664 research outputs found

    Resting-state functional connectivity remains unaffected by preceding exposure to aversive visual stimuli

    Get PDF
    While much is known about immediate brain activity changes induced by the confrontation with emotional stimuli, the subsequent temporal unfolding of emotions has yet to be explored. To investigate whether exposure to emotionally aversive pictures affects subsequent resting-state networks differently from exposure to neutral pictures, a resting-state fMRI study implementing a two-group repeated-measures design in healthy young adults (N = 34) was conducted. We focused on investigating (i) patterns of amygdala whole-brain and hippocampus connectivity in both a seed-to-voxel and seed-to-seed approach, (ii) whole-brain resting-state networks with an independent component analysis coupled with dual regression, and (iii) the amygdala's fractional amplitude of low frequency fluctuations, all while EEG recording potential fluctuations in vigilance. In spite of the successful emotion induction, as demonstrated by stimuli rating and a memory-facilitating effect of negative emotionality, none of the resting-state measures was differentially affected by picture valence. In conclusion, resting-state networks connectivity as well as the amygdala's low frequency oscillations appear to be unaffected by preceding exposure to widely used emotionally aversive visual stimuli in healthy young adults

    Rat Model of Pre-Motor Parkinson\u27s Disease: Behavioral and MRI Characterization.

    Get PDF
    Background: Parkinson\u27s disease (PD) is a chronic, progressive, neurodegenerative disorder with currently no known cure. PD has a significant impact on quality of life of the patients, as well as, the caregivers and family members. It is the second most common cause of chronic neurological disability in US and Europe. According to National Parkinson\u27s Foundation, there are almost 1 million patients in the Unites States and 50,000 to 60,000 new cases of PD are diagnosed each year. The total number of cases of PD is predicted to double by 2030. The annual cost associated with this disease is estimated to be $10.8 billion in the United States, including the cost of treatment and the cost of the disability. Although it is primarily thought of as a movement-disorder and is clinically diagnosed based on motor symptoms, non-motor symptoms such as cognitive and emotional deficits are thought to precede the clinical diagnosis by almost 20 years. By the time of clinical diagnosis, there is 80% loss in the dopamine content in the striatum and 50% degeneration of the substantia nigra dopamine cells. The research presented in this thesis was an attempt to develop an animal model of PD in its pre-motor stages. Such a model would allow us to develop pre-clinical markers for PD, and facilitate the development and testing of potential treatment strategies for the non-motor symptoms of the disorder. Specific Aims: There were five specific aims for this research: * The first specific aim dealt with development of a rat model of PD with slow, progressive onset of motor deficits, determination of timeline for future studies, and quantification the dopamine depletion in this model at a pre-motor stage. * The second and the third specific aims focused on testing for emotional (aversion) deficits and cognitive (executive functioning) deficits in this rat model at the 3 week timepoint determined during specific aim 1. * The fourth specific aim was to determine the brain network changes associated with the behavioral changes observed our rat model using resting state connectivity as a measure. * The fifth and the final specific aim was to test sodium butyrate, a drug from the histone deacetylase inhibitor family, as a potential treatment option for cognitive deficits in PD. Results: The 6-hydroxy dopamine based stepwise striatal lesion model of pre-motor PD, developed during this research, exhibits delayed onset of Parkinsonian gait like symptoms by week 4 after the lesions. At 3 weeks post lesion (3WKPD), the rats exhibit 27% reduction in striatal dopamine and 23%reduction in substantia nigra dopamine cells, with lack of any apparent motor deficits. The 3WKPD rats also exhibited changes in aversion. The fMRI study with the aversive scent pointed towards possible amygdala dysfunction sub-serving the aversion deficits. The executive function deficits tested using a rat analog of the Wisconsin card sorting test, divulged an extra-dimensional set shifting deficit in the 3WKPD rats similar to those reported in PD patients. The resting state connectivity study indicated significant changes in the 3WKPD rats compared to age matched controls. We observed increased overall connectivity of the motor cortex and increased CPu connectivity with prefrontal cortex, cingulate cortex, and hypothalamus in the 3WKPD rats compared to the controls. These observations parallel the observations in unmedicated early-stage PD patients. We also observed negative correlation between amygdala and prefrontal cortex as reported in humans. This negative correlation was lost in 3WKPD rats. Sodium butyrate treatment, tested in the cognitive deficit study, was able to ameliorate the extra-dimensional set shifting deficit observed in this model. This treatment also improved the attentional set formation. Conclusion: Taken together, our observations indicate that, the model of pre-motor stage PD developed during this research is a very high face validity rat model of late Braak stage 2 or early Braak stage 3 PD. Sodium butyrate was able to alleviate the cognitive deficits observed in our rat model. Hence, along with the prior reports of anti-depressant and neuroprotective effects of this drug, our results point towards a possible treatment strategy for the non-motor deficits of PD

    Contextual Modulation of Associative Learning and the Role of Resting State Brain Activity in Posttraumatic Stress Disorder

    Get PDF
    In the present dissertation we addressed neuronal changes in PTSD using an activationbasedand a resting state-based approach with a special focus on brain areas involved in abnormal activation in PTSD such as amygdala, hippocampus, ventromedial prefrontalcortex (vmPFC), dorsal anterior cingulate cortex (dACC) and insula. Our attention was directed to the mechanisms mediating increased return of fear and the association of PTSD symptoms with aberrant brain activity as well as aberrant resting state connectivity. In both studies we compared PTSD patients with trauma-exposed but unaffected controls (non-PTSD) and trauma-naïve healthy controls (HC). In the first study, subjects underwent an ABC fear conditioning and extinction procedure, where two CSs were presented in front of virtual reality scenes. One of them (CS+) was paired with a slightly painful electrical stimulation (US) during acquisition, whereas the other one was never paired with the US (CS-). During extinction, there were no CS-US pairings. After acquisition (context A) and extinction (context B), the participants were brought to a novel context C and again confronted with the CSs. Selfreports, skin conductance responses (SCR) and functional magnetic resonance imaging (fMRI) were measured simultaneously. We found elevated return of fear in the PTSD patients indicated by larger differential SCR compared to non-PTSD and HC and larger differential amygdala and hippocampus activity compared to HC. Increased amygdala activation was positively correlated with numbing and vmPFC activity was positively correlated with behavioral avoidance even though there were no functional group differences in this region of interest. Additionally, PTSD patients failed to appropriately reduce subjective arousal to the CS- over the course of the experiment and to the CS+ during extinction. Taken together, the results of study 1 support the hypothesis that PTSD is characterized by aberrant activity within regions of the neurocircuitry model, which leads to deficient extinction maintenance. Furthermore, our data confirm a general inability of PTSD patients to correctly identify safety signals and modulate fear responses based on this information. Such dysfunctional mechanisms seem to contribute to PTSD symptoms and represent a probable cause for relapse, whereas resilient subjects appear to benefit from protective mechanisms. In the second study, subjects underwent a resting state scan and functional connectivity was analyzed using an amygdala seed and independent component analysis (ICA) as well as correlations with symptom severity. The seed-based approach revealed increased left amygdala – the left insula coupling in PTSD versus nonPTSD, which positively correlated with re-experiencing intensity. Compared to HC, both trauma experienced groups showed higher positive correlations of the left amygdala and the right putamen as well as the right insula. The ICA did not reveal any group differences, i.e. in DMN connectivity. In summary, study 2 indicates that altered amygdala-insula coupling and decreased amygdala-putamen coupling, but not DMN connectivity, contribute to the pathophysiology of PTSD. Hyperconnectivity between the left amygdala and the left insula differentiated patients from resilient subjects and was linked to re-experiencing intensity. This result suggests that a stronger functional link between somatic sensations and emotional appraisal might lead to increased anticipation of negative events in PTSD, which potentially explains characteristic symptoms such as hyperarousal and negative alterations in mood and cognition

    Annotated Bibliography: Anticipation

    Get PDF

    COCAINE-BASED SIGNALING CHANGES IN THE NUCLEUS ACCUMBENS, LATERAL HABENULA, AND THALAMUS

    Get PDF
    The brain is an extraordinarily complex and organized system. Environmental information reaches the brain via the sensory systems, and this information is processed to interpret and make sense of the world. The mechanisms used to transmit information between neurons are also involved in directing and modifying the strength of these connections. Thus, the brain is always in a plastic state and has the ability to both interpret neural information and be shaped by it. Cocaine addiction is a progressive condition highlighted by maladaptive and compulsive behavior that develops after exposure to cocaine. Thus, cocaine exposure changes neural processing in the brain in ways that lead to the addicted state. The work presented here examines how neural circuits in addiction-related brain regions, such as those involved in motivated behavior and translating emotion into action, change at the cellular and molecular levels in response to cocaine exposure. The results uncover a variety of novel cocaine-induced changes in neural circuitry and processing which likely contribute to the development and/or maintenance of addiction

    Tracking fear learning with pupillometry

    Get PDF

    The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation during Adulthood and Critical Stages of Development

    Get PDF
    The prefrontal cortex (PFC) plays a pivotal role in regulating our emotions. The importance of ventromedial regions in emotion regulation, including the ventral sector of the medial PFC, the medial sector of the orbital cortex and subgenual cingulate cortex, have been recognized for a long time. However, it is increasingly apparent that lateral and dorsal regions of the PFC, as well as neighbouring dorsal anterior cingulate cortex, also play a role. Defining the underlying psychological mechanisms by which these functionally distinct regions modulate emotions and the nature and extent of their interactions is a critical step towards better stratification of the symptoms of mood and anxiety disorders. It is also important to extend our understanding of these prefrontal circuits in development. Specifically, it is important to determine whether they exhibit differential sensitivity to perturbations by known risk factors such as stress and inflammation at distinct developmental epochs. This Special Issue brings together the most recent research in humans and other animals that addresses these important issues, and in doing so, highlights the value of the translational approach

    Monitoring Self & World: A Novel Network Model of Hallucinations in Schizophrenia

    Get PDF
    Schizophrenia (Sz) is a psychotic disorder characterized by multifaceted symptoms including hallucinations (e.g. vivid perceptions that occur in the absence of external stimuli). Auditory hallucinations are the most common type of hallucination in Sz; roughly 70 percent of Sz patients report hearing voices specifically (e.g. auditory verbal hallucinations). Prior functional magnetic resonance imaging (fMRI) studies have provided initial insights into the neural mechanisms underlying hallucinations, implicating an anatomically-distributed network of cortical (sensory, insular, and inferior frontal cortex) and subcortical (hippocampal, striatal) regions. Yet, it remains unclear how this distributed network gives rise to hallucinations impacting different sensory modalities. The insular cortex is a central hub of a larger functional network called the salience network. By regulating default-mode network activity (associated with internally-directed thought), and fronto-parietal network activity (associated with externally-directed attention), the salience network is able to orient our attention to the most pressing matters (e.g. bodily pain, environmental threats, etc.). Abnormal salience monitoring is thought to underlie Sz symptoms; improper monitoring of salient internal events (e.g. auditory-verbal imagery, visual images) plausibly generates hallucinations, but no prior study has directly tested this hypothesis by exploring how sensory networks interact with the salience network in the context of hallucinations in Sz. This dissertation project combined exploratory and hypothesis-driven approaches to delineate functional neural markers of Sz symptoms. The first analysis explored the relationship between Sz symptom expression and altered functional communication between salience and default-mode networks. The second analysis explored fMRI signal fluctuations associated with modality-dependent (e.g. auditory, visual) hallucinations. The final analysis tested the hypothesis that abnormal functional communication between salience and sensory (e.g. auditory, visual) networks underlies hallucinations in Sz. The results suggest that there are three key players in the generation of auditory hallucinations in Sz: auditory cortex, hippocampus, and salience network. A novel functional network model of auditory hallucinations is proposed to account for these findings
    • 

    corecore