465 research outputs found

    Simultaneous slack budgeting and retiming for synchronous circuits optimization

    Full text link
    Abstract- With the challenges of growing functionality and scaling chip size, the possible performance improvements should be considered in the earlier IC design stages, which gives more freedom to the later optimization. Potential slack as an effective metric of possible performance improvements is considered in this work which, as far as we known, is the first work that maximizes the potential slack by retiming for synchronous sequential circuit. A simultaneous slack budgeting and incremental retiming algorithm is proposed for maximizing potential slack. The overall slack budget is optimized by relocating the FFs iteratively with the MIS-based slack estimation. Compared with the potential slack of a well-known min-period retiming, our algorithm improves potential slack averagely 19.6 % without degrading the circuit performance in reasonable runtime. Furthermore, at the expense of a small amount of timing performance, 0.52 % and 2.08%, the potential slack is increased averagely by 19.89 % and 28.16 % separately, which give a hint of the tradeoff between the timing performance and the slack budget.

    Fast algorithms for retiming large digital circuits

    Get PDF
    The increasing complexity of VLSI systems and shrinking time to market requirements demand good optimization tools capable of handling large circuits. Retiming is a powerful transformation that preserves functionality, and can be used to optimize sequential circuits for a wide range of objective functions by judiciously relocating the memory elements. Leiserson and Saxe, who introduced the concept, presented algorithms for period optimization (minperiod retiming) and area optimization (minarea retiming). The ASTRA algorithm proposed an alternative view of retiming using the equivalence between retiming and clock skew optimization;The first part of this thesis defines the relationship between the Leiserson-Saxe and the ASTRA approaches and utilizes it for efficient minarea retiming of large circuits. The new algorithm, Minaret, uses the same linear program formulation as the Leiserson-Saxe approach. The underlying philosophy of the ASTRA approach is incorporated to reduce the number of variables and constraints in this linear program. This allows minarea retiming of circuits with over 56,000 gates in under fifteen minutes;The movement of flip-flops in control logic changes the state encoding of finite state machines, requiring the preservation of initial (reset) states. In the next part of this work the problem of minimizing the number of flip-flops in control logic subject to a specified clock period and with the guarantee of an equivalent initial state, is formulated as a mixed integer linear program. Bounds on the retiming variables are used to guarantee an equivalent initial state in the retimed circuit. These bounds lead to a simple method for calculating an equivalent initial state for the retimed circuit;The transparent nature of level sensitive latches enables level-clocked circuits to operate faster and require less area. However, this transparency makes the operation of level-clocked circuits very complex, and optimization of level-clocked circuits is a difficult task. This thesis also presents efficient algorithms for retiming large level-clocked circuits. The relationship between retiming and clock skew optimization for level-clocked circuits is defined and utilized to develop efficient retiming algorithms for period and area optimization. Using these algorithms a circuit with 56,000 gates could be retimed for minimum period in under twenty seconds and for minimum area in under 1.5 hours

    Elastic systems

    Get PDF
    Elastic systems provide tolerance to the variations in computation and communication delays. The incorporation of elasticity opens new opportunities for optimization using new correct-by-construction transformations that cannot be applied to rigid non-elastic systems. The basics of synchronous and asynchronous elastic systems will be reviewed. A set of behavior-preserving transformations will be presented: retiming, recycling, early evaluation, variable-latency units and speculative execution. The application of these transformations for performance and power optimization will be discussed. Finally, a novel framework for microarchitectural exploration will be introduced, showing that the optimal pipelining of a circuit can be automatically obtained by using the previous transformations.Peer ReviewedPostprint (published version

    Power and memory optimization techniques in embedded systems design

    Get PDF
    Embedded systems incur tight constraints on power consumption and memory (which impacts size) in addition to other constraints such as weight and cost. This dissertation addresses two key factors in embedded system design, namely minimization of power consumption and memory requirement. The first part of this dissertation considers the problem of optimizing power consumption (peak power as well as average power) in high-level synthesis (HLS). The second part deals with memory usage optimization mainly targeting a restricted class of computations expressed as loops accessing large data arrays that arises in scientific computing such as the coupled cluster and configuration interaction methods in quantum chemistry. First, a mixed-integer linear programming (MILP) formulation is presented for the scheduling problem in HLS using multiple supply-voltages in order to optimize peak power as well as average power and energy consumptions. For large designs, the MILP formulation may not be suitable; therefore, a two-phase iterative linear programming formulation and a power-resource-saving heuristic are presented to solve this problem. In addition, a new heuristic that uses an adaptation of the well-known force-directed scheduling heuristic is presented for the same problem. Next, this work considers the problem of module selection simultaneously with scheduling for minimizing peak and average power consumption. Then, the problem of power consumption (peak and average) in synchronous sequential designs is addressed. A solution integrating basic retiming and multiple-voltage scheduling (MVS) is proposed and evaluated. A two-stage algorithm namely power-oriented retiming followed by a MVS technique for peak and/or average power optimization is presented. Memory optimization is addressed next. Dynamic memory usage optimization during the evaluation of a special class of interdependent large data arrays is considered. Finally, this dissertation develops a novel integer-linear programming (ILP) formulation for static memory optimization using the well-known fusion technique by encoding of legality rules for loop fusion of a special class of loops using logical constraints over binary decision variables and a highly effective approximation of memory usage

    Evaluating Architectural, Redundancy, and Implementation Strategies for Radiation Hardening of FinFET Integrated Circuits

    Get PDF
    In this article, authors explore radiation hardening techniques through the design of a test chip implemented in 16-nm FinFET technology, along with architectural and redundancy design space exploration of its modules. Nine variants of matrix multiplication were taped out and irradiated with neutrons. The results obtained from the neutron campaign revealed that the radiation-hardened variants present superior resiliency when either local or global triple modular redundancy (TMR) schemes are employed. Furthermore, simulation-based fault injection was utilized to validate the measurements and to explore the effects of different implementation strategies on failure rates. We further show that the interplay between these different implementation strategies is not trivial to capture and that synthesis optimizations can effectively break assumptions about the effectiveness of redundancy schemes

    A Survey on Flip Flop Replacement to Latch on Various Design

    Get PDF
    This paper presents survey for the replacement of flip flop to latches and the advantages of the latch based sequential design Flip flop are the major part of the design a sequential elements and this flip flop has more disadvantages as performance decreases and area increases. An alternate method to increase the performance and reduce the area size latches. Latches are used instead of flip flops in certain places to increase the performance and decrease the area

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    A Survey on Flip Flop Replacement to Latch on Various Design

    Get PDF
    This paper presents survey for the replacement of flip flop to latches and the advantages of the latch based sequential design Flip flop are the major part of the design a sequential elements and this flip flop has more disadvantages as performance decreases and area increases. An alternate method to increase the performance and reduce the area size latches. Latches are used instead of flip flops in certain places to increase the performance and decrease the area

    Elasticity and Petri nets

    Get PDF
    Digital electronic systems typically use synchronous clocks and primarily assume fixed duration of their operations to simplify the design process. Time elastic systems can be constructed either by replacing the clock with communication handshakes (asynchronous version) or by augmenting the clock with a synchronous version of a handshake (synchronous version). Time elastic systems can tolerate static and dynamic changes in delays (asynchronous case) or latencies (synchronous case) of operations that can be used for modularity, ease of reuse and better power-delay trade-off. This paper describes methods for the modeling, performance analysis and optimization of elastic systems using Marked Graphs and their extensions capable of describing behavior with early evaluation. The paper uses synchronous elastic systems (aka latency-tolerant systems) for illustrating the use of Petri nets, however, most of the methods can be applied without changes (except changing the delay model associated with events of the system) to asynchronous elastic systems.Peer ReviewedPostprint (author's final draft
    • …
    corecore