation or remain idle in the
system. The priority customers who find the server busy are queued in the system. If a low-priority
customer finds the server busy, he is routed to orbit that attempts to get the service. The system may
become defective at any point of time while in operation. However, when the system is defective,
instead of stopping service completely, the service continues only to the interrupted customer at
a slower rate. We assume that the probability of successful commencement of service is δ for a
new customer or customer from the orbit. The retrial time, service time, vacation time, repair time
are all assumed to follows general (arbitrary) distribution and breakdown time follows exponential
distribution. The time dependent probability generating functions have been obtained in terms of
their Laplace transforms and the corresponding steady state results are obtained explicitly. Also
some performance measures such as the average number of customer in the priority queue and the
non-priority in the orbit and the average waiting time are derived.

The rest of the paper is organized as follows: Mathematical description of the model is pre-
sented in Section (2). Definitions, governing equations and the time dependent solution have
been obtained in Section (3) and (4). The corresponding steady state results have been derived
explicitly in Section (5). Average queue size and the average waiting time are computed in Sec-
tion (6) and (7). Some particular cases are discussed in Section (8).

2. Mathematical description of our model

(i) High priority and Low-priority units arrive at the system in batches of variable sizes in differ-
ent compound Poisson processes and they are provided service one by one on a FCFS basis.
Let λ1ci dt and λ2ci dt (i = 1, 2, 3, ...) be the first order probability that a batch of i customers

arrive at the system during a short interval of time (t, t + dt), where 0 ≤ ci ≤ 1,

∞∑
i=1

ci = 1,

and λ1 > 0, λ2 > 0 are the average arrival rates of high priority and low-priority customers
and high priority customers only form the queue, if the server is busy. The server must serve
all the high priority units present in the system before taking up low-priority units for service.
In other words, there is no high priority unit present in the system at the time of starting the
service of a low-priority unit. Further, we assume that the server follows a non-pre-emptive
priority rule, which means that if one or more high priority units arrive during the service
time of a low-priority unit, the current service of a low-priority units is not stopped and a
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high priority unit will be taken up for service only after the current service of a low-priority
unit is completed.

(ii) Low-priority customers are considered as retrial customers. It is assumed that there is no
waiting space and on arrival, a customer proceeds to the server with probability p2 or enters
into the orbit with probability q2. If the server is busy with low-priority customer, the arriving
low-priority customer collides with the customer in service resulting in both shifted to the
orbit. The retrial time, that is time between successive repeated attempts of each customer
in the orbit is assumed to be generally distributed with distribution function A(x), density
function a(x). The conditional completion rate for retrials is given by η(x) = a(x)

(1−A(x)) .

(iii) Each customer with high priority and low-priority provided is served by a single server on
a first come - first served basis. The service time for both high priority and low-priority
units follow general(arbitrary) distribution with distribution functions Bi(v) and the density
functions bi(v), i = 1, 2.

(iv) Let µi(x)dx be the conditional probability of completion of the high priority and low-priority
unit service during the interval (x, x+ dx], given that the elapsed service time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2

and therefore,

bi(v) = µi(v)e
−

∫ s

0
µi(x)dx

, i = 1, 2.

(v) We further assume that as soon as each service completed, the server has the option to take a
vacation of random length with probability θ, in which case the vacation starts immediately
or else with probability (1 − θ) he may decide to remain idle in the system waiting for the
new units to arrive.

(vi) The vacation time follows general (arbitrary) distribution with distribution function V (s) and
density function v(s). Let γ(x)dx be the conditional probability of completion of a vacation
during the interval (x, x+ dx] given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1− V (x)

and therefore,

v(s) = γ(s)e
−

∫ s

0
γ(x)dx

.

(vii) The server may become inactive during busy period. At the time of breakdown the customer
who is in service will get fresh service continuously by slower service rate µw(x) and
it follows a general distribution. Breakdowns are assumed to occur according to a Poisson
stream with mean breakdown rate α > 0. The repair starts after the current service is
completed.

(viii) The Repair time (due to active breakdown) follows general (arbitrary) distribution with dis-
tribution function Ri(t) and density function ri(t), i = 1, 2. Let β(x)dx be the conditional
probability of completion of a repair during the interval (x, x + dx], given that the elapsed
repair time is x, so that
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βi(x) =
ri(x)

1−Ri(x)
, i = 1, 2

and therefore,

ri(t) = β(t)e
−

∫ s

0
β(x)dx

, i = 1, 2.

(ix) The Repair time(due to starting failure) follows general (arbitrary) distribution with distribu-
tion function Gi(t) and the density function gi(t), i = 1, 2. Let ν(x)dx be the conditional
probability of completion of a repair during the interval (x, x + dx], given that the elapsed
repair time is x, so that

ν(x) =
gi(x)

1−Gi(x)
, i = 1, 2

and therefore,

ri(t) = ν(t)e
−

∫ s

0
ν(x)dx

, i = 1, 2.

(x) At the completion of a service for a low priority customer, if he is not satisfied with the service
permitted to the head of queue immediately ask for new service as a feedback customer with
probability r .

(xi) Various stochastic processes involved in the system are assumed to be independent of each
other.

3. Definitions and notations

We define

(i) P 1
m,n(x, t) = Probability that at time t, the server is active providing service and there

are m (m ≥ 0) high priority units in the queue and n (n ≥ 0) low-priority units in the
orbit excluding the one high priority unit in service with elapsed service time for this cus-
tomer is x.

(ii) P 2
m,n(x, t) = Probability that at time t, the server is active providing service and there are
m (m ≥ 0) high priority units in the queue and n (n ≥ 0) low-priority units in the orbit
excluding the one low-priority unit in service with elapsed service time for this customer
is x.

(iii) Vm,n(x, t) = Probability that at time t, the server is on vacation with elapsed vacation time x

and there are m (m ≥ 0) high priority units in the queue and n (n ≥ 0) low-priority units in
the orbit.

(iv) W
(i)
m,n(x, t) = Probability that at time t, the server is on slower rate service(server inactive due

to active breakdown) with elapsed service time is x and there are m (m ≥ 0) high priority
units in the queue and n (n ≥ 0) low-priority units in the orbit.

(v) R
(i)
m,n(x, t) = Probability that at time t, the server is on repair(server inactive due to active

breakdown) with elapsed repair time is x and there are m (m ≥ 0) high priority units in the
queue and n (n ≥ 0) low-priority units in the orbit.
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6 G. Ayyappan et al.

(vi) G
(i)
m,n(x, t) = Probability that at time t, the server is on repair(server inactive due to stating

failure) with elapsed repair time is x and there are m (m ≥ 0) high priority units in the
queue and n (n ≥ 0) low-priority units in the orbit.

(vii) I0,0(t) = Probability that at time t, there are no high priority and low-priority customers in
the system and the server is idle but available in the system.

4. Equations Governing the System

The Kolmogorov forward equations to govern the model are
d

dt
I(0,0)(t) = −(λ1 + λ2)I(0,0)(t) + (1− θ)

∫ ∞
0

P 1
0,0(x, t)µ1(x)dx

+ (1− θ)(1− r)
∫ ∞
0

P 2
0,0(x, t)µ2(x)dx+

∫ ∞
0

Ri0,0(x, t)β(x)dx+

∫ ∞
0

V0,0(x, t)γ(x)dx, (1)

∂

∂t
I(0,n)(x, t) +

∂

∂x
I(0,n)(x, t) = −(λ1 + λ2 + η(x))I(0,n)(x, t);n ≥ 1, (2)

∂

∂t
P 1
m,n(x, t) +

∂

∂x
P 1
m,n(x, t) = −(λ1 + λ2 + µ1(x) + α)P 1

m,n(x, t)

+ λ1

m∑
i=1

(1− δm0)CiP
1
m−i,n(x, t) + λ2

n∑
i=1

(1− δ0n)CiP 1
m,n−i(x, t); m, n ≥ 0, (3)

∂

∂t
P 2
m,n(x, t) +

∂

∂x
P 2
m,n(x, t) = −(λ1 + λ2 + µ2(x) + α)P 2

m,n(x, t)

+ λ1

m∑
i=1

(1− δm0)CiP
2
m−i,n(x, t) + λ2

n∑
i=1

(1− δ0n)CiP 2
m,n−i(x, t); m, n ≥ 0, (4)

∂

∂t
W i
m,n(x, t) +

∂

∂x
W i
m,n(x, t) = −(λ1 + λ2 + µw(x))W

i
m,n(x, t)

+ λ1

m∑
i=1

(1− δm0)CiW
i
m−i,n(x, t) + λ2

n∑
i=1

(1− δ0n)CiW i
m,n−i(x, t); m, n ≥ 0, (5)

∂

∂t
Rim,n(x, t) +

∂

∂x
Rim,n(x, t) = −(λ1 + λ2 + β(x))Rim,n(x, t)

+ λ1

m∑
i=1

(1− δm0)CiR
i
m−i,n(x, t) + λ2

n∑
i=1

(1− δ0n)CiRim,n−i(x, t); m, n ≥ 0, (6)

∂

∂t
Gim,n(x, t) +

∂

∂x
Gim,n(x, t) = −(λ1 + λ2 + ν(x))Gim,n(x, t)

+ λ1

m∑
i=1

(1− δm0)CiG
i
m−i,n(x, t) + λ2

n∑
i=1

(1− δ0n)CiGim,n−i(x, t); m, n ≥ 0, (7)

∂

∂t
Vm,n(x, t) +

∂

∂x
Vm,n(x, t) = −(λ1 + λ2 + γ(x))Vm,n(x, t)

+ λ1

m∑
i=1

(1− δm0)CiVm−i,n(x, t) + λ2

n∑
i=1

(1− δ0n)CiVm,n−i(x, t); m, n ≥ 0. (8)
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The above set of equations are to be solved under the following boundary conditions at x = 0.

I(0,1)(0, t) = (1− θ)
∫ ∞
0

P 1
0,1(x, t)µ1(x)dx+ (1− θ)(1− r)

∫ ∞
0

P 2
0,1(x, t)µ2(x)dx

+

∫ ∞
0

V0,1(x, t)γ(x)dx+

∫ ∞
0

Ri0,1(x, t)β(x)dx+

∫ ∞
0

G2
0,1(x, t)ν(x)dx, (9)

I(0,2)(0, t) = (1− θ)
∫ ∞
0

P 1
0,2(x, t)µ1(x)dx+ (1− θ)(1− r)

∫ ∞
0

P 2
0,2(x, t)µ2(x)dx

+

∫ ∞
0

V0,2(x, t)γ(x)dx+

∫ ∞
0

Ri0,2(x, t)β(x)dx+

∫ ∞
0

G2
0,2(x, t)ν(x)dx

+ λ2p2

∫ ∞
0

P 2
0,0(x, t)dx, (10)

I(0,n)(0, t) = (1− θ)
∫ ∞
0

P 1
0,n(x, t)µ1(x)dx+ (1− θ)(1− r)

∫ ∞
0

P 2
0,n(x, t)µ2(x)dx

+

∫ ∞
0

V0,n(x, t)γ(x)dx+

∫ ∞
0

Ri0,n(x, t)β(x)dx+

∫ ∞
0

G2
0,n(x, t)ν(x)dx

+ λ2p2

n−i∑
i=1

Cn−i

∫ ∞
0

P 2
0,i−1(x, t)dx;n ≥ 3, (11)

P 1
m,0(0, t) = δλ1Cm+1I(0,0)(t) + (1− θ)

∫ ∞
0

P 1
m+1,0(x, t)µ1(x)dx

+ (1− θ)(1− r)
∫ ∞
0

P 2
m+1,0(x, t)µ2(x)dx+

∫ ∞
0

Vm+1,0(x, t)γ(x)dx

+

∫ ∞
0

Rim+1,0(x, t)β(x)dx+

∫ ∞
0

Gim+1,0(x, t)ν(x)dx, (12)

P 1
m,1(0, t) = δλ1Cm+1I(0,1)(t) + (1− θ)

∫ ∞
0

P 1
m+1,1(x, t)µ1(x)dx

+ (1− θ)(1− r)
∫ ∞
0

P 2
m+1,1(x, t)µ2(x)dx+

∫ ∞
0

Vm+1,1(x, t)γ(x)dx

+

∫ ∞
0

Rim+1,1(x, t)β(x)dx+

∫ ∞
0

Gim+1,1(x, t)ν(x)dx;m ≥ 0, (13)

P 1
m,n(0, t) = δλ1Cm+1I(0,n)(t) + (1− θ)

∫ ∞
0

P 1
m+1,n(x, t)µ1(x)dx

+ (1− θ)(1− r)
∫ ∞
0

P 2
m+1,n(x, t)µ2(x)dx+

∫ ∞
0

Vm+1,n(x, t)γ(x)dx

+

∫ ∞
0

Rim+1,n(x, t)β(x)dx+

∫ ∞
0

Gim+1,n(x, t)ν(x)dx

+ λ2p2

n−1∑
i=1

Cn−i

∫ ∞
0

P 2
m+1,i−1(x, t)dx; m ≥ 0, n ≥ 2, (14)
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P 2
0,0(0, t) = δλ2C1I(0,0)(t) + δ

∫ ∞
0

I0,1(x, t)η(x)dx+ r

∫ ∞
0

P 2
0,0(x, t)µ2(x)dx, (15)

P 2
0,n(0, t) = δλ2Cn+1I(0,0)(t) + δ

∫ ∞
0

I0,n(x, t)η(x)dx+ r

∫ ∞
0

P 2
0,n(x, t)µ(x)dx

+ δλ2

n∑
i=1

Ci

∫ ∞
0

I0,n+1−i(x, t)dx; n ≥ 1, (16)

W i
m,n(0, t) = α

∫ ∞
0

P im,n(x, t)dx, (17)

Rim,n(0, t) =

∫ ∞
0

W i
m,n(x, t)µw(x)dx, (18)

G1
m,n(0, t) = δλ1CmI(0,n)(t),m ≥ 1;n ≥ 0, (19)

G2
0,1(0, t) = δλ2C1I(0,0)(t) + δ

∫ ∞
0

I0,1(x, t)η(x)dx, (20)

G2
0,n(0, t) = δλ2CnI(0,n)(t) + δ

∫ ∞
0

I0,n(x, t)η(x)dx

+ δλ2

n∑
i=1

Ci

∫ ∞
0

I0,n−i(x, t)dx; n ≥ 2, (21)

Vm,n(0, t) = θ
{∫ ∞

0
P 1
m,n(x, t)µ1(x)dx+

∫ ∞
0

P 2
m,n(x, t)µ2(x)dx

}
;m, n ≥ 0. (22)

We assume that initially there are no customers in the system so that the server is idle.

I0,0(0) = 1; P im,n(0) =W i
m,n(0) = Rim,n(0) = Vm,n(0) = 0 = Gim,n(0) = 0; i = 1, 2. (23)

Next, we define the following probability generating functions:

I0(0, z2, t) =

∞∑
n=1

I0,n(0, t), A(x, z1, z2, t) =

∞∑
m=0

∞∑
n=0

zm1 z
n
2Am,n(x, t), (24)

where

A = P i, V, W i, Ri, Gi; i = 1, 2.

By taking Laplace transforms from (1) to (22) and solving the equations, we get,

I(0)(x, z2, s) = I(0)(0, z2, s)e
−(s+λ1+λ2)x−

∫ x

0
η(t)dt

, (25)

P
1
(x, z1, z2, s) = P

1
(0, z1, z2, s)e

−

(
s+λ1[1−C(z1)]+λ2[1−C(z2)]+α

)
x−

∫ x

0
µ1(t)dt

, (26)

P
2
(x, z1, z2, s) = P

2
(0, z1, z2, s)e

−

(
s+λ1[1−C(z1)]+λ2[1−C(z2)]+α+λ2p2

)
x−

∫ x

0
µ2(t)dt

, (27)

W
i
(x, z1, z2, s) =W

i
(0, z1, z2, s)e

−

(
s+λ1[1−C(z1)]+λ2[1−C(z2)]

)
x−

∫ x

0
µw(t)dt

, (28)
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R
i
(x, z1, z2, s) = R

i
(0, z1, z2, s)e

−

(
s+λ1[1−C(z1)]+λ2[1−C(z2)]

)
x−

∫ x

0
β(t)dt

, (29)

G
i
(x, z1, z2, s) = G

i
(0, z1, z2, s)e

−

(
s+λ1[1−C(z1)]+λ2[1−C(z2)]

)
x−

∫ x

0
ν(t)dt

, (30)

V (x, z1, z2, s) = V (0, z1, z2, s)e
−

(
s+λ1[1−C(z1)]+λ2[1−C(z2)]

)
x−

∫ x

0
γ(t)dt

, (31)

where

I(0)(0, z2, s) = P
1
0(0, z2, s)

{
(1− θ)B1(ψ1(z, s)) + α[

1−B1(ψ1(z, s))

ψ1(z, s)

]
W

1
(A

1
(z, s))

R
1
(A

1
(z, s)) + θV (A1(z, s))B1(ψ1(z, s))

}
+ P

2
0(0, z2, s)

{
θV (A1(z, s))(1− r)

B2(ψ2(z, s)) + (1− r)(1− θ)B2(ψ2(z, s)) + α[
1−B2(ψ2(z, s))

ψ2(z, s)

]
W

2
(A

1
(z, s))

R
2
(A

1
(z, s)) + λ2p2

[
1−B2(ψ2(z, s))

ψ2(z, s)

]}
+ δλ2C(z2)I0,0(s)G

2
(A1(z, s)) + δ

I(0)(0, z2, s)

{
M(s+ λ1 + λ2) + λ2p2C(z2)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}
G

2
(A1(z, s))

−
{
(s+ λ1 + λ2)I0,0 − 1

}
, (32)

{
z1 − (1− θ)B1(φ1(z, s))− θV (A(z, s))B1(φ1(z, s))− α[

1−B1(φ1(z, s))

φ1(z, s)

]
W

1
(A(z, s))R

1
(A(z, s))

}
P

1
(0, z1, z2, s) = λ1C(z1)I(0)(0, z2, s)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]
(δ + δG

1
(A(z, s))) + P

2
0(0, z2, s)

{
(1− r)(1− θ)B2(φ2(z, s)) + θV (A(z, s))

(1− r)B2(φ2(z, s)) + α[
1−B2(φ2(z, s))

φ2(z, s)

]
W

2
(A(z, s))R

2
(A(z, s))

+ λ2p2

[
1−B2(φ2(z, s))

φ2(z, s)

]
− (1− r)(1− θ)B2(ψ2(z, s))− θV (A1(z, s))(1− r)

B2(ψ2(z, s))− α[
1−B2(ψ2(z, s))

ψ2(z, s)

]
W

2
(A

1
(z, s))R

2
(A

1
(z, s))− P 1

0(0, z2, s)

{
(1− θ)

B1(ψ1(z, s)) + α[
1−B1(ψ1(z, s))

ψ1(z, s)

]
W

1
(A

1
(z, s))R

1
(A

1
(z, s)) + θV (A1(z, s))

B1(ψ1(z, s))

}
+ δ

{
λ2C(z2)I(0,0)(s) + I(0)(0, z2, s)

{
M(s+ λ1 + λ2) + λ2p2C(z2)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}{
G

2
(A(z, s)))−G2

(A1(z, s)))
}}

, (33)

(34)
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{
z2 − rB2(ψ2(z, s))

}
P

2
0(0, z2, s) = δλ2C(z2)I0,0(s) + δI(0)(0, z2, s)

{
M(s+ λ1 + λ2)

+ λ2C(z2)
[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}
. (35)

We let A(z, s) = s+ λ1[1− C(z1)] + λ2[1− C(z2)], φ1(z, s) = A(z, s) + α and
φ2(z, s) = A(z, s) + α+ λ2p2 A1(z, s) = s+ λ1 + λ2[1− C(z2)], ψ1(z, s) = A1(z, s) + α

and ψ2(z, s) = A1(z, s) + α+ λ2p2.

By applying Rouche’s theorem, we get,

P
1
0(0, z2, s)

{
(1− θ)B1(ψ1(z, s)) + α[

1−B1(ψ1(z, s))

ψ1(z, s)

]
W

1
(A

1
(z, s))R

1
(A

1
(z, s)) + θ

V (A1(z, s))B1(ψ1(z, s))

}
= λ1C(g[z2])I(0)(0, z2, s)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]
(δ + δG

1
(A2(z, s))) + P

2
0(0, z2, s)

{
(1− r)(1− θ)B2(φ4(z, s)) + θV (A2(z, s))(1− r)

B2(φ4(z, s)) + α[
1−B2(φ4(z, s))

φ4(z, s)

]
W

2
(A2(z, s))R

2
(A2(z, s)) + λ2p2

[
1−B2(φ4(z, s))

φ4(z, s)

]
− (1− r)(1− θ)B2(ψ2(z, s))− θV (A1(z, s))(1− r)B2(ψ2(z, s))− α[

1−B2(ψ2(z, s))

ψ2(z, s)

]
W

2
(A

1
(z, s))R

2
(A

1
(z, s)) + δ

{
λ2C(z2)I(0,0)(s) + I(0)(0, z2, s)

{
M(s+ λ1 + λ2)

+ λ2p2C(z2)
[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}{
G

2
(A(z, s)))−G2

(A1(z, s)))
}}

. (36)

Substituting this into the above equations, we get

I0(0, z2, s) =
N1(z2)

d1(z2)
, (37)

P
2
0(0, z2, s) =

N2(z2)

d1(z2)
, (38)

P 1(0, z1, z2, s) =
N3(z2)

d2(z2)
, (39)

where

N2(z2) = δλ2C(z2)I(0,0)(s)
{
1− λ1C(g[z2])

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]
(δ + δG

1
(A2(z, s)))

}
− δ{

(s+ λ1 + λ2)I0,0(s)− 1

}{
M(s+ λ1 + λ2) + λ2p2C(z2)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}
,
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d1(z2) = {z2 − rB2(ψ2(z, s))}
{
1− λ1C(g[z2])

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]
(δ + δG

1
(A2(z, s)))

}
− δ
{
M(s+ λ1 + λ2) + λ2p2C(z2)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}}
− δ
{
M(s+ λ1 + λ2)

+ λ2p2C(z2)
[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}{
(1− r)(1− θ)B2(φ4(z, s)) + θ(1− r)

B2(φ4(z, s))V (A2(z, s)) + λ2p2C(z2)[
1−B2(φ4(z, s))

φ4(z, s)

]
+ α[

1−B2(φ4(z, s))

φ4(z, s)

]
W

2
(A2(z, s))R

2
(A2(z, s))

}
,

N1(z2, s) =

{
δλ2C(z2)I(0,0)(s)G

2
(A2(z, s)))−

{
(s+ λ1 + λ2)I0,0 − 1

}}
{z2 − r

B2(ψ2(z, s))}+ δλ2C(z2)I(0,0)(s)

{
(1− r)(1− θ)B2(φ4(z, s)) + θ(1− r)

B2(φ4(z, s))V (A2(z, s)) + λ2p2C(z2)[
1−B2(φ4(z, s))

φ4(z, s)

]
+ α[

1−B2(φ4(z, s))

φ4(z, s)

]
W

2
(A2(z, s))R

2
(A2(z, s))

}
,

N3(z2, s) = I0(0, z2, s)
[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]{
λ1C(z1)(δ + δG

1
(A(z, s)))− λ1C(g[z2])

(δ + δG
1
(A2(z, s)))

}
− δλ2C(z2)I(0,0)(s)(1−G

2
(A2(z, s)))− I0(0, z2, s)

(1−G2
(A2(z, s)))

{
M(s+ λ1 + λ2) + λ2p2C(z2)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}
+ P

2
0(0, z2, s){

(1− r)(1− θ)
{
B2(φ2(z, s))−B2(φ4(z, s))

}
+ θ(1− r)

{
B2(φ2(z, s))V (A(z, s))

−B2(φ4(z, s))V (A2(z, s))
}
+ λ2p2C(z2)

{
[
1−B2(φ2(z, s))

φ2(z, s)

]
− [

1−B2(φ4(z, s))

φ4(z, s)

]}
+ α

{
[
1−B2(φ2(z, s))

φ2(z, s)

]
W

2
(A(z, s))R

2
(A(z, s))− α[1−B2(φ4(z, s))

φ4(z, s)

]
W

2
(A2(z, s))R

2
(A2(z, s))

}}
,

d2(z2) =

{
z1 − (1− θ)B1(φ1(z, s))− α[

1−B1(φ1(z, s))

φ1(z, s)

]
W

1
(A(z, s))R

1
(A(z, s))

}
,

G
1
(0, z1, z2, s) = δλ1C(z1)I0(0, z2, s)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]
, (40)

G
2
0(0, z2, s) = δλ2C(z2)I(0,0)(s) + δI0(0, z2, s)

{
M(s+ λ1 + λ2)

+ λ2C(z2)
[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}
, (41)
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R
i
(0, z1, z2, s) = αP 1(0, z1, z2, s)[

1−B1(φ1(z, s))

φ1(z, s)

]
W

1
(A(z, s))

+ αP
2
0(0, z2, s)[

1−B2(φ2(z, s))

φ2(z, s)

]
W

2
(A(z, s)), (42)

W
i
(0, z1, z2, s) = αP i(0, z1, z2, s)[

1−Bi(φi(z, s))
φi(z, s)

]
, (43)

V (0, z1, z2, s) = θ

{
P 1(0, z1, z2, s)B1(φ1(z, s)) + (1− r)P 2

0(0, z2, s)B2(φ2(z, s))

}
. (44)

Theorem 4.1.

The inequality P 1(1, 1) + P 2(0, 1) +W i(1, 1) = ρ < 1, is a necessary and sufficient condition for
the system to be stable. Under this condition the marginal PGF of the server’s state, queue size and
orbit size distributions are given by,

I(0)(z2, s) = I(0)(0, z2, s)

[
1−M(s+ λ1 + λ2)

s+ λ1 + λ2

]
, (45)

P
1
(z1, z2, s) = P

1
(0, z1, z2, s)

[
1−B1(φ1(z, s))

φ1(z, s)

]
, (46)

P
2
(z1, z2, s) = P

2
0(0, z2, s)

[
1−B2(φ2(z, s))

φ2(z, s)

]
, (47)

W
i
(z1, z2, s) =W

i
(0, z1, z2, s)

[
1−W i

(A(z, s))

A(z, s)

]
, (48)

R
i
(z1, z2, s) = R

i
(0, z1, z2, s)

[
1−Ri(A(z, s))

A(z, s)

]
, (49)

G
i
(z1, z2, s) = G

i
(0, z1, z2, s)

[
1−Gi(A(z, s))

A(z, s)

]
, (50)

V (z1, z2, s) = V (0, z1, z2, s)

[
1− V (A(z, s))

A(z, s)

]
. (51)

Proof:

Integrating equations (25) to (31) with respect to x and using the well known result of renewal
theory ∫ ∞

0

[
1−H(x)

]
e−sxdx =

1− h(s)
s

, (52)

where h(s) is the LST of the distribution function of a random variable H(x), we get
the results (44) to (50) respectively. Thus we obtain the complete solution for the prob-
ability generating functions for the following states I(0)(z2, s), P

1
(z1, z2, s), P

2
(z1, z2, s),

W
i
(z1, z2, s), R

i
(z1, z2, s), G

i
(z1, z2, s) and V (z1, z2, s). �
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5. Steady State Analysis: Limiting Behavior

By applying the well-known Tauberian property,

lim
s→0

sf(s) = lim
t→∞

f(t),

to the above equations, and adding we obtain the steady- state solutions of this model

In order to determine I0,0, we use the normalizing condition

P 1(1, 1) + V (1, 1) + P 2(1, 1) +W i(1, 1) +Ri(1, 1) +Gi(1, 1) + I0(1) + I0,0 = 1.

For this, let Wq(z1, z2) be the probability generating function of the queue size irrespective of the
state of the system. Then, adding equations from (43) to (49) we obtain,

Wq(z1, z2) =I0(z2) + P 1(z1, z2) + V (z1, z2) + P 2(z1, z2) +W i(z1, z2)

+Ri(z1, z2) +Gi(z1, z2), i = 1, 2.

Wq(z1, z2) =
N((z1, z2))

D(z1, z2)
, (53)

where

N((z1, z2)) = I0(0, z2)φ1(z))φ2(z))f1(z1, z2) + δλ2C(z2)I(0,0)φ1(z))φ2(z))(1−G
2
(A(z)))

+ P 1(0, z1, z2)φ2(z))f2(z1, z2) + P 2
0 (0, z2)f3(z1, z2),

f1(z1, z2) = A(z)

[
1−M(s+ λ1 + λ2)

s+ λ1 + λ2

]
+ δλ1C(z1)

[
1−M(s+ λ1 + λ2)

s+ λ1 + λ2

]
(1−G1

(A(z)))

+ δ(1−G2
(A(z)))

{
M(s+ λ1 + λ2) + λ2C(z2)

[1−M(s+ λ1 + λ2)

(s+ λ1 + λ2)

]}
,

f2(z1, z2) = A(z)(1−B1(φ1(z))) + α(1−B1(φ1(z)))(1−W
1
(A(z))) + α(1−B1(φ1(z)))

W
1
(A(z))(1−R1

(A(z))) + θB1(φ1(z))φ1(z)(1− V (A(z))),

f3(z1, z2) = A(z)(1−B2(φ2(z))) + α(1−B2(φ2(z)))(1−W
2
(A(z))) + α(1−B2(φ2(z)))

W
2
(A(z))(1−R2

(A(z))) + θ(1− r)B2(φ2(z))(1− V (A(z))),

D(z1, z2) = A(z)φ1(z))φ2(z)).

In order to obtain the idle time probability I0,0, we use the normalizing condition,

Wq(1, 1) + I0,0 = 1.

From which we can have,

I0,0 =
d

′

2(1)d1(1)A
′(1)α(α+ λ2p2)

d
′

2(1)d1(1)A
′(1)α(α+ λ2p2) + d

′

2(1)α(α+ λ2p2)f
′
1(1, 1)N1(1)

+ δd
′

2(1)d1(1)λ2α(α+ λ2p2)E(G2)A
′(1)

+ d
′

2(1)f
′
3(1, 1)N2(1) + (α+ λ2p2)f

′
2(1, 1)N

′

3(1)


. (54)
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6. The Average Queue Length

The mean number of customers in the priority queue under the steady state is

Lq1 =
d

dz1
Wq1(z1, 1)|z1=1 (55)

and the mean number of customers in the orbit under the steady state is

Lq2 =
d

dz2
Wq2(1, z2)|z2=1, (56)

thus

Lq1 =
I0,0{Nr

′′′
(1)Dr

′′
(1)−Nr′′

(1)Dr
′′′
(1)}

3(Dr′′(1))2
, (57)

Lq2 =
I0,0{nr

′′′
(1)dr

′′
(1)− nr′′

(1)dr
′′′
(1)}

3(dr′′(1))2
. (58)

7. The Average Waiting Time in the Queue

Average waiting time of a customer in the high priority queue is

Wq1 =
Lq1
λ1

,

Average waiting time of a customer in the low priority orbit is

Wq2 =
Lq2
λ2

.

Where Lq1 and Lq2 have been found in equations (55) and (56).

8. Particular Cases

Case I.

If there are no high priority arrivals, no immediate feedback service to low priority customers, no
Bernoulli vacation, no working breakdown and statrting failure, i.e., λ1 = 0, r = 0, B1(.) = 0,

θ = 0, α = 0, δ = 1 and λ2 = λ then,

I0(z) =
I0,0{C(z)p2B(φ(z))φ(z) + λ2p2C(z)(1−B(φ(z)))− zφ(z)}{1−M(λ)}
zφ(z)− {B(φ(z))φ(z) + λp2(1−B(φ(z)))}{p2C(z) +M(λ)(1− C(z)p2)}

,

P 2(z) =
I0,0λ{(p2C(z)− 1)(1−B(φ(z)))M(λ)}

zφ(z)− {B(φ(z))φ(z) + λp2(1−B(φ(z)))}{p2C(z) +M(λ)(1− C(z)p2)}
.
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In this case if there is no collision, then, the result coincides with Kirupa and Udaya Chandrika
(2010).

Case II.

If there are no high priority arrivals, no immediate feedback service to low priority customers, no
Bernoulli vacation, no working breakdown, statrting failure and no collision. ie., λ1 = 0, r = 0,

B1(.) = 0, θ = 0, α = 0, δ = 1, p2 = 1 and λ2 = λ then,

I0(z) =
I0,0{C(z)B(φ(z))− z}{1−M(λ)}

z −B(φ(z)){C(z) +M(λ)(1− C(z))}
,

P 2(z) =
I0,0(1−B(φ(z)))M(λ)

B(φ(z)){C(z) +M(λ)(1− C(z))− z}
.

This result coincides with Gautam Choudhury, Jau-Chuan Ke (2012).

9. Numerical Results

The above queueing model is analysed numerically with the following assumptions. We consider
the service time for both normal and service breakdown period for high priority and low priority
services are equal and repair time for both normal and starting failure for high priority and low
priority customers are also equal that is µ1 = µ2 = µ, ν1 = ν2 = ν and β1 = β2 = β, Bernoulli
vacation time and repair time are exponentially distributed.

We assume arbitrary values to the parameters such that the stability condition is satisfied. MATLAB
software has been used to illustrate the results numerically.

Table 2 shows that for exponential distribution, when high priority arrival rate λ1 increases then the
idle probability I0,0 decreases, busy period, mean queue lengths, mean waiting time for customers
in the queues all increase for the values of α = 1 λ2 = 2, µ = 8, µw = 1, θ = 0.6, β = 1, ν =

1, η = 1, γ = 3, p2 = 0.3, E(I) = 1, r = 0.4, δ = 0.2 and E[I(I − 1)] = 0. We choose that λ1 takes
the values 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.3, 2.4 and 2.5.

Table 1 shows that for exponential distribution, when normal service rate µ increases then the idle
probability I0,0 increases, busy period, mean queue lengths, mean waiting time for customers in
the queues all decrease for the values of α = 2 λ2 = 1, λ1 = 2, µw = 3, θ = 0.6, β = 1, ν = 1, η =

1, γ = 3, p2 = 0.3, E(I) = 1, r = 0.4, δ = 0.2 and E[I(I − 1)] = 0. We choose that µ takes the
values 8.0, 8.2, 8.4, 8.6, 8.8 and 9.0.

All the trends shown by this tables and the graphs are as expected.

10. Conclusion

In this paper we studied retrial queueuing system with priority services, working breakdown, col-
lision, Bernoulli vacation, immediate feedback, starting failure and repair. The server provides
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Table 1. Effect of λ1 on various queue characteristics

Exponential Distribution
λ1 I0,0 ρ Lq1 Lq2 Wq1 Wq2

1.5 0.0939 0.9061 1.2777 13.9775 0.8518 6.9887
1.6 0.0936 0.9064 1.5248 15.5586 0.9530 7.7793
1.7 0.0931 0.9069 1.8241 17.2201 1.0730 8.6100
1.8 0.0925 0.9075 2.1909 18.9644 1.2172 9.4822
1.9 0.0918 0.9082 2.6463 20.7946 1.3928 10.3973
2.0 0.0911 0.9089 3.2193 22.7143 1.6097 11.3571
2.1 0.0902 0.9098 3.9514 24.7272 1.8816 12.3636
2.2 0.0893 0.9107 4.9021 26.8377 2.2282 13.4188
2.3 0.0884 0.9116 6.1600 29.0506 2.6783 14.5253
2.4 0.0874 0.9126 7.8601 31.3711 3.2750 15.6855
2.5 0.0864 0.9136 10.2156 33.8051 4.0863 16.9025

service for both high-priority customers and low-priority customers under non-preemptive priority
rule. We derived the probability generating functions of the number of customers in the high-
priority and low-priority customers using the supplementary variable technique. Average queue
size, the average waiting time for the high-priority and low-priority customers and numerical re-
sults are also obtained. The analytical results are validated numerically may be useful in many
real-life situations such as e-mail system, call centers, telecommunication networks, telephone
switching system, etc. to design the outputs. The introduction of working breakdown, collision,
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Table 2. Effect of µ on various queue characteristics

Exponential Distribution
µ I0,0 ρ Lq1 Lq2 Wq1 Wq2

8.0 0.1271 0.8729 12.4024 12.7922 6.2012 12.7922
8.2 0.1272 0.8728 11.9300 12.2769 5.9650 12.2769
8.4 0.1274 0.8726 11.4894 11.7945 5.7447 11.7945
8.6 0.1274 0.8726 11.0773 11.3419 5.5387 11.3419
8.8 0.1275 0.8725 10.6913 10.9165 5.3456 10.9165
9.0 0.1275 0.8725 10.3289 10.5159 5.1644 10.5159

starting failure and immediate feedback in presence of retrial queueing system with priority ser-
vices and Bernoulli vacations are the novelty of this investigation. Our model has practical real-
time application in computer processing system which processes messages through processor.
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