4,360 research outputs found

    An Insider Threat Categorization Framework for Automated Manufacturing Execution System

    Get PDF
    Insider threats become one of the most dangerous threats in the cyber world as compared to outsider as the insiders have knowledge of assets. In addition, the threats itself considered in-visible and no one can predict what, when and how exactly the threat launched. Based on conducting literature, threat in Automated Manufacturing Execution Systems (AMESs) can be divided into three principle factors. Moreover, there is no standard framework to be referring which exist nowadays to categorize such factors in order to identify insider threats possible features. Therefore, from the conducted literature a standard theoretical categorization of insider threats framework for AMESs has been proposed. Hence, three principle factors, i.e. Human, Systems and Machine have considered as major categorization of insider threats. Consequently, the possible features for each factor identified based on previous researcher recommendations. Therefore, via identifying possible features and categorize it into principle factors or groups, a standard framework could be derived. These frameworks will contribute more benefit specifically in the manufacturing field as a reference to mitigate an insider threat.   Keywords—automated manufacturing execution systems insider threats, factors and features, insider threat categorization framework

    Towards Fleet-wide Sharing of Wind Turbine Condition Information through Privacy-preserving Federated Learning

    Full text link
    Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in two case studies that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of up to 14 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets

    Automatic Fault Detection for Deep Learning Programs Using Graph Transformations

    Full text link
    Nowadays, we are witnessing an increasing demand in both corporates and academia for exploiting Deep Learning (DL) to solve complex real-world problems. A DL program encodes the network structure of a desirable DL model and the process by which the model learns from the training dataset. Like any software, a DL program can be faulty, which implies substantial challenges of software quality assurance, especially in safety-critical domains. It is therefore crucial to equip DL development teams with efficient fault detection techniques and tools. In this paper, we propose NeuraLint, a model-based fault detection approach for DL programs, using meta-modelling and graph transformations. First, we design a meta-model for DL programs that includes their base skeleton and fundamental properties. Then, we construct a graph-based verification process that covers 23 rules defined on top of the meta-model and implemented as graph transformations to detect faults and design inefficiencies in the generated models (i.e., instances of the meta-model). First, the proposed approach is evaluated by finding faults and design inefficiencies in 28 synthesized examples built from common problems reported in the literature. Then NeuraLint successfully finds 64 faults and design inefficiencies in 34 real-world DL programs extracted from Stack Overflow posts and GitHub repositories. The results show that NeuraLint effectively detects faults and design issues in both synthesized and real-world examples with a recall of 70.5 % and a precision of 100 %. Although the proposed meta-model is designed for feedforward neural networks, it can be extended to support other neural network architectures such as recurrent neural networks. Researchers can also expand our set of verification rules to cover more types of issues in DL programs
    • …
    corecore