48 research outputs found

    Rethinking Knowledge Graph Propagation for Zero-Shot Learning

    Get PDF
    Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.Comment: The first two authors contributed equally. Code at https://github.com/cyvius96/adgpm. To appear in CVPR 201

    Bilinear Graph Neural Network with Neighbor Interactions

    Full text link
    Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data. Existing efforts on GNN have largely defined the graph convolution as a weighted sum of the features of the connected nodes to form the representation of the target node. Nevertheless, the operation of weighted sum assumes the neighbor nodes are independent of each other, and ignores the possible interactions between them. When such interactions exist, such as the co-occurrence of two neighbor nodes is a strong signal of the target node's characteristics, existing GNN models may fail to capture the signal. In this work, we argue the importance of modeling the interactions between neighbor nodes in GNN. We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes. We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes. In particular, we specify two BGNN models named BGCN and BGAT, based on the well-known GCN and GAT, respectively. Empirical results on three public benchmarks of semi-supervised node classification verify the effectiveness of BGNN -- BGCN (BGAT) outperforms GCN (GAT) by 1.6% (1.5%) in classification accuracy.Codes are available at: https://github.com/zhuhm1996/bgnn.Comment: Accepted by IJCAI 2020. SOLE copyright holder is IJCAI (International Joint Conferences on Artificial Intelligence), all rights reserve

    Self-Constructing Graph Convolutional Networks for Semantic Labeling

    Get PDF
    Graph Neural Networks (GNNs) have received increasing attention in many fields. However, due to the lack of prior graphs, their use for semantic labeling has been limited. Here, we propose a novel architecture called the Self-Constructing Graph (SCG), which makes use of learnable latent variables to generate embeddings and to self-construct the underlying graphs directly from the input features without relying on manually built prior knowledge graphs. SCG can automatically obtain optimized non-local context graphs from complex-shaped objects in aerial imagery. We optimize SCG via an adaptive diagonal enhancement method and a variational lower bound that consists of a customized graph reconstruction term and a Kullback-Leibler divergence regularization term. We demonstrate the effectiveness and flexibility of the proposed SCG on the publicly available ISPRS Vaihingen dataset and our model SCG-Net achieves competitive results in terms of F1-score with much fewer parameters and at a lower computational cost compared to related pure-CNN based work. Our code will be made public soon.Comment: IGARSS-2020, code at: github.com/samleoqh/MSCG-Ne

    Context-Aware Zero-Shot Recognition

    Full text link
    We present a novel problem setting in zero-shot learning, zero-shot object recognition and detection in the context. Contrary to the traditional zero-shot learning methods, which simply infers unseen categories by transferring knowledge from the objects belonging to semantically similar seen categories, we aim to understand the identity of the novel objects in an image surrounded by the known objects using the inter-object relation prior. Specifically, we leverage the visual context and the geometric relationships between all pairs of objects in a single image, and capture the information useful to infer unseen categories. We integrate our context-aware zero-shot learning framework into the traditional zero-shot learning techniques seamlessly using a Conditional Random Field (CRF). The proposed algorithm is evaluated on both zero-shot region classification and zero-shot detection tasks. The results on Visual Genome (VG) dataset show that our model significantly boosts performance with the additional visual context compared to traditional methods

    Multi-view Self-Constructing Graph Convolutional Networks with Adaptive Class Weighting Loss for Semantic Segmentation

    Get PDF
    We propose a novel architecture called the Multi-view Self-Constructing Graph Convolutional Networks (MSCG-Net) for semantic segmentation. Building on the recently proposed Self-Constructing Graph (SCG) module, which makes use of learnable latent variables to self-construct the underlying graphs directly from the input features without relying on manually built prior knowledge graphs, we leverage multiple views in order to explicitly exploit the rotational invariance in airborne images. We further develop an adaptive class weighting loss to address the class imbalance. We demonstrate the effectiveness and flexibility of the proposed method on the Agriculture-Vision challenge dataset and our model achieves very competitive results (0.547 mIoU) with much fewer parameters and at a lower computational cost compared to related pure-CNN based work. Code will be available at: github.com/samleoqh/MSCG-NetComment: 7-page, MSCG-Net, CVPRW-202

    Graph Neural Networks and Reinforcement Learning for Behavior Generation in Semantic Environments

    Full text link
    Most reinforcement learning approaches used in behavior generation utilize vectorial information as input. However, this requires the network to have a pre-defined input-size -- in semantic environments this means assuming the maximum number of vehicles. Additionally, this vectorial representation is not invariant to the order and number of vehicles. To mitigate the above-stated disadvantages, we propose combining graph neural networks with actor-critic reinforcement learning. As graph neural networks apply the same network to every vehicle and aggregate incoming edge information, they are invariant to the number and order of vehicles. This makes them ideal candidates to be used as networks in semantic environments -- environments consisting of objects lists. Graph neural networks exhibit some other advantages that make them favorable to be used in semantic environments. The relational information is explicitly given and does not have to be inferred. Moreover, graph neural networks propagate information through the network and can gather higher-degree information. We demonstrate our approach using a highway lane-change scenario and compare the performance of graph neural networks to conventional ones. We show that graph neural networks are capable of handling scenarios with a varying number and order of vehicles during training and application
    corecore