661 research outputs found

    Motion Capture Data Completion via Truncated Nuclear Norm Regularization

    Get PDF
    The objective of motion capture (mocap) data completion is to recover missing measurement of the body markers from mocap. It becomes increasingly challenging as the missing ratio and duration of mocap data grow. Traditional approaches usually recast this problem as a low-rank matrix approximation problem based on the nuclear norm. However, the nuclear norm defined as the sum of all the singular values of a matrix is not a good approximation to the rank of mocap data. This paper proposes a novel approach to solve mocap data completion problem by adopting a new matrix norm, called truncated nuclear norm. An efficient iterative algorithm is designed to solve this problem based on the augmented Lagrange multiplier. The convergence of the proposed method is proved mathematically under mild conditions. To demonstrate the effectiveness of the proposed method, various comparative experiments are performed on synthetic data and mocap data. Compared to other methods, the proposed method is more efficient and accurate

    Human Motion Capture Data Tailored Transform Coding

    Full text link
    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed

    Learning by correlation for computer vision applications: from Kernel methods to deep learning

    Get PDF
    Learning to spot analogies and differences within/across visual categories is an arguably powerful approach in machine learning and pattern recognition which is directly inspired by human cognition. In this thesis, we investigate a variety of approaches which are primarily driven by correlation and tackle several computer vision applications

    Rain Removal in Traffic Surveillance: Does it Matter?

    Get PDF
    Varying weather conditions, including rainfall and snowfall, are generally regarded as a challenge for computer vision algorithms. One proposed solution to the challenges induced by rain and snowfall is to artificially remove the rain from images or video using rain removal algorithms. It is the promise of these algorithms that the rain-removed image frames will improve the performance of subsequent segmentation and tracking algorithms. However, rain removal algorithms are typically evaluated on their ability to remove synthetic rain on a small subset of images. Currently, their behavior is unknown on real-world videos when integrated with a typical computer vision pipeline. In this paper, we review the existing rain removal algorithms and propose a new dataset that consists of 22 traffic surveillance sequences under a broad variety of weather conditions that all include either rain or snowfall. We propose a new evaluation protocol that evaluates the rain removal algorithms on their ability to improve the performance of subsequent segmentation, instance segmentation, and feature tracking algorithms under rain and snow. If successful, the de-rained frames of a rain removal algorithm should improve segmentation performance and increase the number of accurately tracked features. The results show that a recent single-frame-based rain removal algorithm increases the segmentation performance by 19.7% on our proposed dataset, but it eventually decreases the feature tracking performance and showed mixed results with recent instance segmentation methods. However, the best video-based rain removal algorithm improves the feature tracking accuracy by 7.72%.Comment: Published in IEEE Transactions on Intelligent Transportation System

    Data-Driven Image Restoration

    Get PDF
    Every day many images are taken by digital cameras, and people are demanding visually accurate and pleasing result. Noise and blur degrade images captured by modern cameras, and high-level vision tasks (such as segmentation, recognition, and tracking) require high-quality images. Therefore, image restoration specifically, image deblurring and image denoising is a critical preprocessing step. A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. Existing image deblurring techniques often rely on generic image priors that only help recover part of the frequency spectrum, such as the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does class-specific information offer an advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the band-pass filter responses and incorporate it into a deblurring strategy. Specifically, we show that the subspace of band-pass filtered images and their intensity distributions serve as useful priors for recovering image frequencies. Next, we present a novel image denoising algorithm that uses external, category specific image database. In contrast to existing noisy image restoration algorithms, our method selects clean image “support patches” similar to the noisy patch from an external database. We employ a content adaptive distribution model for each patch where we derive the parameters of the distribution from the support patches. Our objective function composed of a Gaussian fidelity term that imposes category specific information, and a low-rank term that encourages the similarity between the noisy and the support patches in a robust manner. Finally, we propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules (CIMM) for image denoising. The CIMM structure possesses two distinctive features that are important for the noise removal task. Firstly, each residual unit employs identity mappings as the skip connections and receives pre-activated input to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, each neuron in the last convolution layer of each module can observe the full receptive field of the first layer

    Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data

    Get PDF
    The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of technology, raw data is invariably affected by a variety of inherent and external disturbing factors, such as the stochastic nature of the measurement processes or challenging sensing conditions, which may cause, e.g., noise, blur, geometrical distortion and color aberration. In this thesis we introduce two filtering frameworks for video and volumetric data restoration based on the BM3D grouping and collaborative filtering paradigm. In its general form, the BM3D paradigm leverages the correlation present within a nonlocal emph{group} composed of mutually similar basic filtering elements, e.g., patches, to attain an enhanced sparse representation of the group in a suitable transform domain where the energy of the meaningful part of the signal can be thus separated from that of the noise through coefficient shrinkage. We argue that the success of this approach largely depends on the form of the used basic filtering elements, which in turn define the subsequent spectral representation of the nonlocal group. Thus, the main contribution of this thesis consists in tailoring specific basic filtering elements to the the inherent characteristics of the processed data at hand. Specifically, we embed the local spatial correlation present in volumetric data through 3-D cubes, and the local spatial and temporal correlation present in videos through 3-D spatiotemporal volumes, i.e. sequences of 2-D blocks following a motion trajectory. The foundational aspect of this work is the analysis of the particular spectral representation of these elements. Specifically, our frameworks stack mutually similar 3-D patches along an additional fourth dimension, thus forming a 4-D data structure. By doing so, an effective group spectral description can be formed, as the phenomena acting along different dimensions in the data can be precisely localized along different spectral hyperplanes, and thus different filtering shrinkage strategies can be applied to different spectral coefficients to achieve the desired filtering results. This constitutes a decisive difference with the shrinkage traditionally employed in BM3D-algorithms, where different hyperplanes of the group spectrum are shrunk subject to the same degradation model. Different image processing problems rely on different observation models and typically require specific algorithms to filter the corrupted data. As a consequent contribution of this thesis, we show that our high-dimensional filtering model allows to target heterogeneous noise models, e.g., characterized by spatial and temporal correlation, signal-dependent distributions, spatially varying statistics, and non-white power spectral densities, without essential modifications to the algorithm structure. As a result, we develop state-of-the-art methods for a variety of fundamental image processing problems, such as denoising, deblocking, enhancement, deflickering, and reconstruction, which also find practical applications in consumer, medical, and thermal imaging
    • …
    corecore