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Functional organisation of behavioural inhibitory control mechanisms in cortico-basal ganglia 

circuitry: implications for stimulant use disorder  

Peter Zhukovsky 

SUMMARY 

The neural and psychological mechanisms of inhibitory control processes were investigated, 

focusing on the cortico-basal ganglia circuits in rats and humans. These included behavioural 

flexibility, ‘waiting’ and ‘stopping’ impulsivity and involved serial spatial reversal learning 

task in rodents, and in humans, premature responses in the Monetary Incentive Delay (MID) 

task and the stop-signal reaction time task. Chapter 2 and Chapter 3 focus on individual 

differences in behavioural flexibility in rats while Chapter 4, Chapter 5 and Chapter 6 

consider how inhibitory control mechanisms are affected by the psychostimulant drug 

cocaine in both rats and humans.  

As reported in Chapter 2, systemic modulation of monoaminergic transmission by 

monoamine oxidase A (MAO-A) inhibitors enhanced reversal learning performance, 

selectively by decreasing the lose-shift probability, thereby implicating a role for dopamine, 

serotonin and noradrenaline in facilitating learning from negative feedback. Resting state 

functional magnetic resonance imaging (fMRI) revealed enhanced functional connectivity of 

the orbitofrontal and motor cortices as a correlate of flexible reversal learning performance, 

consistent with elevated levels of monoamines in these region (Chapter 3). Having clarified 

the mechanisms underlying behavioural flexibility in rats, Chapter 4 reports that escalation of 

intravenous cocaine self-administration induces behavioural inflexibility in rats even after a 

relatively short period of cocaine intake. Computational models, including a reinforced and 

Bayesian learner, revealed a lack of exploitation of the learned response-outcome 

relationships in cocaine-exposed rats.  

Chapter 5 focused on impulse control in human volunteers, identifying the striatal and 

cingulo-opercular networks as substrates of impulsive, premature responding in healthy 
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volunteers, stimulant-dependent individuals and their unaffected siblings. Loss of impulse 

control was elicited by different incentives for drug-free participants as opposed to drug 

users. Drug cues elicited striatal activation and increased premature responses in the 

stimulant-dependent group compared with the control group. In contrast, the ventral striatum 

was linked to incentive specific activation to reward anticipation. Task-based fMRI 

demonstrated that interactions between dorsal striatum and cingulo-opercular “cold 

cognition” networks underlie failures of impulse control in the control, at-risk and stimulant-

dependent groups. However, whereas the cingulo-opercular networks were associated with 

premature responding in all groups, the reward system was activated specifically by the drug 

incentive cues in the stimulant group, and by monetary incentive cues in the drug-free groups.  

Chapter 6 presents evidence that corticostriatal functional and effective connectivity 

in an overlapping network that includes the anterior cingulate and inferior frontal cortices as 

well as motor cortex, the subthalamic nucleus and dorsal striatum, is critical to stopping 

impulse control in both control and cocaine individuals. No stopping efficiency impairments 

were observed in the cocaine-dependent group. Nevertheless, lower structural corticostriatal 

connectivity measured using diffusion MRI was associated with response execution 

impairments in cocaine participants performing a stop-signal reaction time task. Further, 

response execution was rescued by the selective noradrenaline reuptake inhibitor 

atomoxetine, which also increased corticostriatal effective connectivity.  

Finally, increased impulsivity and behavioural inflexibility seen in stimulant use 

disorder in Chapter 5 and Chapter 4, respectively, were not observed in the endophenotype at 

risk for developing stimulant abuse but were rather a consequence of stimulant abuse. These 

results further clarify the monoaminergic substrates of behavioural flexibility and specify the 

neural and computational impairments in inhibitory control induced by stimulant dependence.  
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Chapter 1 

General introduction 

Impulsive and compulsive behaviours are thought to lie at the core of disorders such as 

trichotillomania, pathological gambling, attention deficit hyperactivity disorder (ADHD) and 

substance use disorder (Chamorro et al, 2012; Fineberg et al, 2014). These behaviours can 

take very different forms in different disorders and may have different underlying cognitive 

and biological mechanisms (Fineberg et al, 2010). In order to understand aberrant impulsivity 

and compulsivity, we need to understand cognitive mechanisms underlying healthy impulse 

control, behavioural flexibility and the associated neural function. Once we understand how 

organisms adjust to changing contingencies and control their impulses to respond to 

environmental cues, we can investigate how these same processes deviate from healthy 

function.   

Lack of impulse control is thought to lie at the core of substance use disorder, 

behavioural addictions, ADHD, mania, and motor tic disorders such as Tourette’s (Grant and 

Chamberlain, 2014; Robbins et al, 2012). Inhibitory control is one of the key impairments in 

substance use disorder (Volkow et al, 2016), with both clinical and preclinical studies 

providing a wealth of evidence for impaired executive control, supported by the prefrontal 

cortex (PFC) (Goldstein and Volkow, 2011). Insights into the dysexecutive nature of 

substance misuse have been incorporated in the Diagnostic Statistical Manual 5 (American 

Psychiatric Association, 2013) criteria for substance use disorder such as “Persistent attempts 

or one or more unsuccessful efforts made to cut down or control substance use” and 

“Substance is often taken in larger amounts and/or over a longer period than the patient 

intended”. However, inhibitory control is multifaceted, with different tasks that attempt to 

measure it likely tapping into different aspects of inhibition and impulsivity (Figure 1.1, top 

panel). Studying different aspects of response inhibition and their inter-relationships will 
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unquestionably be advantageous to our understanding of the multifaceted impairments of 

impulsive-compulsive disorders.  

 

Figure 1.1. Inhibitory control: psychological construct and control impairments in disorders 

of impulsivity and compulsivity. Figure adapted from (Robbins et al, 2012). 

 

Inhibitory response control 

Inhibitory control is a process by which organisms adjust their behaviour guided by their 

goals and plans, often to meet task demands (Diamond, 2013). This general notion of control 

includes many different cognitive processes such as directed attention, maintaining 

information in the working memory, conflict detection and adjustment, some of which are 

shown in the bottom panel of Figure 1.1 (Bechara and Van Der Linden, 2005; Boschin et al, 

2017; Buckley et al, 2009; Buckley and Sigala, 2010; Cieslik et al, 2015; Kuwabara et al, 

2014; Van der Linden and Andres, 2001; Mansouri et al, 2014; Norman and Shallice, 1986), 

and is often contrasted with automated behaviour that does not require rapid, flexible 
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adjustments. Successful interplay of these cognitive processes allows organisms to inhibit 

impulsive responses and adjust their behaviour in response to reinforcement feedback.  

 

Models of inhibitory control propose a role for anterior cingulate cortex (ACC) in monitoring 

and engaging the lateral PFC (Botvinick et al, 2004; Kerns et al, 2004; Matsumoto and 

Tanaka, 2004), which in turn is responsible for maintaining and allocating resources. In 

support of this role of the PFC, Montague et al, (2004) provide three lines of evidence: 

firstly, PFC displays sustained activity despite distracting information; secondly, 

neuropsychological evidence implicates the PFC in instrumental behaviour; and finally, the 

PFC has been found to be activated by representations of goal information. Dopaminergic 

signals from the basal ganglia likely interact with the PFC regions during learning and may 

have a gating function, placing restrictions on which information can update goal 

representations in the PFC (Botvinick and Cohen, 2014). Neural circuits underlying different 

aspects of response inhibition and related cognitive processes such as value learning are 

summarised in Figure 1.2. 

 

Reversal Learning – Reinforcement models 

The first example of inhibitory control is the behavioural adjustment to changing 

contingencies by learning from feedback, often studied in reversal learning paradigms. In its 

simplest form, a reversal task presents the subject with a series of trials, each of which offers 

two choices, only one of which results in a reward. The relationship between the response 

and reward could be deterministic (either P(reward|choice c)=1 or P(reward|choice c)=0) or 

probabilistic (either 0.5<P(reward|choice c)<1 or  0<P(reward|choice c)<0.5), depending on 

the difficulty of the task. Once the subject’s performance is stabilized and they opt for the 

rewarded choice, the contingency is reversed, and the previously rewarded choice is no 
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longer rewarded in a deterministic setting. In probabilistic versions of the task, the choice 

with higher likelihood of being followed by a reward simply becomes associated with a lower 

likelihood to be rewarded.  

Solving a reversal task requires one to learn the value of each choice, forming 

accurate representations of the response-outcome (R-O) associations (Izquierdo et al, 2016). 

However, successful reversal performance also requires behavioural adjustments based on the 

representations of the R-O contingencies. To adjust their behaviour following a contingency 

reversal, organisms must inhibit the previously rewarded response and instead opt for the 

now rewarded response, thus exerting inhibitory control over their behaviour. Detection of 

conflict between the task goal of obtaining the reward and the erroneous choice that was not 

rewarded, along with appropriate behavioural adjustment are at the core of reversal tasks. 

Importantly, if several reversals occur, an organism’s performance can be improved by 

forming appropriate prior expectations of the probability that changes in R-O contingencies 

will occur in general. These higher-level expectations on environment volatility will change 

how quickly an organism will adjust their expectation of a response being rewarded after 

receiving feedback. 

Learning and translating R-O representations into action can also be formalized in a 

trial-by-trial computational model. Two of the most prominent algorithms that attempt to 

model how organisms learn about environmental contingencies are a reinforced learner (Daw, 

2009; Niv et al, 2012) and a Bayesian learner (Yu and Cohen, 2009) 

(http://hannekedenouden.ruhosting.nl/RLtutorial/html/BayesModel1.html). A link between 

expected values of each choice and probability of choosing an action given the value placed 

on that action is usually provided by the softmax rule (Wilson et al, 2014). This normalised 

exponential function includes an inverse temperature parameter which can account for a 

degree of exploration of those options that are considered disadvantageous. Further, softmax 

http://hannekedenouden.ruhosting.nl/RLtutorial/html/BayesModel1.html


15 
 

can also model choice autocorrelation, a measure of ‘stickiness’ to the previous choice. 

Although these formal models do not specifically address response inhibition, they can 

differentiate between value learning and behavioural adjustment guided by learned values. 

For instance, a reinforced learner can display the same learning rate, but show a lack of 

exploitation or particularly high choice autocorrelation in their behaviour.  

Much is known about neural substrates of reversal learning and the cognitive 

processes that underlie reversal performance. Functional neuroimaging studies in humans and 

lesion studies in animals provide converging evidence for a causal role of the PFC, most 

notably the mPFC and the orbitofrontal cortex (OFC) as well as both dorsal and ventral 

striatum and amygdala in reversal learning (Izquierdo et al, 2016). Medial PFC has been 

linked to an increased attentional load in reversal tasks (Brigman and Rothblat, 2008; Bussey 

et al, 1997) and is more commonly implicated in humans than rodent studies. Further, 

evidence for a causal role of the basolateral amygdala is also equivocal (Churchwell et al, 

2009; Izquierdo et al, 2013; Ochoa et al, 2015; Schoenbaum et al, 2003; Stalnaker et al, 

2007), as it is thought to play a larger role in tasks where outcome-specific representations 

are needed to solve the task and may be less important in simpler two-choice deterministic 

settings (Izquierdo et al, 2016).  

Although much is known about the involvement of dopaminergic and serotonergic 

circuits in modulation of reversal learning performance (Clarke et al, 2011; Izquierdo et al, 

2016; Robbins and Arnsten, 2009), it is unclear how monoamine synthesis and 

decomposition affect reversal performance. Serotonergic but not dopaminergic signalling has 

been shown to be critical to reversal performance (Clarke et al, 2004, 2005, 2007), consistent 

with a role for serotonin in learning from negative feedback and response inhibition more 

generally (Cools et al, 2008, 2011). However, the role of an important neurochemical 

modulator of monoaminergic neurotransmission, the monoamine oxidase (MAO) enzyme, in 
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reversal learning is unclear. Since MAO modulates serotonergic, noradrenergic and 

dopaminergic neurotransmission (Stahl, 2015) and serotonergic transmission plays a causal 

role in behavioural flexibility, inhibition of MAO is likely to affect behavioural flexibility. 

This prediction is specifically investigated in Chapter 2.  

In order to understand how functional organisation of cortico-basal ganglia circuits 

allows organisms to successfully solve reversal tasks, we must understand how computational 

models of reward learning could be implemented within a biological context. Computational 

models can serve as a useful link between neurophysiology and behaviour as they can be 

constrained by neural signal data, but also provide a window on how a formal system might 

produce behaviours similar to those we observe in primates and rodents.  

Electrophysiology studies suggest that OFC neurons are involved in signalling 

predictions based on the reward number or identity (Schoenbaum et al, 2009; Stalnaker et al, 

2009a, 2018), while neurons in the ventral tegmental area are thought to signal prediction 

errors or discrepancies between expected reward and delivered reward. However, OFC has 

also been proposed to represent task space, with reinforced learning happening elsewhere in 

the brain, most notably in the basal ganglia (Schuck et al, 2017; Wilson et al, 2014). In this 

paradigm, OFC is thought to encode cognitive maps that allow one to stop responding for an 

outcome that is no longer rewarding.  

Ventral striatum has been suggested to take on the role of a ‘critic’ in an actor-critic 

model (Montague et al, 2004), whereby prediction error signals would be encoded in the 

ventral striatum (Doherty et al, 2003; Schultz, 2016a). Importantly, the same 

electrophysiological prediction error signals are also found in the ventral tegmental area 

(VTA, Schultz et al, 1997). Dorsal striatum on the other hand is thought to take on the role of 

an ‘actor’, representing reward outcomes and acting to select the actions that are most likely 

to result in rewards (O’Doherty et al, 2004). In rodents, dorsomedial and dorsolateral striatal 



17 
 

lesions cause the opposite patterns of impairment in rodents’ ability to select actions leading 

to rewards (Castane et al, 2010; Grospe et al, 2018; Klanker et al, 2017; Malvaez and 

Wassum, 2018; Tricomi et al, 2009), with DMS lesions biasing behaviour towards habits and 

effectively making actions no longer directed toward obtaining rewards and dorsolateral 

striatum lesions abolishing habits.  

Habitual behaviour measured by outcome devaluation procedures can be thought of as 

a result of a lack of a model-based task space representation. After outcome devaluation, 

model-based representations would allow an organism to immediately update the value of a 

certain choice based on the now diminished value of the outcome and the conditional 

probability of this outcome given that choice. Wilson et al (2014) suggest a role for the 

dorsolateral striatum (action value coding), ventral striatum (VS, state-action value coding) 

and VTA (prediction error coding) in model-free reinforced learning (e.g. (Rescorla and 

Wagner, 1972) or temporal difference reinforced learning (Sutton and Matheus, 1988)), 

whereas DMS and VS together with the task state mapping in the OFC are thought to 

subserve model-based learning.  

This computational account of the role of the highly interconnected cortico-basal 

ganglia circuitry (Haber, 2016) has great explanatory power as it can account for how the 

brain can use predictions and prediction errors to learn and successfully encode values of 

actions and task states (Stalnaker et al, 2015). The interplay between these more fine-grained 

cognitive functions can give rise to the complex behaviours such as successful reversal 

learning, response inhibition  (Bryden and Roesch, 2015) and flexible associative encoding 

(Stalnaker et al, 2006) as well as high emotional and social functioning (Bechara and 

Damasio, 2005; Dunn et al, 2010). While the functional neuroanatomy of observed reversal 

behaviour has been widely investigated, neural substrates of the hidden variables in 

computational models of reinforced learning are less clear and need more investigation. 
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Reversal learning paradigms have clear clinical relevance to disorders of compulsivity and 

impulsivity. Reversal performance has been previously genetically linked to impulsivity 

(Crews and Boettiger, 2010; Fineberg et al, 2010; Franken et al, 2008; Izquierdo and Jentsch, 

2012) and may share the response inhibition component with impulsivity paradigms such as 

go/no-go task (Izquierdo and Jentsch, 2012). However, reversal learning calls for selective 

inhibition of one response in favour of another, whereas impulsivity paradigms typically 

assess general behavioural inhibition. Reversal paradigms may also capture some elements of 

compulsive behaviour. An organism’s difficulty to change their behaviour following a 

contingency reversal could be construed as a compulsive behaviour that persists despite the 

organism losing out on potential rewards. An exacerbated form of such behavioural 

inflexibility and the corresponding lack of inhibitory control could be interpreted as 

maladaptive and pathologically compulsive.   

Compulsivity more generally is distinct from waiting and stopping impulsivity as 

discussed below, although some evidence suggests that these clinical constructs may share 

common neural and psychological mechanisms. Investigations of compulsivity disorders such 

as obsessive-compulsive disorder (OCD) and stimulant use disorder suggest that failures of 

“top-down” control by prefrontal cortical regions and overactive striatal “habit” circuits 

contribute to compulsive behaviour though the lack of appropriate inhibitory control 

(Fineberg et al, 2014). However, response inhibition is also critical in impulsive action, as 

stopping impulsivity is impaired in OCD (Chamberlain et al, 2006a). While inhibitory control 

impairments in compulsive and impulsive behaviours share some similarities, there are 

important distinctions between these constructs: compulsive actions are persistent and 

repetitive, likely tapping into processes of cognitive flexibility. On the other hand, 
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impulsivity is characterized by “acting prematurely and without foresight” (Evenden, 1999), 

and may result in a wide range of unplanned reactions to internal or external stimuli. 

Waiting Impulsivity  

The second example of inhibitory control central to this thesis are premature responses, 

which purport to measure impulsivity or ‘a predisposition toward rapid, unplanned reactions 

to internal or external stimuli with diminished regard to the negative consequences of these 

reactions to the impulsive individual or to others’ (Chamberlain and Sahakian, 2006). 

Premature responses are just one measure of impulse control and together with stopping 

impulsivity they fall in the category of motoric impulsivity forms, which is thought to be 

distinct from decisional impulsivity, in turn subdivided into discounting and reflection 

impulsivity (Dalley and Robbins, 2017). Temporal discounting is also thought to tap into 

‘waiting’ or the ability to allow for sufficient information accumulation before a choice is 

made. These forms of impulsivity are thought to be subserved by overlapping, yet somewhat 

dissociable neural and psychological mechanisms (Dalley et al, 2011).  

Motor waiting impulsivity tasks usually require an agent to respond when a target cue 

appears under time pressure. Responses made before the target cue appears are counted as 

‘premature’. Waiting impulsivity tasks typically require an agent to postpone a response and 

inhibit the urge to respond. Similarly, successful reversal learning agents must inhibit the 

previously rewarded response after the contingency reversal and instead select the previously 

unrewarded action. In addition, reversal learning also requires forming an appropriate 

representation of response-reward relationships through learning from feedback. In addition 

to response inhibition, control over premature responding also requires focused attention as 

the appropriate response to the target cue needs to be executed very quickly (Crews and 

Boettiger, 2010). Therefore, despite additional task-specific demands, waiting impulsivity 
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and reversal learning share a common requirement for response inhibition (Bari and Robbins, 

2013) and provide a window onto different aspects of inhibitory response control.  

The multidimensional nature of impulsivity becomes clearer when considering 

impulse control at different stages of motivated behaviour, including option generation, 

response selection and initiation, and behavioural adjustment following learning (Sinha et al, 

2013). Following option generation, appropriate value representations need to be formed and 

can then be used to guide option selection and action initiation (Sinha et al, 2013). 

Discounting impulsivity or reflection impulsivity can be related to option generation or 

option selection and valuation. On the other hand, an inability to inhibit action initiation 

signals can lead to premature responding. Speeded response requirements (Bari et al, 2011; 

Verbruggen et al, 2019), greater attentional loads (Sanchez-Roige et al, 2014, 2016) and the 

presence of rewards on the 5-choice serial reaction time task (5CSRTT, Bari et al, 2010) 

work together to produce such failures of motor impulse control. While impulse control has 

been related to motivational states such as apathy (Sinha et al, 2013), the role played by the 

valuation of rewards in eliciting impulsive behaviour remains elusive yet is of paramount 

importance in various disorders of impulsivity and compulsivity (Hägele et al, 2015; Pujara 

and Koenigs, 2014; Whitton et al, 2015).  

Motor waiting impulsivity has been well researched in rodents making premature 

responses on the 5CSRTT (Bari et al, 2010). Firstly, dopamine depletion in the rat nucleus 

accumbens (Cole and Robbins, 1989) decreases premature responding. Further, premature 

responding is associated with greater D2 and D3 receptor binding in the nucleus accumbens 

(Dalley et al, 2007), providing converging evidence for the involvement of dopaminergic 

circuits in waiting impulsivity. Finally, rodent studies also suggest that areas projecting to the 

nucleus accumbens including the infralimbic cortex (Chudasama et al, 2003), insula (Belin et 

al, 2016), cingulate cortex(Dalley et al, 2002; Muir et al, 1996), dorsal striatum and ventral 
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hippocampus (Abela and Chudasama, 2013) play a role in premature responding. Infralimbic 

cortex in the rat has been linked to Brodmann area 25 or subgenual ACC in the humans, 

while prelimbic cortex has been linked to Brodmann area 32 or the paracingulate cortex  

(Gass and Chandler, 2013). 

Premature responses are more difficult to elicit in humans, yet several attempts have 

been made at translating the rodent 5-Choice task to human analogues, most notably the 4-

Choice Serial Reaction Time task (Voon, 2014) and the Sussex 5-Choice task (Sanchez-

Roige et al, 2014, 2016). Functional connectivity between the subthalamic nucleus and 

ventral striatum and between the subthalamic nucleus and the subgenual cingulate (Morris et 

al, 2016) were associated with the 4-Choice task performance. The involvement of subgenual 

cingulate, a rodent infralimbic cortex homologue (Gass and Chandler, 2013), is consistent 

with a role for the infralimbic cortex in waiting impulsivity (Dalley et al, 2011; Gourley and 

Taylor, 2016). In addition, greater waiting impulsivity on the 4-Choice task correlated with 

increased OFC reactivity to cues (Mechelmans et al, 2017). However, more evidence is 

needed to clarify homologous neural substrates of premature responding in humans. 

 

Stopping Impulsivity 

Another measure of motoric impulsivity that is overlapping, yet somewhat distinct from 

waiting impulsivity is stopping impulse control. Stopping impulsivity measures one’s ability 

to stop an already initiated, but not yet executed, response (Dalley and Robbins, 2017) rather 

than the ability to postpone one’s response until appropriate time, typically used in waiting 

impulsivity assessments. It is typically measured using the Stop Signal Task (SST) (Whelan 

et al, 2012).  

During the stop signal task, participants are presented with a large number of “Go” 

trials, on which they are required to respond to stimuli as quickly as they can (Morein-Zamir 
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et al, 2013). On some trials, however, a stop signal appears after the go signal has been 

presented and the participants are required to cancel their response. The task dynamically 

adjusts the delay between the presentation of the go signal and the stop signal (stop-signal 

delay), aiming to keep stopping accuracy at 50%. The performance can be viewed as being 

dependent on a competition between a “Go” and a “Stop” process as proposed in the 

independent race model (Logan and Cowan, 1984; Verbruggen et al, 2019). If the “Stop” 

process is fast enough to override the “Go” process, the initiated response is cancelled; on the 

next “Stop” trial the stop signal is presented later, presumably leaving less time until the 

“Go” process leads to action execution. By dynamically adjusting the stop-signal delay, an 

estimate of the hidden stop signal reaction time (RT) can be calculated that provide a proxy 

for the efficiency of the stopping process.  

Similarly to waiting impulsivity, stopping impulsivity shares the response inhibition 

requirement (Bari and Robbins, 2013) with reversal learning, but poses additional demands. 

Unlike reversal learning, the stop signal task requires very quick responses with typical 

reaction times of less than one second. The response that needs to be inhibited in the SST is 

already initiated, whereas response inhibition in reversal learning likely occurs at the option 

selection stage (Sinha et al, 2013), although occasionally could also occur after response 

initiation.  

Rodent studies suggest that a network encompassing the orbitofrontal cortex, 

dorsomedial striatum and the subthalamic nucleus are key neural substrates of response 

inhibition (Eagle and Baunez, 2010). Lesions of rat infralimbic cortex a homologue of human 

Brodmann area 25 or the ventromedial PFC (Gass and Chandler, 2013) on the other hand had 

no effect on stopping performance (Eagle et al, 2008).   

Convergent investigations of the neural substrates of the SST in humans have 

identified a network encompassing the pre-supplementary motor area, inferior frontal gyrus, 
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STN and motor cortex (M1) using task-based fMRI and forward modelling of the BOLD 

timeseries (Rae et al, 2015, 2016). However, it is critical to examine stopping networks in 

different populations such as those with substance use disorder and extend stopping network 

models in humans to include the striatum. 

 

Figure 1.2. Corticostriatal circuits underlying different aspects of response inhibition. Figure 

adapted from (Voon and Dalley, 2016). DLPFC: dorsolateral prefrontal cortex; VLPFC: 

ventrolateral prefrontal cortex; lPFC: lateral prefrontal cortex; LOFC: lateral orbitofrontal 

cortex; D cing: dorsal cingulate; SG cing: subgenual cingulate cortex; VMPFC: ventromedial 

PFC; MOFC: medial orbitofrontal cortex; SMA: supplementary motor area; PMC: premotor 

cortex; Ant PFC: anterior PFC. 

 

Failure of inhibitory control: substance use disorder  

Epidemiology 
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In England and Wales, 9.0% of adults aged 16 to 59 had taken an illicit drug during the year 

2017/18, with the rate of drug use being twice as high (19.8%) in adults aged 16 to 24 

(CSEW 2017, UK focal point on Drugs). This statistic is confirmed by the NHS, which 

reports 8.5% of adults aged 16-59 took an illicit drug in 2017/18. Lifetime drug use figures 

were much higher, as 34.6% of adults aged 16 to 59 had used a drug at some point in their 

lives (2017/18 CSEW). According to the National Treatment Agency (2014), the overall cost 

of drug abuse was estimated at £15.4 billion, with costs of £13.9 billion arising from drug-

related crime, and £0.5 billion being due to NHS costs for treating drug misuse (The human 

and financial costs of drug addiction 2017). Drug misuse resulted in over 7500 hospital 

admissions in 2016/17 (NHS Statistics on drugs misuse, England, 2018), with three in four 

admitted patients being male. 

DSM-5 defines drug abuse as a chronic, relapsing disorder, marked by compulsive 

drug seeking and taking despite negative consequences. Drugs of abuse hijack neural circuits 

underlying processing of natural rewards such as food and sex and impair inhibitory control 

circuits (Everitt et al, 2007; Goldstein and Volkow, 2002; Murray et al, 2015; Volkow et al, 

1993), producing progressive changes in brain function (Sutherland et al, 2012) and structure 

(Ersche et al, 2011a). These changes persist well after the drug abuse has stopped and 

contribute to relapse (Volkow et al, 2016). However, not all individuals who use illicit drugs 

sustain their drug use and develop substance use disorder.  

Vulnerability for SUD is conferred by family history, early exposure to drug use and 

early life stress and poor social support, ease of access to drugs and by the presence of mental 

health issues such as mood and anxiety disorders or ADHD (www.drugabuse.gov). The PFC, 

which is critical to inhibitory control, does not fully mature until people reach 21 to 25 years 

of age (Giedd et al, 1999; Romer et al, 2017), hence adolescent experience can affect PFC 

development and shape an individual’s ability to exert inhibitory control over their impulses.  

http://www.drugabuse.gov/
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Further, substance use disorder is a heritable condition, with genetic factors 

contributing between 40% and 60% of the vulnerability to develop SUD (Kreek et al, 2005a, 

2005b; Wang et al, 2012). SUD co-occurs with many other mental illnesses (Ross and 

Peselow, 2012; Santucci, 2012) such as psychosis (Hartz et al, 2014). Many of the risk 

factors for SUD also predispose to development of other mental illnesses, including genetic 

risk (Cerdá et al, 2010; Feng and Nestler, 2014; Maria Pelayo-Teran et al, 2012), overlapping 

neural circuits (Dichter et al, 2012; Fontenelle et al, 2011) and exposure to stress or trauma 

(Enoch, 2012).  

Substance abuse follows a spiral of binge and intoxication, withdrawal and craving 

for the drug, which often results in another binge session (Volkow et al, 2015). Repetition of 

this cycle aggravates the changes in functional organization of the cortico-basal ganglia 

circuits. People often start taking drugs because they make them feel good (Koob, 2008; Wise 

and Koob, 2014). Intoxication makes the drug user feel euphoric and can alleviate negative 

affect states. Once the drug user is caught in the addictive cycle, withdrawal states induce 

depression, anxiety and taking drugs can elevate the individual’s hedonic state (Koob and Le 

Moal, 2008a, 2008b). During every withdrawal cycle, the “allostatic set-point” representing 

the drug users hedonic state decreases and calls for more drugs to help it recover. However, 

even in absence of withdrawal, SUD patients can feel sudden craving for the drug of abuse. 

The context and stimuli that were associated with drug taking and intoxication as well as 

stress (Breese et al, 2005; Rodd et al, 2005) have been proposed to trigger craving and 

relapse to drug abuse. One proposed mechanism for relapse suggests that SUD patients are 

sensitized to the drug cues which acquire an abnormally high “incentive salience” or 

motivational importance (Berridge and Robinson, 2016). Alternatively, drug-related internal 

or external cues may trigger maladaptive drug-seeking habits and lead to relapse and 

excessive drug consumption (Everitt and Robbins, 2013). Again, lack of inhibitory control 
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can be seen in the inability of goal-directed actions that could help avoid the punishing 

consequences of drug seeking to override maladaptive drug-related habits (Figee et al, 2016).  

 

Reinforced Learning in Substance Use Disorder 

A wealth of evidence supports the suggestion that chronic stimulant drug use impairs reversal 

learning in humans (Ersche et al, 2006, 2008; Patzelt et al, 2014a; Smith et al, 2015) and rats 

(Bechard et al, 2018; Calu et al, 2007). However, the precise mechanism by which stimulants 

disrupt reversal ability is unclear. Cocaine Use Disorder (CUD) participants have been shown 

to be insensitive to the consequences of their actions in an outcome devaluation paradigm 

(Ersche et al, 2016), similar to participants with alcohol dependence, who show impairments 

in goal-directed behaviour (Sebold et al, 2014). Drug seeking itself has been conceptualized 

as a habit (Belin and Everitt, 2008; Zapata et al, 2010) that is insensitive to negative 

consequences that it brings about (Everitt, 2014).  In agreement with this theory, adolescent 

cocaine experience leads to more habitual behaviour in adult rodents (DePoy et al, 2016). 

However, poor performance in reversal learning could also be due to a parallel deficit to 

model-free, trial-by-trial updating of associative values. Interestingly, excessive switching 

between available choices has been found to underlie reversal difficulties in stimulant use 

disorder (Patzelt et al, 2014b; Smith et al, 2015). Since instrumental learning, reversal 

learning, contingency degradation and paired associates learning tasks mentioned above can 

be analysed in computational terms, a deeper understanding of reinforced learning in SUD 

can be gained using appropriate computational models developed to inter-relate empirical 

findings in humans and other animals.  

Several approaches to explaining how drugs of abuse ‘hijack’ healthy reinforcement 

processes to outcompete natural rewards also incorporate reinforced learning models. Firstly, 

an influential approach attempts to link drug-induced adaptations in the dopaminergic system 
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to behavioural symptoms of SUD via computational frameworks (Dayan, 2009; Montague et 

al, 2004). Stimulants generate a large release of dopamine in the ventral striatum (Volkow et 

al, 2010b; Yager et al, 2015), which is known to encode prediction errors (Schlagenhauf et 

al, 2012). Stimulants are known to produce abnormally high reinforcement signals, which 

would result in larger differences between expected reward and actual reward (prediction 

error) and would increase the value the model places on that action (a proxy for how 

rewarding an action is expected to be) in a given state. In a purely model-free framework, this 

could lead an agent to choose the action that led to drug taking and consequently to the DA 

release more often with greater likelihood. Interestingly, the state in which the actions are 

executed could also acquire abnormally high motivational significance and could account for 

Pavlovian approach and conditioned place preference observed in animal models of stimulant 

abuse (Everitt, 2018). Similar mechanisms in the model-free critic part of the actor-critic 

model could be linked to ventral striatal DA release induced by drugs of abuse. To account 

for cue-induced relapse that can occur even in prolonged periods of abstinence, (Redish et al, 

2007) also propose that states in reinforced learning can be split into sub-states, such that 

drug cues lose their associative values in the non-drug context, yet this extinction process 

fails to translate to the drug-related environments, where being in a certain state is still 

associated with taking the drug.  

Most evidence for reinforcement learning theories of SUD come from studies 

simulating the behaviour of an artificial agent in an environment constrained by rules. An 

unconventional, yet potentially promising approach was to use a modified version of the 

game Snake played by temporal difference reversal learning agents (Behzadan et al, 2018) to 

show poor performance of the agent when the value of the “drug reward” seed is increased 

compared to the “regular reward” seed at the expense of marked increases in the length of the 

snake. When a TDRL agent can consume a seed that gives them a higher reward but also 
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punishes them with greater snake length upon “drug” seed consumption, the agent achieves a 

lower mean score and fails to consume the healthy seeds that give moderate rewards but also 

do not lead to the punishing increases in snake length. The results reported by Behzadan et al 

show how abnormally high incentive salience of drug rewards can lead an agent to forgo 

regular rewards even despite greater punishment following the drug reward. More 

comprehensive reinforced learning models with homeostatic states have been used to 

successfully simulate reinforced behaviours in animals (Keramati and Gutkin, 2014) and have 

generated simulated data to account for a range of behaviours seen in rodent stimulant abuse 

(Keramati et al, 2017). However, more empirical data is needed on the reinforced models that 

animals and humans likely use to solve reversal learning tasks and other value learning tasks.  

Non-computational analysis of reinforced learning tasks suggests that subregions of 

the PFC (OFC, dACC, mPDF, dlPFC) that are crucial to value learning and behavioural 

adjustment based on learned associations (Mansouri et al, 2009) are also impaired in SUD. In 

particular, cocaine ‘addicted’ rats resemble the profile of impairment following lesions of the 

OFC, specifically the failure of neurons in the BLA change their preferential firing after a 

contingency reversal (Lucantonio et al, 2012; Stalnaker et al, 2009a). Linking PFC function 

to formal models of value learning could provide an important link between human and 

animal behaviour and neural circuits underlying value learning.  

 

Impulse control in Substance Use Disorder  

In addition to lack of inhibitory control in reinforced learning and behaviour, SUD is also 

characterized by the lack of inhibitory control over one’s impulses (Dalley and Ersche, 2019). 

SUD participants show increased premature responding on the 4-Choice Serial Reaction 

Time Task (Morris et al, 2016), slower stop-signal reaction times (Morein-Zamir et al, 2013; 

Whelan et al, 2012), poor response inhibition (Hester, 2004) and steeper temporal 
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discounting (Bickel et al, 2007; Rambaud et al, 2017), measuring different aspects of 

impulsivity (Dalley and Robbins, 2017). Similarly, convergent mechanisms for impulsivity 

and drug abuse have been identified in rodents (Jupp and Dalley, 2014), with chronic 

exposure to cocaine resulting in steeper delay discounting (Dandy and Gatch, 2009; Simon et 

al, 2007). Higher baseline trait-like variability in delay discounting (Anker et al, 2009) and in 

premature responding (Belin et al, 2008a; Molander et al, 2011) have been found to predict 

vulnerability for cocaine abuse. However, cocaine self-administration has also been reported 

to decrease premature responding in high impulsive rats (Caprioli et al, 2013), although the 

duration of self-administration in this experiment was only two weeks and may not be 

comparable to chronic cocaine use in SUD.  

Although evidence from cross-sectional studies of impulsivity as a vulnerability factor 

for SUD is equivocal as familiar risk groups do not necessarily perform worse than healthy 

groups on stopping (Morein-Zamir et al, 2013) and waiting impulsivity tasks (Sx 5Choice 

Task, (Sanchez-Roige et al, 2016)), longitudinal studies have linked self-reported and 

cognitive task-based measures of impulsivity in children to subsequent development of SUD 

(Tarter et al, 2003) and illicit drug use (Wong et al, 2006). Further, genetic markers of 

impulsivity such as tryptophan hydroxylase, serotonin transporter, MAO-A, and dopamine 

receptors D2 (Esposito-Smythers et al, 2009) D3 and D4 genes are all associated with 

alcoholism or another SUD (Kreek et al, 2005b). In addition to predisposing to substance 

abuse, impulsivity has also been suggested to play a mediating role between early life 

adversity and SUD development (Hosking and Winstanley, 2011). To summarize, convergent 

evidence from animal and human studies suggests that trait-like variability in impulse control 

confers vulnerability for substance use, and in turn, drug abuse impairs impulse control.  

The role of poor impulse control as a risk factor and a consequence of drug abuse is 

perhaps not surprising if we consider the role of cortico-basal ganglia circuits in impulsivity 
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and SUD. Early accounts of impulsivity in SUD introduce a dichotomy between the “cold” 

PFC regions whose function is to exert inhibitory control over the “hot” basal ganglia (Bickel 

et al, 2007). Diminished executive functioning in SUD was thought to be associated with 

reduced recruitment of the PFC in situations that require inhibitory control, and 

disproportionate reliance of SUD patients on limbic regions which are ‘triggered’ by drug- 

related stimuli and stress. Consistent with this idea, SUD participants show prefrontal 

hypoactivity in response to inhibitory control demands of stopping an initiated response 

(Morein-Zamir et al, 2013). SUD patients also show reduced striatal DRD2 binding that is 

correlated with diminished OFC glucose metabolism (Volkow and Morales, 2015), 

suggesting that neuroplasticity changes in the dopaminergic cortico-striatal circuits underlie 

drug-induced loss of control. Further, grey matter reductions in the dlPFC, dACC and 

orbitofrontal cortex (OFC) are linked to poor executive function and drug use (Matochik et 

al, 2003; Narayana et al, 2010; Schwartz et al, 2010). 

Preclinical approaches in rodents have begun to define the neural substrates of 

compulsive drug seeking. For example, compulsive cocaine seeking in mice was attenuated 

by the optogenetic stimulation of the prelimbic cortex, a homologue of BA32 or the 

paracingulate cortex in humans (Chen et al, 2013). Inactivation of the prelimbic cortex by 

microinjections of lidocaine also abolished reinstatement of stimulant drug seeking in rats 

(Ball and Slane, 2012; Bossert et al, 2013), whereas inactivation of the infralimbic cortex, a 

homologue of BA25 or ventral ACC in humans, had no effects on reinstatement. Despite 

disparities in the direction of the effects of mPFC stimulation and inactivation, it is clear that 

the mPFC plays an important role in modulating cocaine-seeking behaviour. 

Models of PFC dysfunction in SUD have greatly expanded in recent years with  

evidence for functional segregation and integration of the subregions of the PFC and basal 

ganglia (Friston, 2011). In models such as impaired response inhibition and salience 
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attribution (iRISA, Goldstein and Volkow, 2011), dorsal PFC including dlPFC, dACC and 

the IFC are thought to be involved in inhibitory control, subserving response inhibition. On 

the other hand, ventral PFC subregions including mOFC, the ventromedial PFC and 

subgenual ACC are thought to mediate emotion-related processes, such as reward reactivity 

(subgenual ACC, (Alexander et al, 2019; Rudebeck and Murray, 2014). Reward processing is 

thought to be accomplished by the interplay between PFC and basal ganglia structures, 

including dorsal and ventral striatum (as discussed above), amygdala, hippocampus and 

thalamic nuclei (Oldham et al, 2018) as well as the dopamine-rich VTA (Lutz and Widmer, 

2014). In fact, activation in the right inferior frontal cortex (BA44) was related to the 

deactivation of the ventral striatum and ventral PFC when SUD participants could inhibit 

cocaine craving when viewing craving-inducing stimuli (Volkow et al, 2010a), further 

supporting the role of the IFC in exerting control over the ventral striatum-vmPFC reward 

circuit. 

Across addictions to different substances, a meta-analysis of task-based fMRI studies 

(Zilverstand et al, 2018) concluded that SUD patients show a blunted activation of the 

reward, salience and executive networks in response to non-drug-related tasks, and an 

exaggerated response in these networks as well as in the habit and memory networks to drug-

related cues. However, loss of impulse control in SUD is likely to arise from interactions 

between drug-related processes such as drug cue exposure and non-drug related, ‘cold’ 

processes such as inhibitory control over one’s impulses and learning from reward and 

punishment. Understanding interactions in psychological paradigms that combine drug- 

related cues with traditional inhibitory control tasks will be critical to elucidating the role of 

interactions between different brain networks in loss of impulse control in SUD.  

 

Challenges in Inhibitory control: Translational Neuroscience 
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Linking animal models of inhibitory control and its failure in disorders such as SUD to the 

clinical and healthy studies of human volunteers presents a formidable challenge in 

translational neuroscience. In vivo animal studies allow for targeted manipulations of receptor 

subtypes using local drug infusions, activation and inactivation of specific pathways using 

chemogenetic or optogenetic methods, as well as spatially- and temporally-resolved 

resolution of neural activity using electrophysiological recordings. In humans, neuroimaging 

techniques such as MRI, EEG and MEG suffer from spatial resolution limitations, although 

electrophysiology techniques are available in rare cases, such as in epilepsy treatment or in 

STN stimulation. Nevertheless, advances in brain network analysis using non-invasive 

structural and functional neuroimaging have greatly contributed to our understanding of 

systems-level functional organization of the human brain (Marcus et al, 2013; Nowinski, 

2017; Seguin et al, 2018; Seidlitz et al, 2018; Sunkin et al, 2013). 

A major challenge of translational neuroscience is to design cognitive and behavioural 

paradigms that can tap into the same cognitive processes in both experimental animals and 

humans. Tasks easily solved by humans are often too complex for rodents and have to be 

simplified. However, by removing task complexity, we often lower working memory and 

attentional demands. For instance, reversal learning paradigms in humans are usually 

probabilistic (Cools et al, 2002; Waegeman et al, 2014) and the contingencies are tied to 

specific stimuli. On the other hand, rodent reversal learning often consists of two spatial 

choices (e.g. left/right side of a maze) only, thus removing the need to form stimulus-specific 

associations. Computational modelling of carefully designed and validated tasks can provide 

a link between formalized learning and decision-making systems that could be represented in 

human and animal neurocircuitry.  

Linking the more fine-grained mechanisms of inhibitory control identified in animal 

models to circuit-level understanding of the human brain could be facilitated by the use of 
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convergent techniques such as MR imaging in both human and animal studies. Employing 

similar methods allows us to directly compare brain structure using structural MRI and 

function with resting state (rs)-fMRI and even assess the concentration of neurotransmitters 

in selected brain areas using mass spectroscopy. Assessing the impact of chemo- and 

optogenetic manipulations on brain function (chemo- or opto-fMRI (Choe et al, 2018; Giorgi 

et al, 2017; Lin et al, 2016) will allow us to understand the impact of these manipulations on 

different levels of analysis.  

Further, identifying homologous brain regions across species presents another 

challenge as the comparatively less developed PFC in rodents prevents us from studying 

contributions of specific PFC subregions and the mapping of the rodent PFC onto the human 

PFC is sometimes questionable. This thesis attempts to address some of these translational 

challenges by using convergent methods such as functional MRI and reinforced learning 

models in humans and animals. To this end, we combine intervention studies in rodents and 

task-based fMRI studies in humans.  

 

Challenges and decisions in brain connectivity analyses using fMRI  

Brain connectivity analysis is a powerful way of understanding the neural correlates of 

response inhibition in health and in stimulant addiction. Analysis of functional MRI images 

acquired during task performance and at rest are common ways of assessing macro-scale 

brain network organisation (Bijsterbosch et al, 2017; Bullmore and Sporns, 2009; Friston et 

al, 2017). Two methods are of particular interest to the research findings presented in this 

thesis: dynamic causal models (DCMs) and graph theoretical analysis of information flow in 

networks. These two methods are not mutually exclusive as DCM analyses can produce a 

connectivity matrix that in turn can be viewed as a graph characterized by distinct graph 

features such as clustering, modularity, hubness and path length.  
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DCMs are mathematically complex models that involve defining a set of biologically 

plausible hypotheses about how brain regions interact with each other and then using time-

series data and task performance data to select between these hypotheses (Stephan et al, 

2010). More specifically, each dynamic causal model requires the specification of a set of 

regions of interest and the “fixed” connections (DCM.A) that are included in this model as 

well as “modulatory” connections (DCM.B) which determine how the cognitive task 

parameters could affect network connectivity. More specifically, task modulatory 

connections (DCM.B) indicate how fixed connectivity changes depending on the task 

condition. DCMs typically take as inputs (DCM.C) all available trials and attempt to generate 

the time courses of each region of interest using the pre-specified model structure (DCM.A, B 

and C). The “goodness of fit” of the model is increased by taking into account the 

haemodynamic response function and by fitting a multitude of parameters (such as the 

magnitude of directed connectivity between pairs of regions of interest specified as “present” 

in the DCM.A matrix) to the actual time-series data. Contemporary toolboxes utilize 

Bayesian model comparison and reduction techniques (SPM12). As a result, DCMs return a 

set of connectivity values and model fit values that allow for specific connectivities and 

model architectures to be compared between groups. Theoretical descriptions that utilise 

DCMs rely on a specific set of hypotheses that are motivated by previous studies of brain 

connectivity. They are therefore susceptible to the omission of critical regions of interest as 

connectivity between same sets of regions may change with different model architectures.  

A powerful alternative to DCMs is found in undirected functional connectivity 

analyses. Such analyses are typically not constrained by a narrow selection of region of 

interest and are easier to interpret as the computation of the connectivity coefficients typically 

involves estimating either direct or indirect correlations between regional time-series data. 

These coefficients are also less biologically plausible since they do not take into account the 



35 
 

haemodynamic response. This method of comparing functional connectivity is data-driven 

and allows for whole brain connectivity testing. It is often implemented when specific 

hypotheses are difficult to form, e.g. in resting state fMRI analyses. Graph theoretical 

analysis can be applied to either a correlation matrix obtained from functional or effective 

connectivity analyses, though very different networks are assessed in terms of their 

clustering, efficiency, modularity, etc. In this thesis, task-based connectivity was analysed 

using DCMs as they allow us to test “top-down” and “bottom-up” cortical-to-subcortical 

interactions following literature-based, hypothesis-driven model specification. On the other 

hand, resting state data in rats was analysed using a undirected functional connectivity 

approach that spanned more regions of interest with a particular focus on the OFC. 

 

Overview of Experiments: 

Chapter 2. Behavioural and neural substrates of behavioural flexibility  

The hypothesis of this study was that reversal learning performance can be enhanced by 

altering monoaminergic neurotransmission via monoamine oxidase (MAO) inhibition. Rats 

(n=48) were trained on a spatial serial reversal learning task and their reversal performance 

was tested under MAO-A or MAO-B inhibition by the drugs moclobemide and lazabemide, 

which block the degradation of serotonin (5-HT), dopamine (DA), and noradrenaline (NA). 

Ex vivo assessment of these monoamine levels was used to confirm the effects of systemic 

treatment with MAO-A and MAO-B inhibitors on their levels in cortical and subcortical 

areas. In addition, reversal performance was correlated with trait-like variation in anxiety on 

the elevated plus maze. 

 

Chapter 3. Functional connectivity correlates of behavioural flexibility using rs-fMRI 
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Resting state fMRI was used to assess the relationship between inter-individual variability in 

functional brain connectivity and reversal learning performance in rats (n=36). Adult animals 

were scanned before the start of behavioural training and were subsequently tested on a 

spatial serial reversal learning task.  

 

Chapter 4. Effects of cocaine on behavioural flexibility: a computational analysis  

To investigate the effects of drug exposure on reversal learning and the potential propensity 

of reversal ability as a risk factor for addiction, 24 rats were trained on a spatial serial reversal 

learning task, exposed to intravenous cocaine self-administration (cocaine SA) and 

subsequently re-tested on the reversal task. Twenty-four control rats underwent the same 

training protocol, except that they were trained to lever-press for food instead of cocaine 

under a yoked schedule of reinforcement. Pre- and post-cocaine assessments allowed us to 

disentangle the existing vulnerabilities from cocaine-induced impairments. All animals were 

also screened for anxiety in an open field prior to acquisition of cocaine SA. 

 

Chapter 5. Network failures: when rewards trigger premature responses in healthy 

participants, stimulant-dependent individuals and their siblings 

The aim of this chapter was to identify networks underlying waiting impulse control in 

healthy individuals (n=41), stimulant-dependent individuals (n=40) and their siblings (n=38) 

using a novel analysis of task-based fMRI data featuring the well-established monetary 

incentive delay (MID) task. Including an at-risk sibling group as well as DSM-V diagnosed 

substance-dependent individuals allowed us to control for existing vulnerabilities and 

disentangle them from cocaine-induced impairments. 
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Chapter 6. Improving response inhibition and execution in healthy and cocaine-dependent 

individuals using the selective noradrenaline reuptake inhibitor atomoxetine: network 

connectivity analysis 

The focus of this chapter was to investigate structural and functional brain networks 

underlying stopping efficiency and response execution in a widely used stop-signal task in 

order to assess another aspect of response inhibition in healthy (n=28) and cocaine-dependent 

individuals (n=28). Using task-based fMRI in combination with probabilistic tractography of 

diffusion-weighted MRI, we tested the predictions that 1) healthy control group would show 

similar networks to those previously reported in similar studies; 2) cocaine group would show 

impaired stopping efficiency, response execution and network connectivity; 3) impairments 

in stopping efficiency and response execution can be rescued using the selective 

noradrenaline reuptake inhibitor atomoxetine in a randomized, double blind placebo-

controlled design. 
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Chapter 2 

Behavioural, neurochemical and pharmacological substrates of inter-individual variation in 

behavioural flexibility 

INTRODUCTION 

As discussed in the General Introduction, impaired behavioural flexibly is often prevalent in  

compulsive and anxiety-related brain disorders, including substance use disorder (Fineberg et 

al, 2010; Robbins et al, 2012; Voon et al, 2015). Elucidating the neural and psychological 

mechanisms of behavioural inflexibility is therefore important to facilitate the diagnosis and 

treatment of addiction-related disorders. Based on selective brain intervention studies much is 

known about the neural mechanisms underlying one aspect of impaired behavioural 

flexibility, namely excessive perseveration in response to shifts in the stimulus-reward 

contingency of reversal learning paradigms (Castane et al, 2010; Rygula et al, 2010). 

However, few studies have investigated the neurochemical mechanisms of inter-individual 

differences in behavioural flexibility and how these relate to anxiety and other traits present 

in OCD and related disorders.  

Convergent evidence indicates that serotonin (5-HT) modulates reversal learning in a 

number of species (Roberts, 2006). As reviewed by Izquierdo et al, (2016), elevated 

postsynaptic 5-HT activity facilitates reversal learning (Bari et al, 2010; Barlow et al, 2015a; 

Danet et al, 2010; Wallace et al, 2014) whereas reduced 5-HT receptor signalling impairs 

reversal learning and increases perseveration (Clarke et al, 2005, 2007; Lapiz-Bluhm et al, 

2009; Rygula et al, 2015). In a similar vein, selective 5-HT2A and 5-HT2C receptor 

antagonists respectively impair and improve reversal learning (Boulougouris et al, 2008) with 

the orbitofrontal cortex (OFC) an important locus for the latter beneficial effects 

(Boulougouris and Robbins, 2010), consistent with much previous evidence implicating the 

OFC in reversal learning (Boulougouris et al, 2007; Dias et al, 1996; Schoenbaum et al, 
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2009; Stalnaker et al, 2009a). Functionally, 5-HT in this region is hypothesized to inhibit 

actions to previously rewarded stimuli when aversive or negative outcomes are expected 

(Cools et al, 2011; Roberts, 2011).  

Excessive perseveration on an appetitive, spatial reversal-learning task has been 

reported to be associated with diminished 5-HT metabolism and 5-HT2A receptor availability 

in the OFC, as well as altered gene expression of the two isoforms of monoamine oxidase, 

MAO-A and MAO-B, in the dorsal raphé nucleus (DRN) and OFC (Barlow et al, 2015a). In 

the present experimental chapter, we extended these findings by investigating causal 

involvement of MAO-A and MAO-B in mediating reversal-learning performance. Monoamine 

oxidase enzyme is a key component in maintaining efficient monoaminergic 

neurotransmission, terminating monoamine action by removing excess neurotransmitter after 

its release into the synaptic cleft (Figure 2.1). In order to boost 5-HT and NA transmission, 

selective inhibition of the MAO-A subtype is necessary. On the other hand, boosting DA also 

requires inhibition of MAO-B in addition to MAO-A since MAO-B can continue to decompose 

DA despite MAO-A inhibition.  

Figure 2.1. (A) MAO-A and MAO-B enzymes destroy DA in mitochondria. (B). MAO-A and 

MAO-B destroys extracellular and intracellular 5HT. (C) MAO-A and MAO-B decompose 
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extracellular and intracellular noradrenaline. (D) Dopamine is converted into 3,4-

dihydroxyphenylacetic acid (DOPAC) via MAO enzyme activity. (E) Serotonin is converted 

into 5-hydroxyindoleacetic acid (5-HIAA) aldehyde and into 5-HIAA via aldehyde 

dehydrogenase. Figure adapted from Stahl’s Essential Neuropsychopharmacology (Stahl, 

2015). 

 

Since MAO-A has a high affinity for 5-HT and noradrenaline (NA), unlike MAO-B (Da Prada 

et al, 1988; Shih and Thompson, 1999), selective MAO-A inhibition by the drug moclobemide 

would be predicted to improve behavioural flexibility. We extended our analysis to the 

measurement of 5-HT in blood samples since MAO inhibition produces parallel increases in 

5-HT levels in the brain and blood (Malyszko et al, 1993), similar to the effects of 

psychostimulants and selective 5-HT reuptake inhibitors (Zolkowska et al, 2006). In addition, 

platelet MAO activity has been proposed as an index of central 5-HT activity (Stahl, 1985) 

and low activity of this enzyme has been associated with OCD severity (Arrojo et al, 2007). 

Thus, the peripheral measurement of unbound 5-HT may be an accessible marker of central 

5-HT transmission, under some circumstances, and reflect inter-individual differences in 

behavioural flexibility. We also measured levels of the 5-HT precursor tryptophan, as well as 

circulating levels of the stress hormone corticosterone. Subsequently, we used a factor 

analysis to relate these levels to trait anxiety and perseverative errors on a spatial reversal-

learning task (Barlow et al, 2015a).   

The primary objective of the present set of experiments was to clarify the extent to 

which individual variation in behavioural flexibility on a spatial-discrimination serial 

reversal-learning task can be explained by peripheral biomarkers and trait anxiety, and to 

relate these trait markers to levels of 5-HT and other monoamines in key brain loci implicated 
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in reversal learning, including the OFC, basolateral amygdala (BLA) and striatum (Izquierdo 

et al, 2013; Ochoa et al, 2015).  

METHODS 

Subjects 

Male Lister-hooded rats (n=48) weighing 290 ± 17 g at the beginning of experiments were 

used (Charles River, Kent, UK). They received 18g of laboratory chow once a day with ad 

libitum access to water. The weight of each animal was recorded each week with animals 

maintained at 85-95% of free-feeding weights. When no behavioural training or testing took 

place, rats received 20 g of chow per day. All animals were housed in groups of four per cage 

and kept under a reversed 12 h light/dark cycle (lights off 07:00 hours until 19:00 hours). 

Rats were trained on the spatial reversal-learning task between 14:00 and 19:00 hours. 

Testing on the elevated plus maze (EPM) and the collection of blood samples took place 

between 15:30 and 16:30 hours. Three rats were excluded from the study because they failed 

to reach criterion on the reversal-learning task. Forty-two animals received systemic drug 

injections, of which 19 animals were used for region-specific post mortem monoamine 

analysis to validate the effects of moclobemide and lazabemide (Figure 2.2A). Experiments 

complied with the U.K. Animals (Scientific Procedures) Act of 1986 and were approved by 

the ethics review committee at Cambridge University (Animal Welfare and Ethical Review 

Body). 
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Figure 2.2. (A) Experimental timeline and group sizes. Blood samples were extracted before 

and after training on the reversal-learning task followed by anxiety testing and the 

behavioural and neurochemical evaluation of MAO inhibition. (B) Schematic depiction of the 

spatial-discrimination reversal-learning task. Rats initiated each session by making a nose-

poke response in the food magazine (1). By making nose-poke responses in the “correct” 

aperture under a fixed-ratio-3 schedule of reinforcement, a food pellet was delivered in the 

illuminated magazine (2-3c; 4b), followed by a five-second timeout (5). “Incorrect” 

responses and fails to respond (“omissions”) resulted in a five-second timeout (4a). If the rat 

achieved nine correct responses over the previous ten trials, the reward contingencies were 

switched such that the rat now needed to respond at the previously unrewarded aperture. Each 

animal completed 3 reversals within a 1 h session. 
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Behavioural Apparatus 

Twelve 5-hole operant chambers (Med Associates, Georgia, VT) controlled by two 

computers and Whisker Control software (Cardinal and Aitken, 2010) were used (Figure 

2.2B). Each chamber was enclosed in a ventilated sound-attenuating box, fitted with five 

apertures in a curved wall and a food magazine on the opposite wall of the box that delivered 

rodent sugar pellets (TestDiet®, Purina, UK). A yellow light-emitting diode stimulus was 

placed at the rear of each aperture. The middle three apertures were blocked using a metal 

plate and were not part of the experimental setup. The food magazine and entire chamber was 

illuminated by light emitting diodes. Infrared beams detected responses in the magazine and 

apertures.  

The elevated plus maze was constructed from black Perspex and consisted of a central 

platform surrounded by two open arms and two enclosed arms in the shape of a plus sign 

(Molander et al, 2011; Walf and Frye, 2007). The plus-shaped platform was elevated 60 cm 

above the floor in a room illuminated by white light (intensity 70 lux). Exploratory behaviour 

in the maze was recorded and monitored on a ceiling-mounted Yi Action Camera connected 

wirelessly to a computer.  

 

Behavioural training 

Training began with two days of habituation during which animals were exposed to the fully 

illuminated testing boxes for 20 mins. They were encouraged to explore the apparatus by 

baiting the response apertures and magazine with sugar pellets. Before the start of each 

session, all lights were extinguished. The first trial was initiated by the animal making a nose-

poke in the magazine, which triggered the illumination of a cue light in each aperture. 

Responding in either aperture was initially reinforced by the delivery of a single food pellet. 

Task difficulty was then progressively increased with just one aperture reinforced (the 
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‘correct’ aperture) under FR1, FR2 and FR3 schedules (see Table 2.1). Finally, the inter-trial 

interval (ITI) was gradually increased from 1 s to 2 s and finally to 5 s upon completion of 

the previous stage. For all training stages, a criterion of 50 correct trials was required to 

proceed to the next level. While the FR1-FR3 stages were restricted to 20 min, session times 

increased to 30 min for the ITI stages. If a subject made an incorrect response at the non-cued 

aperture, it was not penalized during training. However, a failure to make the appropriate 

response within 30 s of initiating a new trial was recorded as an omission and was followed 

by a 5 s time-out where all lights were turned off.  

 

Stage Total Time Timeout Period Criterion Cues 

Habituation 20 min None Eat all pellets in box All lights on 

FR1 Pre-

Training 

20 min None 50 pellets Both sides cued 

& rewarded 

FR1, FR2, FR3 

Training 

20 min 30s 50 pellets Only one side 

cued 

1s, 2s, 5s ITI 

Training 

30 min None for 1s ITI, 

otherwise 30s 

50 pellets  Only one side 

cued 

Spatial 

Discrimination 

60 min 30s 9/10 correct on one 

side  

Both sides cued 

Reversal Test 60 min 30s Three reversals, i.e. 

9/10 correct on 4 sides 

Both sides cued 

 

Table 2.1. Summary of the training procedure for the acquisition of a spatial discrimination 

and subsequent reversals of the stimulus-reward response contingency. Abbreviations: FR, 

fixed-ratio; ITI, inter-trial interval.   

 

 

In the spatial discrimination task, the training setup above was modified with both 

apertures lit but with only one of apertures rewarded. Three nose-pokes in the “incorrect” 

aperture now resulted in the omission of reward and a 5 s timeout. Rats were given one hour 

to complete the discrimination task by achieving 9 correct trials across previous 10 trials. If 
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animals failed to achieve criterion after two days, they were retrained by completing the 5 s 

ITI condition within a single session. 

On the day following the completion of the discrimination task, animals experienced 

the same configuration of the task, whereby the “correct” aperture was kept the same on both 

days as a measure of retention (Figure 2.2B). Once the 9/10 criterion was achieved, the 

previously “correct” aperture was no longer rewarded and the rat was required to respond in 

the other aperture to obtain reward. Similar to the discrimination condition, an “incorrect” 

response or an omission resulted in a 5 s timeout. Subjects could complete up to three 

reversals during the 1-hour session. 

 

Elevated plus maze  

Animals were habituated to the experimental room for 30 min in their home cage before 

testing commenced. Each rat was placed on the central platform facing an open arm. The 

maze was thoroughly cleaned with water and dried between each test. Recordings during the 

first 6 min on the EPM were manually scored, specifically to record the time spent in the 

open arms and the number of entries made into the open arms, as described previously (Walf 

and Frye, 2007). 

 

Systemic drug administration 

Forty-two animals received mock injections two days before the start of the administration of 

the selective, reversible MAO-A and MAO-B inhibitors (moclobemide and lazabemide, 

respectively). Moclobemide and lazabemide hydrochloride were purchased from Tocris (UK) 

and dissolved in 15% hydroxypropyl-beta-cyclodextrin and 0.9% saline (HPB ‘vehicle’). 

Moclobemide was fully dissolved using repeated sonication at +35°C. Following the ranking 

of the animals by their reversal-learning performance (perseverative errors), two groups of 
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animals were formed, and each assigned to one of the two MAO-inhibitors. Given the 

relatively short washout periods for the drugs (Figure 2.9)(Da Prada et al, 1988), each animal 

received 4 separate treatments across 3-day intervals, starting with a baseline retention 

session (day 1), a drug administration session (day 2) and a drug-free day. Doses for 

moclobemide (3 and 16 mg/kg, combination of 10 mg/kg of moclobemide and 10 mg/kg 

lazabemide) and lazabemide (1 and 10 mg/kg were selected on the basis of previous literature 

(Da Prada et al, 1988; Jolkkonen et al, 2000; Kitaichi et al, 2006, 2010; Maki et al, 2000) and 

administered intraperitoneally (1ml/kg). The dosing regimen followed a randomized modified 

Latin square design to control for training and crossover effects. One hour after the drug (or 

vehicle) injections, subjects were assessed for reversal learning performance.  

In order to validate the effects of moclobemide and lazabemide on monoamine levels, 

19 animals were matched for baseline performance and drug history and subsequently 

divided into three groups: a vehicle control group (15% HPB, n=5), a lazabemide group (10 

mg/kg, n=6) and a moclobemide group (16 mg/kg, n=4 and 3mg/kg, n=4) groups. Consistent 

with the timing of previous testing conditions, animals were culled for ex vivo neurochemical 

analysis one hour after each injection. 

 

Blood analyses  

Sublingual blood samples were collected in isoflurane-anaesthetized animals (2.5% 

isoflurane in 95% O2, 5% CO2). Approximately 1 ml of blood was collected in tubes primed 

with ethylenediaminetetraacetic acid (EDTA), cooled on dry ice, and centrifuged at 3000g for 

20 min at 4°C. Supernatant plasma was aliquoted in separate tubes for monoamine 

quantification using high performance liquid chromatography (HPLC) with electrochemical 

detection (ECD).  Plasma corticosterone was quantified by radioimmunoassay (Carter et al, 

2004) using a citrate buffer at pH 3.0 to denature the corticosteroid-binding globulin and a 
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specific corticosterone antibody (kindly supplied by G. Makara, Institute of Experimental 

Medicine, Budapest, Hungary), as previously described in detail (Atkinson et al, 2006; 

Windle et al, 1998).  

 

Monoamine analysis 

Plasma samples were diluted 1:20 in 0.2M perchloric acid, and centrifuged at 10,000 rpm at 

4C for 20 min. Twenty-five µl of the supernatant was injected onto the HPLC-ECD system 

to measure levels of 5-HT, 5-hydroxindoloacetic acid (5-HIAA), tryptophan and NA, 

described previously (Dalley et al, 2002). Detection and quantification was achieved using a 

Coulochem II detector with an analytical cell and two electrodes in series (E1 –250 mV, E2 

+250 mV). The signal from E2 was integrated using computer software (Chromeleon, 

Dionex, UK). 

One hour after drug injection, animals were killed by asphyxiation in a rising 

concentration of CO2 (n=19). Brains were rapidly removed and flash-frozen in liquid 

nitrogen, placed on dry ice and stored at -80°C. They were later cut into 150 µm coronal 

sections on a Jung CM300 cryostat (Leica, Wetzlar, Germany) and stored at -80°C. At room 

temperature, small aliquots of tissue were removed bilaterally from two consecutive sections 

from the dorsomedial PFC (dmPFC), OFC, DRN, hippocampal CA1 area, lateral 

hypothalamus (LH), BLA, dorsomedial striatum (dmS), and nucleus accumbens (NAcb) 

using a micro-punch of diameter 1.0 mm (Figure 2.8E). More details of this procedure can be 

found in Palkovits (1973). Samples were homogenized in 60 µl of 0.2M perchloric acid using 

an ultrasonic cell disruptor, spun at 6000 rpm for 20 min (4°C) and analyzed for 5-HT, NA, 

DA, 5-HIAA and 3-4 dihydroxyphenylacetic acid (DOPAC). Monoamine levels were 

quantified in 25 µl of the homogenized brain samples using HPLC-ECD, as described above. 
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Statistical analyses 

Statistical analyses were conducted using SPSS for Windows (IBM version 23). 

Perseveration was assessed using the total number of trials and errors made until subjects 

achieved criterion. Errors were considered perseverative in nature if in a window of 10 trials, 

7 incorrect responses were made. The number of perseverative errors made during the three 

reversals was used to rank the animals, consistent with (Barlow et al, 2015a). Based on this 

ranking, three groups were formed that included highly perseverative (fifth quintile, n=11), 

mid-range (third quintile, n=19) and low-perseverative animals (first quintile, n=12). A 

mixed effects ANOVA was used to analyze within-subjects effects of the drugs and between-

subject effects of group as well as their interactions following systemic drug administration. 

Partial eta-squared (η2) was used to assess effect size. A two-way between-subjects ANOVA 

was used to compare the effects of the drugs on monoamine levels in the brain. If sphericity 

was violated (significant Mauchly’s test), a Greenhouse-Geisser correction was used. When 

significant main effects or interactions were found post hoc analyses were carried out using 

Fisher’s LSD tests and the calculation of effect size η2.  

To identify markers of perseveration and anxiety, a factor analysis model was used. 

Since several variables were positively skewed and significantly non-normal, principal axis 

factoring was chosen as the integration method (Costello and Osborne, 2005). Further, since 

the extracted factors did not correlate well with each other, the orthogonal rotation method 

(varimax) was preferred. Most errors made by the animals were perseverative, hence only 

those were included to avoid excessive multicollinearity. Factor analysis variables included 

perseverative errors, total trials to criterion, plasma levels of neurochemicals and 

corticosterone, alongside measures of trait anxiety (proportion of time spent in open arms of 

the EPM and percentage of open arm entries). Proportions were the preferred dependent 

variable to control for general locomotor activity (Walf and Frye 2007). Inferential contrasts 
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were considered statistically significant at α=0.05. Finally, post hoc power calculations were 

made using GPower 3.1 (Erdfelder et al, 2009; Ibrahim et al, 2018). The probability of 

rejecting a null hypothesis when it is in fact true and claiming significance when there is none 

(type I error) was set at 0.05; the probability of accepting the null hypothesis and claiming no 

significant results when it is in fact false to do so (type II error) are reported in the results.  

 

RESULTS 

Means ± SEM perseverative errors were 35.6 ± 2.5 for high-perseverative animals, 19.2 ± 1.0 

for the mid-range group and 7.3 ± 0.89 for the low-perseverative group. Within these high-, 

mid- and low-perseverative groups, the total number of errors (mean ± SEM: 57.5 ± 5.2, 37.4 

± 2.2, 31.5 ± 2.2, respectively) and total trials to criterion (mean ± SEM: 136.4 ± 9.5, 103.8 ± 

6.0, 101.5 ± 6.5, respectively) followed the distribution of perseverative errors (Figure 2.4A). 

Prior to training, perseverative errors, total errors and total trials to criterion as well as 

concentrations of peripheral NA, 5-HIAA, 5-HT and tryptophan were positively skewed 

(skewness: 0.82, 1.01, 0.97, 3.627, 1.0, 1.72 and 2.048, respectively). 5-HT and NA 

distributions remained skewed after training (1.70 and 0.73, respectively), similar to 

corticosterone levels and the 5-HT/5-HIAA ratio (1.71 and 1.52). Other variables were less 

skewed, as indicated by values below 0.7.  

 



50 
 

 

Figure 2.3. (A) Factor loadings (all loadings > 0.3 are displayed). (B) Correlation matrix of 

all variables in the factor analysis, including peripheral monoamines, corticosterone and 

behavioural measures. 

 

Increased perseveration is associated with increased anxiety and plasma 5-HT levels 

A factor analysis was used to investigate the correlative relationships between plasma 

monoamine levels and task performance. Following the Kaiser criterion, all five factors with 

eigenvalues greater than one were extracted and orthogonally rotated that jointly accounted 

for over 58.2% of the variance in the data (Figure 2.3). The first factor featured the two 

anxiety measures as well as perseverative errors. The second factor included pre-training 

levels of NA, 5-HIAA, tryptophan and corticosterone. The third factor, accounting for 11.9% 
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of variance, included perseveration, plasma levels of 5-HT and the 5-HT/5-HIAA ratio. 

Corticosterone levels and post-training levels of NA loaded on factor 4 whereas post-training 

levels of 5-HIAA and 5-HT loaded on factor 5. Factors 4 and 5 jointly explained 8% of the 

variance.  

Linear regression models were then created to investigate the strength of associations 

between perseveration, anxiety measures and peripheral biomarkers. As shown in Figure 2.4, 

a positive relationship was found between the proportion of entries into the open arms of the 

EPM and perseverative errors (F1,43=7.82 r=0.39, p=0.008). Reflecting the loadings on the 

third factor, a significant correlation was found between perseverative errors and pre-training 

levels of 5-HT in the plasma (F1,43=4.27, r=0.31, p =0.045). Power calculations show 

relatively high power (Power>0.7) to detect small to medium size effects (f2>0.15), 

alpha=0.05, n=45 and one predictor variable in the linear regression analyses.  
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Figure 2.4. (A) Distribution of perseverative errors on the spatial-discrimination reversal-

learning task expressed as percentage of the cohort size (n=45). (B) Perseverative errors were 

significantly correlated with the proportion of time spent in the open arms of the elevated 

plus maze (r2=0.154, p=0.008). (C) Lack of a significant relationship between perseverative 

errors and blood corticosterone levels (r2=0.096, p=0.064). (D) Positive relationship between 

the plasma concentration of 5-HT (in fmoles/µl) and perseverative errors (r2=0.096, 

p=0.045).   

 

MAO-A inhibition but not MAO-B inhibition improves reversal learning  

We next investigated the effects of MAO-A and MAO-B inhibition on reversal learning 

performance in the high- mid- and low-perseveration groups (Figure 2.5). As no interactive 

effects were found between the effects of moclobemide and perseveration group on total 

trials, errors or proportion of perseverative errors (F6,45=1.32, p=0.27; F6,45=0.40, p=0.88, 
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F6,45=0.84, p=0.55, respectively) these were collapsed across perseveration group for 

subsequent analyses. This analysis revealed that moclobemide significantly improved 

reversal learning performance, as indexed by total trials to criterion (F3,45=11.27, p<0.0001, 

η2=0.429, Figure 2.5A). Both the high and the low dose of moclobemide, as well as the 

combination of moclobemide and lazabemide, produced significant improvements compared 

with the vehicle group, as revealed by post hoc comparisons (p<0.001, η2=0.606; p<0.0001, 

η2=0.677; p<0.002, η2=0.486, respectively). 

 

Figure 2.5. Effects of moclobemide (n=18) and lazabemide (n=21) on total trials to achieve 

criterion (A, B) and the proportion of perseverative errors (C, D). Mean values ± SEM for a 

single post-drug administration session are shown. Significance is denoted as follows: 

*p<0.05, **p<0.01, ***p<0.001 versus vehicle.  
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With respect to the lazabemide-group, only the combined dose decreased the number 

of trials to achieve criterion (F3,60= 3.33, p<0.025, η2=0.143, Figure 2.5B). No significant 

interactive effects of lazabemide and perseveration group were observed on this measure. The 

combination of moclobemide and lazabemide decreased the number of trials to criterion 

compared with the high (p=0.046, η2=0.184) and low dose (p=0.033, η2=0.209) of 

lazabemide and the vehicle group (p=0.023, η2=0.234). Lazabemide itself had no significant 

effects on total trials to criterion.  

Analysis of total errors mirrored the effects of moclobemide and lazabemide on total 

trials to criterion. Thus one-way repeated measures ANOVA revealed significant main effects 

of drug treatment (moclobemide: F3,45= 7.51, p=0.0001, η2=0.344; lazabemide: F3,54= 4.83, 

p=0.005, η2=0.212); post-hoc analyses identified significant effects of high and low doses of 

moclobemide, as well as the drug combination, to decrease the total number of errors 

compared with the vehicle group (p=0.001, η2=0.542; p=0.001, η2=0.535; p=0.01, η2=0.367, 

respectively). The combination of both drugs significantly decreased the total number of 

errors to criterion compared to the high and low dose of lazabemide and vehicle (p=0.021, 

η2=0.261; p=0.01, η2=0.313; p=0.004, η2=0.383). No interactions between lazabemide and 

group were found (F6,54=0.25, p=0.96) nor did lazabemide itself have any effects on 

behavioural performance.  

By contrast, moclobemide decreased the proportion of perseverative errors 

(F3,45=3.86, p=0.016 η2=0.216, Figure 2.5C) with the highest dose significantly reducing 

perseverative errors compared with the vehicle group (p=0.003, η2=0.428). As shown in 

Figure 2.5D, no main effects or interactions were observed with respect to lazabemide on the 

proportion of perseverative errors (F3,51=0.72, p=0.55, F6,51= 0.37, p=0.90, respectively). 
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MAO-A inhibition increases the latency to initiate a new trial following an incorrect response 

Latencies to initiate a new trial following incorrect and correct responses are shown in Figure 

2.6. Mixed effect ANOVA with treatment as a within-subject factor and latency type as a 

between-subject factor revealed a significant difference in the pattern of effects produced by 

the drug treatment on correct and incorrect responses in the moclobemide group (treatment x 

latency type interaction: F3,87=5.74, p=0.001, η2=0.165) but not in the lazabemide group 

(F3,87=1.81, p=0.150).  

  

Figure 2.6. Effects of moclobemide (n=16) and lazabemide (n=20) on response latencies 

(seconds) following an incorrect (A, B) and correct (C, D) response. *p<0.05, **p<0.01, 

***p<0.001 versus vehicle. 
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Repeated measures ANOVA revealed a significant main effect of dose for the moclobemide 

group (F3,45=7.514, p=0.011, η2=0.334, Figure 2.6A) with the highest dose increasing 

incorrect response latencies compared with the vehicle group (p=0.004, η2=0.440), 

combination treatment (p=0.038 η2=0.258) and the low dose of moclobemide (p=0.013, 

η2=0.345). In addition, incorrect response latencies following the combined drug injections 

were significantly higher than those following a low dose of moclobemide (p=0.024, 

η2=0.297). A similar pattern of results was obtained for the lazabemide group (main effect of 

dose: F3,57=5.622, p=0.002 η2=0.228, Figure 2.6B) with the drug combination again 

increasing incorrect response latencies compared with the vehicle group (p=0.012 η2=0.287).   

A different pattern of results was observed with respect to the effects of MAO-A and 

MAO-B inhibition on correct response latencies. No significant differences were found in the 

MAO-A group (F3,45=2.164, p=0.105, Figure 2.6C), while correct response latencies in the 

MAO-B group were significantly variable between the different drug groups (F3,57=13.523, 

p=0.0001, η2=0.416, Figure 2.6D). Combination of both drugs increased the time to initiate a 

new trial following a correct response compared with the vehicle group (p=0.0001, 

η2=0.489). Power calculations for the main effect of drug on each of the behavioural 

variables are shown in Figure 2.7. 
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Figure 2.7. Post hoc power analysis using GPower 3.1 for drug effects on behaviour. Type I 

(alpha) and type II (beta) error rates given the sample size of 42 animals, alpha of 0.05, four 

within subject measurements (vehicle, drug low dose, drug high dose, drug combination) 

across all perseveration groups and (A) a small effect size (f=0.1), (B) a medium effect size 

(f=0.25), (C) a large effect size (f=0.4). Power (1- 𝛽) is shown on each panel.  
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Figure 2.8. Effects of selective MAO inhibition on monoamine levels in (A) OFC, (B) DRN, 

(C) BLA and (D) dorsomedial striatum (pmol/mg tissue). In figures (C) and (D), dopamine 

levels are shown on the left y-axis while NA and 5-HT levels are shown on the right y-axis. 

Data are mean values ± 1SEM. Significance is denoted as follows: *p<0.05; **p<0.005 

versus vehicle; +p<0.05 versus lazabemide. (E) Coronal sections showing regions of interest 

for ex vivo neurochemical analysis of monoamines following vehicle, moclobemide and 

lazabemide administration. Abbreviations: dorsomedial PFC (dmPFC), orbitofrontal cortex 

(OFC), dorsomedial striatum (DMS), nucleus accumbens (NAcb), basolateral amygdala 

(BLA), hippocampal CA1 region (CA1), lateral hypothalamus (LH), dorsal raphé nuclei 

(DRN). Adapted from Paxinos and Watson (1998). 

 

MAO-A inhibition strongly increases 5-HT and NA content in OFC, DRN and BLA 

The effects of selective MAO-A and MAO-B inhibition on brain monoamine content are 

shown in Figure 2.8 and Table 2.2. For each chemical neuromodulator, a separate ANOVA 

model was tested. A two-way ANOVA with drug treatment and region as between-subject 

factors revealed significant main effects of treatment (F3,119 = 82.17, p < 0.0001, η2 =0.627) 

with respect to 5-HT levels. Post hoc analyses of main effects (LSD) show that across all 

regions of interest, 5-HT levels were significantly higher following both high (16 mg/kg) and 

low (3 mg/kg) doses of moclobemide than following lazabemide or vehicle injections (all 

p<0.0001). Notably, lazabemide did not increase 5-HT levels compared with the vehicle 

group (p=0.6). However, the increase in 5-HT content induced by moclobemide was not 

uniform across all regions, as revealed by a significant treatment by region interaction (F21,119 

= 15.92, p < 0.0001, η2 =0.738). As shown in Figure 2.8 and Table 2.2, average 5-HT levels 

increased 35±10 fold (± CI0.95) following a high dose of moclobemide compared to vehicle in 
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the OFC; 30±13 fold in the DRN; 27±17 fold in the lateral hypothalamus, 9±4 fold in the 

BLA, and 4±1 fold in the dorsomedial striatum.    

MAO inhibition also produced significant changes in DA and NA content (F3,118 = 

33.70, p < 0.0001, η2 =0.461; F3,120 = 29.69, p < 0.0001, η2 =0.426, respectively), with 

moclobemide significantly increasing DA and NA levels compared with both the vehicle and 

lazabemide groups (all p<0.0001). However, DA and NA increases were not uniform across 

all areas, as indicated by the significant interaction between region and treatment (F3,90 = 

28.80, p < 0.0001, η2 =0.490; F15,90 = 5.791, p < 0.0001, η2 =0.491, respectively). Strongest 

increases in average DA levels (11-fold) were found in the lateral hypothalamus, with up to 

5-fold increases in other regions, including a 2-fold increase in the striatum (Figure 2.8 and 

Table 2.2). Similarly, 3-fold increases in NA were found in the OFC and DRN and up to 2-

fold increases in other brain regions. MAO-B inhibition did not significantly affect 5-HT, DA 

or NA levels compared to the vehicle treatment as revealed by post hoc contrasts (p=0.60, 

p=0.06, p=0.24, respectively).  

Finally, a power analysis revealed that only strong to very strong effect sizes could be 

detected in the validation of neurochemical effects experiment. Analysis was based on a total 

sample of 19 subjects, 4 groups (Vehicle, Lazabemide, Moclobemide 3mg/kg, Moclobemide 

16mg/kg), alpha of 0.05, and four within-subject comparisons (OFC, DRN, BLA, 

dmStriatum), testing for within-between interactions. Even for strong effect sizes (f=0.4), 

power was relatively low (at Power=0.43). Only very strong effect sizes (f>0.6) could be 

detected reliably (Power>0.8).  
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Brain region Drug 5HT DA NA 5HIAA DOPAC 

BLA Veh 0.28 (0.24) 2.39 (1.13) 0.63 (0.20) 3.06 (0.39) 4.36 (0.68) 

L10 0.34 (0.22) 2.78 (1.03) 0.81 (0.18) 2.13 (0.35) 4.53 (0.62) 

M3 2.66 (0.27) **+ 9.45 (1.26) **+ 1.17 (0.22) 1.37 (0.43) * 1.80 (0.76) 

M16 2.57 (0.27) **+ 9.64 (1.26) **+ 1.07 (0.22) 0.83 (0.43) **+ 1.35 (0.76) + 

dmPFC Veh 0.39 (0.17) 0.44 (0.47) 1.25 (0.22) 1.67 (0.39) 0.71 (0.32) 

L10 0.62 (0.16) 0.90 (0.43) 1.74 (0.20) 1.57 (0.35) 0.86 (0.29) 

M3 1.97 (0.19) **+ 1.66 (0.53) 2.03 (0.25) 1.15 (0.43) 0.89 (0.36) 

M16 2.20 (0.19) **+ 2.25 (0.53) 2.62 (0.25) ** 0.77 (0.43) 1.27 (0.36) 

dmS Veh 0.29 (0.08) 39.97 (5.78)     12.92 (1.34) 

L10 0.40 (0.07) 53.03 (5.27)     14.44 (1.23) 

M3 0.86 (0.09) **+ 81.71 (6.46) **+     6.55 (1.50) *+ 

M16 1.15 (0.09) **+ 83.11 (6.46) **+         6.84 (1.50) + 

DRN Veh 0.46 (1.35) 0.80 (0.28) 2.69 (1.08) 6.37 (0.39) 7.85 (3.57) 

L10 0.89 (1.23) 0.66 (0.25) 4.05 (0.99) 6.66 (0.35) 0.96 (3.26) 

M3 12.56 (1.51) **+ 1.94 (0.31) + 9.11 (1.21) *+ 3.52 (0.43) 0.74 (3.99) 

M16 13.93 (1.51) **+ 1.50 (0.31) 9.63 (1.21) **+ 2.76 (0.43) + 1.16 (3.99) 

Hippo Veh 1.72 (0.22) 0.21 (0.62) 2.86 (0.39) 1.68 (0.39) 2.03 (0.54) 

L10 0.57 (0.18) 1.22 (0.56) 2.47 (0.36) 1.65 (0.35) 2.14 (0.49) 

M3 1.70 (0.22) *+ 0.10 (0.69) 3.54 (0.44) 0.96 (0.43) 0.58 (0.60) 

M16 1.75 (0.22) *+ 0.07 (0.69) 3.24 (0.44) 1.01 (0.43) 1.18 (0.60) 

lH Veh 0.19 (0.69) 0.22 (0.14) 3.26 (1.00) 2.26 (0.39) 2.76 (0.95) 

L10 0.29 (0.63) 0.34 (0.13) 4.13 (0.91) 2.43 (0.35) 1.35 (0.86) 

M3 4.97 (0.77) **+ 1.72 (0.16) **+ 7.77 (1.11) 1.77 (0.43) 1.31 (1.06) 

M16 5.08 (0.77) **+ 2.51 (0.16) **+ 10.92 (1.11) **+ 1.38 (0.43) 0.75 (1.06) 

lOFC Veh 0.06 (0.12) 0.46 (0.24) 0.76 (0.18) 1.91 (0.39) 3.66 (1.11) 

L10 0.09 (0.11) 0.33 (0.22) 0.74 (0.16) 1.32 (0.35) 1.22 (1.01) 

M3 1.85 (0.13) **+ 0.88 (0.38) 1.74 (0.20) *+ 1.37 (0.43) 3.47 (1.24) 

M16 1.98 (0.13) **+ 1.36 (0.27) 2.15 (0.20) **+ 1.12 (0.43) 0.78 (1.24) 

NAcc Veh 0.23 (0.09) 24.38 (3.74)   1.23 (0.39) 15.89 (0.99) 

L10 0.26 (0.08) 27.63 (3.42)   1.15 (0.35) 12.82 (0.91) 

M3 0.92 (0.10) **+ 47.03 (4.18) **+   0.85 (0.43) 7.10 (1.11) **+ 

M16 1.17 (0.10) **+ 58.40 (4.18) **+     0.71 (0.43) 6.39 (1.11) **+ 

Averaged levels (± S.E.M.) expressed as pmol/mg are presented above. NA could not be quantified in the 

dmS or NAcc. Abbreviations are as shown in Figure 2.6.  

Table 2.2. Levels of DA and 5-HT in regions of interest following vehicle (Veh, n=5), 

lazabemide (L10, n=6), and moclobemide (M3, n=4; M16, n=4) administration. Following a 

significant two-way interaction between region and drug treatment, Bonferroni-corrected post 

hoc comparisons were carried out to compare treatment effects within each brain region. 

Significance is denoted as follows: *p<0.05; **p<0.005 versus vehicle (‘Veh’); +p<0.05 

versus lazabemide (‘L10’). 
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Figure 2.9. Inhibitory effects of meclobemide (10 mg/kg p.o.) on MAO-A and MAO-B 

activity in several rat brain areas. The figure was adopted from (Da Prada et al, 1988) and 

includes mean values for six rats per group. It can be seen that moclobemide inhibited MAO 

activity by up to 80%, which returned to baseline within 24 hours. PEA: Phenylethylamine, a 

trace amine.  

 

DISCUSSION 

The main findings of this investigation indicate that behavioural inflexibility, as measured by 

perseverative responding on a spatial reversal-learning task is linked to reduced anxiety and 

increased levels of circulating plasma 5-HT prior to behavioural training. Inflexible 

behaviour on this task was significantly improved by MAO-A inhibition but not by MAO-B 

inhibition and was accompanied by significant increases in 5-HT and NA levels in the OFC, 

DRN and BLA, and longer latencies to initiate a new trial following an incorrect, but not a 

correct response. These findings collectively indicate that inter-individual variation in 

behavioural flexibility correlates with low trait anxiety and peripheral measures of 

serotonergic function and is strongly and selectively modulated by MAO-A inhibition, which 
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putatively may have the effect of strengthening behavioural inhibition in response to recent 

negative feedback.  

Animals exhibiting high levels of perseverative responding during reversals of the 

instrumental contingency were less anxious on the elevated plus maze than low-perseveration 

animals. At first glance, this finding appears to run counter to traditional views that anxiety 

relief is an important driver for maintaining compulsive behaviour in OCD. However, 

although obsessions and compulsions may be accompanied by anxiety symptoms, and 

worsened by stress, a prominent role of anxiety in OCD is controversial and not widely 

accepted (Fineberg et al, 2010; Hollander et al, 2008; Stein et al, 2010). Moreover, to our 

knowledge, no studies have directly reported the relationship between trait-like variation in 

anxiety and behavioural flexibility in rodents. Nevertheless, consistent with the present study, 

high trait-like anxiety in marmoset monkeys has been associated with a tendency for 

improved flexibility on tasks that depend on the anterior OFC and ventrolateral PFC (Shiba et 

al, 2014). The explanation for the apparent inverse relationship between perseveration and 

trait anxiety is unclear but may be related to increased vigilance and/or enhanced sensitivity 

of highly anxious subjects to negative environmental cues and feedback (Bradley et al, 1999; 

Cisler and Koster, 2010). Thus, following a shift in the S-R contingency, subjects exhibiting 

increased anxiety may be less likely to perseverate because their attention is drawn to the 

previously “incorrect” (i.e., non-reinforced) stimulus and through increased exploration more 

readily detect changes in the S-R contingency (Homberg and Lesch, 2011). This hypothesis 

suggests that low-anxious, highly perseverative rats may disregard negative feedback in 

preference for positive stimuli, and this may be relevant to the beneficial effects of MAO-A 

inhibition on behavioural flexibility as discussed below. 

A small but significant component of the variance in perseveration was accounted for 

by plasma levels of 5-HT measured prior to training on the reversal-learning task. No 
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associations were found for circulating levels of the 5-HT precursor tryptophan or hormones 

linked to stress and the hypothalamic-pituitary adrenal axis (NA and corticosterone). Whilst 

the latter markers provide further separation between perseveration and anxiety and stress 

responses, our exploratory finding of a positive relationship between perseveration and 

plasma 5-HT suggests a possible reciprocal relationship between peripheral and central 

measures of 5-HT function underlying natural variation in behavioural flexibility. Thus, in a 

recent study, rats stratified for high and low perseveration on an identical spatial reversal 

task, exhibited reduced indices of serotonergic transmission in the DRN and OFC (Barlow et 

al, 2015a). However, the exact mechanisms underlying the apparently opponent relationship 

between plasma and brain 5-HT remain unclear and would require further studies to directly 

contrast plasma 5-HT levels with task-related changes in extracellular 5-HT in the brain, in 

addition to assessing platelet MAO activity (Arrojo et al., 2007).  

Using the same paradigm as the present study, we recently reported that high trait-like 

perseveration in rats is associated both with decreased MAO-A and MAO-B expression in the 

dorsal raphé nucleus and increased MAO-A and MAO-B expression in the lateral OFC 

(Barlow et al, 2015a). Highly perseverative animals exhibited reduced 5-HT metabolism and 

5-HT2A receptors in the OFC compared with low perseverative rats. In the present study, the 

selective MAO-A inhibitor moclobemide, but not the MAO-B inhibitor lazabemide, 

significantly reduced the total number of trials and total errors animals made before they 

achieved the set criteria for reversal. Although both doses of moclobemide improved general 

reversal performance, only the highest dose (16 mg/kg) reduced the proportion of 

perseverative errors. Notably, the higher dose of moclobemide also prominently increased the 

time rats took to initiate a new trial following an “incorrect” response but not following a 

“correct” response, indicating increased behavioural resilience to the negative feedback of 

non-reward.  
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The neural mechanism underlying the improvement in behavioural indices of 

cognitive flexibility by moclobemide is unclear but parsimoniously may involve a facilitation 

in serotonergic transmission in several brain regions including the OFC and amygdaloid 

complex (Clarke et al, 2005, 2011; Izquierdo et al, 2016; Rygula et al, 2010). Reversible 

MAO-A inhibition profoundly increased 5-HT (and NA) content in every region assayed, 

including the DRN, BLA and lateral OFC. Changes in DA content were less consistent, 

however, with significant increases evident only in the BLA and striatum. Central 5-HT plays 

a critical role in adaptive responses to aversive and threatening stimuli (Cools et al, 2008; 

Dayan and Huys, 2009; Deakin and Graeff, 1991) and low levels of 5-HT produced by acute 

dietary tryptophan depletion lead to negatively-biased decision-making (Cools et al, 2008; 

Rogers et al, 2003). In rats, 5-HT exerts complex effects on reward sensitivity and negative 

feedback (Bari et al, 2010; Rygula et al, 2015). For instance, acute 5-HT reuptake inhibition 

with a high dose of citalopram (10 mg/kg) decreased the sensitivity of rats to negative 

feedback in a probabilistic reversal-learning task and facilitated behavioural flexibility (Bari 

et al, 2010), while the same dose was found to improve behavioural flexibility on a spatial 

reversal-learning task (Barlow et al, 2015a).  

Although citalopram and moclobemide both facilitated reversal performance, the 

effect size of moclobemide was significantly larger than that of citalopram (compare Barlow 

et al., 2015). This difference may be explained by the effects of SSRIs to simultaneously 

exert biphasic inhibitory and facilitating effects on 5-HT transmission through blockade of 5-

HT reuptake and activation of inhibitory somatodendritic 5-HT1A autoreceptors in the DRN 

(Sprouse and Aghajanian, 1987). Thus high doses of citalopram have the effect of increasing 

extracellular levels of 5-HT in the PFC, as measured by in-vivo microdialysis (Invernizzi et 

al, 1992) but not at lower doses, which activate inhibitory 5-HT autoreceptors and diminish 

the activity of serotonergic neurons in the DRN (Gardier et al, 1996). In contrast, MAO-A 
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inhibition does not affect the function of 5-HT autoreceptors, even after long-term 

administration, (Blier et al, 1988), and consistently increases 5-HT levels by inhibiting its 

decomposition (Kumagae et al, 1991; Stahl, 2015). Thus, unlike citalopram that dose-

dependently impairs and improves reversal-learning (Bari et al, 2010), moclobemide 

apparently exerts monophasic effects on 5-HT transmission and strongly promotes 

behavioural flexibility.  

In addition to its effects on 5-HT, MAO-A inhibition also increased NA levels in the 

lateral OFC, PFC, and DRN. While some studies report that acute NA reuptake inhibition and 

α-2A  receptor activation improves intradimensional (ID) reversal performance (Seu and 

Jentsch, 2009; Steere and Arnsten, 1997), other studies using similar manipulations report 

effects on extradimensional reversal learning e.g. (Bradshaw et al, 2016). Moreover, central 

NA depletion did not impair performance on a taste/tactile reversal task (Jarbe et al, 1988) 

and NA efflux increased only weakly in the rat medial PFC during the reversal phase of a 

serial reversal learning task (Van Der Meulen et al, 2007), suggesting that NA may be less 

important for behavioural adaptation following changing stimulus-reward contingencies than 

for general attentional processes needed for successful set-shifting (Cain et al, 2011; Tait et 

al, 2007; Totah et al, 2015).  

Contrasting with the effects of moclobemide, selective MAO-B inhibition with 

lazabemide produced no significant effects on task performance nor did this compound affect 

tissue levels and turnover of 5-HT, DA and NA in a number of cortical and subcortical 

regions. These negative findings were very unlikely to be due an insufficient dose of 

lazabemide since much lower doses were reported to inhibit ex vivo MAO-B activity by over 

80% while leaving MAO-A activity unaffected (Henriot et al, 1994, 2mg/kg; Jolkkonen et al, 

2000, 1 mg/kg). Moreover, the selected high dose of lazabemide (10mg/kg) has been shown 

to produce robust behavioural effects in other settings (Maki et al, 2000). Rather, the absence 
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of significant effects of lazabemide in the present study is more consistent with its high 

selectivity for the MAO-B subtype that preferentially targets trace amines (Shih and 

Thompson, 1999). The singular contribution of MAO-A inhibition to promoting behavioural 

flexibility was confirmed by the combination treatment of moclobemide and lazabemide, 

which mimicked the effects of moclobemide alone.  

 

Limitations 

The main limitations of this set of experiments are in the validation of the effects of MAO 

inhibitors. The drug effects on the brain were tested using ex vivo assays in a relatively small 

group of animals (n=4 for Moclobemide 3mg/kg and 16mg/kg, respectively). Small effects of 

the MAO-I drugs would not have been detected. The effects of MAO inhibition on in vivo 

electrophysiology of the regions of interest reported here (OFC, DMS, BLA, DRN) would 

have been a potentially interesting extension of the findings reported here, as it could be also 

related to trial-by-trial adjustments in expected values of each response.  

In conclusion, our findings demonstrate that selective and reversible inhibition of 

MAO-A but not MAO-B activity enhances behavioural indices of cognitive flexibility 

regardless of baseline flexibility on a spatial discrimination reversal-learning task. Our results 

show, apparently for the first time, that natural variation in behavioural flexibility is partly 

predicted by reduced measures of trait-like anxiety and increased plasma levels of 5-HT. 

Since cognitive flexibility is impaired in OCD (Watkins et al, 2005) and unaffected first-

degree relatives of OCD patients (Chamberlain et al, 2007b), the index of perseveration used 

in the present study may represent an endophenotype to support a deeper understanding of 

aetiological mechanisms of cognitive inflexibility linked to substance use disorder. Our 

findings specifically implicate MAO-A in modulating cognitive flexibility and encourage 

further investigations of this ubiquitous enzyme as a target for diagnosis and treatment. 
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Chapter 3 

Resting state connectivity analysis of spatial-discrimination serial reversal learning 

INTRODUCTION 

The main findings of the previous chapter revealed several novel observations in relation to 

the neural and psychological substrates underlying individual differences in spatial-

discrimination serial reversal learning. Firstly, reversal learning was improved by enhancing 

cortical monoaminergic neurotransmission via MAO-A inhibition. Secondly, reversal 

learning was inversely related to trait-like variation in anxiety (assessed on the elevated plus 

maze). This chapter extends these findings using functional magnetic resonance imaging to 

map brain resting-state connectivity network strengths in rats segregated on the basis of good 

versus poor behavioural flexibility on the same task used in the previous chapter.   

The brain is highly interconnected, with distinct neuronal populations working 

together as a network to produce complex patterns of behaviour to enable organisms 

successfully to interact with their environment. Impaired functional organisation of the brain 

has demonstrable utility in characterising the symptomatic impairments in many 

connectivity-related diseases such as Alzheimer's disease, dementia, schizophrenia and 

multiple sclerosis (Van Den Heuvel and Pol, 2011). Indeed, recent advances in fMRI to 

assess functional connectivity in the so-called resting state have shown promise for 

personalized psychiatry; for example, in predicting treatment outcomes in depression 

(Avissar et al, 2017; Dichter et al, 2014; Moreno-Ortega et al, 2019), OCD (Reggente et al, 

2018), substance use disorder (Steele et al, 2018) and post-stroke recovery (Visser et al, 

2019). Nevertheless, the precise mechanisms of resting state connectivity remain to be fully 

elucidated, which at the very least are thought to arise from slow rhythmic oscillations (Li et 
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al, 2015) and correlated single-unit electrophysiological activity (Chen et al, 2017; Lu et al, 

2007; Scholvinck et al, 2010).  

However, large-scale functional brain networks derived from resting state fMRI do 

not inform structural connectivity at a cellular level (Smith et al, 2013) nor do they provide 

information about the neurobiology or neurochemistry of the underlying connectivity 

patterns, simply because the biological mechanisms of spontaneously-correlated brain 

activity remain enigmatic. However, they do provide a window into the functional 

organization of the brain at rest, possibly related to fluid intelligence (Smith et al., 2013), that 

is remarkably stable during sleep and under anaesthesia (Picchioni et al, 2013), and across 

different mammalian species (Gorges et al, 2017; Lu et al, 2012) 

Studies of resting-state functional connectivity in humans and rodents can thus 

provide systems-level explanations of healthy and abnormal functional brain circuits. For 

example, elucidating the relationship between inter-individual variability in behavioural 

flexibility and functional connectivity may provide insight into network functional 

differences underlying stable contrasts in flexible and inflexible behavioural switching. 

Although very little evidence is available on resting state networks and their relationship to 

reversal learning, recent mouse studies implicate hypersynchronous connectivity between 

prefrontal cortex and posterior somatosensory cortices in impaired reversal learning (Shah et 

al, 2018).  

Analysis of  resting state networks has revealed remarkably similar resting state 

networks to those observed in monkeys and humans (Hsu et al, 2016; Lu et al, 2012), and 

have been linked to structural connectivity arising from white matter tract strength (Hsu et al, 

2016). Further, analyses of information transfer between the regions of interest in the resting 

state networks using graph theory metrics have shown that communication between brain 
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regions in rats follows similar principles to the organisation of human brain networks (Alstott 

et al, 2014; Bullmore and Sporns, 2009; van den Heuvel and Sporns, 2011; Ieong and Yuan, 

2017). In particular, rat brains share the small world architecture (Liang et al, 2011), with 

distinct prefrontal and parietal – sensory modules (Hsu et al, 2016; Lu et al, 2012). High 

clustering and short path lengths are hallmark characteristics of a small world network and 

allow for information to travel quickly from one region to another without introducing an 

excessive number of connections between nodes, thus resulting in a high degree of efficiency. 

Rat brains also follow the rich club organisation, whereby highly interconnected nodes also 

connect to each other, and dynamically change functional connectivity organisation in order 

to balance the cost and efficiency of communication (Liang et al, 2017).  

Indirect evidence for functional connectivity correlates of behavioural inflexibility 

and compulsivity has stemmed from studies of substance use disorder (Schoenbaum et al, 

2006; Stalnaker et al, 2009b). Functional connectivity abnormalities in the default mode 

network have been reported in heroin users, with reduced DMN connectivity in the right 

dorsal ACC and left caudate (Ma et al, 2011) and reduced connectivity in the OFC (Ieong 

and Yuan, 2017) compared to healthy volunteers. In cocaine-dependent individuals, 

abnormally strong connectivity of the ventral striatum with the dorsal striatum was reduced 

following methylphenidate treatment (Konova et al, 2013). Further, rats self-administering 

cocaine showed decreased functional connectivity between prelimbic cortex and 

entopeduncular nucleus as well as between nucleus accumbens core and dorsomedial 

prefrontal cortex compared with rats that were self-administering sucrose or received no 

treatment (Lu et al, 2014). Self-administration of cocaine has been shown to increase 

clustering, modularity and even small worldness in rats (Orsini et al, 2018) in the short term 

(one day of forced abstinence), although all these measures returned to baseline two weeks 

after drug discontinuation.  
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Since reversal learning is a proxy for one specific type of compulsive behaviour (Robbins 

2012), we need more evidence to understand the biological and psychological mechanisms 

underlying these robust interaction patterns between brain regions comprising macroscopic 

volumes of neuronal tissue at a systems-level. In a set of experiments described in this 

chapter, I therefore investigated the utility of resting state fMRI (rsfMRI) in rodents to 

investigate the neural substrates of behavioural flexibility. While Chapter 2 focused on the 

neurochemical mechanisms of reversal learning, Chapter 3 attempts to elucidate functional 

correlates of behavioural flexibility using the same spatial serial reversal task.  

The main objective of this chapter was to address the following three research 

questions: Firstly, we sought to investigate two distinct resting state fMRI acquisition 

sequences, differing in the sequence length and resolution. We conjectured that the networks 

revealed would not differ significantly as resting state networks have been previously shown 

to be remarkably robust to changes in fMRI acquisition methods (Smith et al, 2013). 

Secondly, we aimed to investigate group-level resting state network organisation using graph-

based theoretical measures and use these to replicate the findings of previous studies in terms 

of clustering, modularity and small-worldness (Lu et al, 2012; Orsini et al, 2018). Finally, we 

sought to explore links between resting state connectivity and reversal learning ability. We 

hypothesised that high performing (i.e., behaviourally-flexible) rats would differ from low 

performing (inflexible) rats in their functional connectivity of the OFC, a frontal cortical 

region widely implicated in reversal learning (Chapter 2, Izquierdo et al, 2016).  

METHODS 

Subjects. Forty-nine male Lister-hooded rats, aged 2 months, were used for this experiment 

(Charles River, Kent, UK). These were reared from birth and were weaned at postnatal day 

(PND) 21. Water and food was available ad libitum until they started behavioural testing at 
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PND 65. Once behavioural testing started, the weight of each animal was recorded each week 

with animals maintained at 85–95% of free-feeding weights. When no behavioural training or 

testing took place, rats received 20 g of chow per day. All animals were housed in groups of 

four per cage and kept under a reversed 12 h light/dark cycle (lights off 07:00 h until 19:00 

h). Rats were trained on the spatial reversal learning task between 10:00 and 15:00 h. 

Experiments were conducted in accordance with the UK Animals (Scientific Procedures) Act 

of 1986 and were approved by the ethics review committee at Cambridge University.  

MRI Acquisition. Animals were scanned on three occasions: PND21, PND35 and PND63. 

Rodent functional MRI and structural images were acquired on a Bruker Biospin 9.4T 

scanner. Each scanning session lasted approximately 1.5h and followed the same procedure 

for anaesthesia induction and maintenance. Anaesthesia was induced under 2 L/min flow of 

O2 and 5% isoflurane and maintained at 1.5-3% isoflurane concentration. Two cohorts of 

animals (cohort 1, n=12, cohort 2, n=40) were scanned using different protocols to optimise 

the acquisition sequence. In cohort 2, isoflurane anaesthetic was carried by a combination of 

30% medical air (79% N2, 21% O2), and 70% O2 whereas in cohort 1, isoflurane was carried 

by O2 only. In both groups, isoflurane concentration was adjusted to keep the breathing rate 

at 40-50 bpm and the heart rate at 300 bpm. The first group had a voxel resolution of 

0.35x0.35x0.4mm with a matrix size of 64x64x48 and a TR of 3s, resulting in 100 volumes. 

The second group had a voxel resolution of 0.45x0.45x0.5mm with a matrix size of 

64x48x40 and a TR of 1.832s, resulting in 450 volumes. Echo time was kept the same in both 

sequences at TE = 15 ms; with three echoes being acquired for each volume. Structural 

images included a magnetisation transfer (MT) image with a resolution of 0.16x0.16x0.16mm 

and six echo times. Example functional images from each protocol can be seen in Figure 

3.1A.  
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Figure 3.1. Pre-processing pipeline and checks. A) Example fMRI image from cohort 1 and 

cohort 2. “Ax”=Axial, “Sag”=Sagittal and “Cor”=Coronal slices B) Two-step registration 

using FSL FLIRT and FNIRT. C) Example of ghosting in one of the excluded fMRI images; 

ghost image outlined in red. The EPI sequence used here was an interleaved sequence, 

whereby every second slice is acquired first and then all the missed slices are acquired 

afterwards. If there is any misalignment in phase or intensity between the interleaved slices, 

ghosting will occur at reconstruction of the image. In practice, this manifests as a “ghost” 

image of the brain appearing shifted relative to the main image positioned. D) Example 

functional image warped to standard space for registration checks.  
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Reversal task. Animals were trained on the serial spatial discrimination reversal task as 

described in Chapter 2. Variables of interest included total trials to criterion and 

perseverative errors.  

MRI image pre-processing. Data analyses were performed using FSL (Jenkinson et al, 2012), 

AFNI (Cox, 1996) and SPM12 (Penny et al, 2006) as well as custom MATLAB (R2016a) 

scripts for visualisation, whilst maintaining data pre-processing the same across the two 

cohorts. Firstly, structural MT and functional MRI images were rigidly manually aligned (6 

degrees of freedom) to a structural template and the origin was set to the middle of the brain 

using SPM12. At this stage, visual quality checks revealed ghosting artefacts in 12 images 

(Figure 3.1C) from cohort 2, which were excluded from further analysis. In addition, 4 

images were missing due to animals being culled (1 rat from cohort 1 and 3 rats from cohort 

2). Following exclusions, 11 scans from cohort 1 and 25 scans from cohort 2 were used in the 

MRI analysis.  

Firstly, structural MT image was composed of six echos, i.e. images acquired at 

different relaxation times. These were combined by calculating a simple average of all echo 

times (AFNI 3dcalc). Similarly, for each volume of the rs-fMRI series, the three echo times 

were averaged for subsequent analyses. Pre-processing included brain extraction of MT and 

fMRI images and discarding the first three volumes of the fMRI image to achieve steady 

state. Motion correction was performed using mcflirt (Jenkinson et al, 2002). Slice timing 

correction (interleaved acquisition, FSL slicetimer) and linear detrending of 50s were 

followed by 3mm FWHM smoothing of the fMRI series. We used two-step registration 

(Figure 3.1B), the gold standard in human neuroimaging analyses, whereby a brain-extracted 

(but not otherwise changed) fMRI image is linearly (6 degrees of freedom) registered to the 

corresponding structural image and the structural image is nonlinearly registered to the 

template image (isotropic resolution of 0.15mm). A template brain atlas was provided by 
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University of Nottingham (Dalley et al, 2007). Registration quality was manually checked for 

each image by comparing WM landmark overlap (e.g. callosal bundle) between the warped 

fMRI image and the template; all images were well-aligned to the standard space template. In 

cohort 2, landmark identification was complicated by the poor image resolution which was 

pre-selected to shorten scan length. The fully pre-processed fMRI was then transformed into 

standard space using the linear matrix (to structure) and the nonlinear warp-fields (to standard 

space). Brain masks were also transformed into standard space and a group mask was 

calculated from the overlap of individual brain masks.  

 

Figure 3.2. ROI location. RSG – retrosplenial gyrus; AUD – auditory cortex; V1M – visual 

cortex V1; M1/M2 – motor cortices 1 and 2; lOFC – lateral orbitofrontal cortex; PrL – 

prelimbic cortex; Hippo – hippocampus. 

 

Region of Interest Analysis. Based on group independent component analysis (FSL Melodic, 

Smith et al, 2004) results from cohort 1 and cohort 2, as well as previous evidence (Hsu et al, 

2016; Lu et al, 2012), the following anatomical ROIs were selected from the Waxholm Space 

Atlas of the Sprague Dawley Rat Brain atlas (from nitrc.org) and from a cortical atlas with 

Paxinos and Watson labels (Valdés-Hernández, 2011): cingulate gyrus, retrosplenial gyrus, 

prelimbic cortices and lateralised auditory, visual, motor, lateral orbitofrontal cortices (Figure 
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3.2). The first Eigenvariate of the timeseries in these ROIs was extracted and correlated for 

each subject. Mean timeseries of the white matter and cerebrospinal fluid ROIs were also 

extracted and the signal of these noise components was regressed out from each of the grey 

matter ROIs. However, since regressing out the noise did not improve spectral composition 

of the timeseries (Figure 3.3), subsequent analyses were conducted without this pre-

processing step. Cleaned timeseries were correlated using Pearson’s R coefficient, resulting 

in a 15x15 correlation matrix for each subject. These subject-level connectivity measures 

were then used to address three research questions:  

 

Q1) Does pairwise ROI connectivity differ between the two cohorts, which differ in various 

acquisition parameters? Since only very few ROI correlations were significantly different, the 

two cohorts were combined for subsequent analyses. 

Q2) What typical graph theoretical features of the network are common to both cohorts? 

Q3) Does pairwise ROI connectivity differ between animals with high versus low reversal 

learning scores (high RL; low RL)? 

To address Q1, we compared all pairwise connectivity estimates after an r-to-z 

transformation (z’ = -0.5*[ln(1+r) – ln(1-r)]) and controlled for multiple comparisons using 

family-wise error correction in FSL nets_glm, which in turn employs permutation testing 

from FSL randomise (Nichols and Holmes, 2003; Winkler et al, 2014). The first comparison 

of interest was between cohort 1 and cohort 2, intended to test for any differences that could 

be linked to the differences in acquisition parameters.  

Next, to address Q2, we evaluated the mean network across all subjects from cohort 1 

and cohort 2. One-sample t-tests (ttest, MATLAB) were calculated for each correlation using 

individual connectivity estimates to obtain a map of correlation significantly greater than zero 

in the whole group. The correlations were thresholded at P>0.01, t>3.1, without multiple 
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comparison correction using a one-sample t-test (MATLAB ttest). Across all animals, 

resulting mean correlation maps were binarized by setting significant correlations to 1 and 

non-significant correlations to 0 and network modularity was explored in the Brain 

Connectivity toolbox (Rubinov and Sporns, 2010). Metrics of interest included node degree, 

clustering and modularity. ROIs with the highest degree were considered network hubs. In 

addition, binarized versions of the network (figure 3.6C) were randomised (figure 3.6E) and 

latticized (figure 3.6D) to compute small-worldness coefficients of the network.  

Local measures were defined as follows: Node degree measures the number of 

adjacent edges between the node of interest and any other nodes in the network. Path length 

between two nodes is defined as the shortest connection length between two nodes; (i.e. the 

number of edges that have to be crossed to reach one node from another). Path length of any 

one node is defined as the average of path lengths from this node to all other nodes. Finally, 

the clustering coefficient of a node is the proportion of edges between all neighbours of a 

node divided by the maximum number of edges that could exist between all neighbours of a 

node. The clustering coefficient provides a measure of how many connections exist between 

neighbours of a node.  

Global network measures were defined as follows: Firstly, characteristic path length 

was defined as the average of the shortest path lengths (see above) of all nodes. It is a metric 

of how efficiently information is transmitted in a network as longer paths would be associated 

with less efficient or longer communication times between nodes. Secondly, global clustering 

coefficient was computed as the mean clustering coefficient of all nodes. Finally, two 

alternative small world coefficients were computed, based on a randomized or latticized 

network. Small world networks were characterized by high mean clustering (compared to a 

randomised network) and a similarly short path length to a random network. They are 

computed as follows: 
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Where CR and CL are the mean clustering coefficients in a randomised and latticized 

networks, LR is the characteristic path length in a randomised network and C and L are the 

clustering and path lengths of the network of interest. Small world coefficient 1 (SW1) is 

below 1 if the network is closer to a random network and larger than 1 if the network is closer 

to a fully ordered network. Similarly, small world coefficient 2 (SW2) ranges from 0 to 1, 

with values closer to 1 indicating larger similarity to a small world network. Randomization 

and latticization were repeated 500 times to get an unbiased estimate of small-worldness. 

Finally, to address Q3 we compared the high reversal vs low reversal groups and 

included the total trials to criterion and total errors as a covariate in a separate GLM, again 

controlling for multiple comparisons using FSL nets_glm. 

Voxelwise Group Comparisons. We also attempted to address research Q1 and Q3 at the level 

of voxelwise rather than ROI-wise connectivity. To address research Q1, we ran a group ICA 

on each cohort separately due to the difficulty in combining fMRI images with different TRs 

in cohort 1 and 2. Dimensionality of 20 individual components was chosen given the 

relatively coarse resolution of the data. We then used conjunction analysis to investigate the 

overlap in components in the two cohorts.  

We also used dual regression with the anatomic retrosplenial gyrus seed (structural 

atlas  by Valdés-Hernández, 2011) to obtain individual connectivity maps of these anatomical 

ROIs that we compared across the two cohorts. Briefly, the dual regression procedure 

(Nickerson et al, 2017) extracts the time course of the RSG anatomical ROI for each subject, 
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then correlates this time course with the timeseries of each voxel, thereby creating subject-

specific brain maps that show which voxels are strongly correlated (or anticorrelated) with 

the ROI activation. Using FSL randomise, we then tested whether these maps contain any 

regions that are significantly correlated with the RSG at a group level and whether any group 

differences between cohort 1 and cohort 2 exist. Finally, we also explored any group 

differences in animals with high or low reversal learning ability using dual regression of the 

RSG. 

 

RESULTS 

Pre-processing checks  

After excluding some of the rs-fMRI data in cohort 2, which showed ghosting artefacts (n=12 

scans, example in Figure 3.1C), registration checks of warped fMRI image overlaid on a 

standard space template showed that the two-step registration provided a reasonably accurate 

mapping from the fMRI space to the structural space to the standard space judging by 

consistent location of the white matter landmark of the corpus callosum (Figure 3.1D). Visual 

landmark identification was clearer in cohort 1 than cohort 2 due to higher resolution of the 

EPI sequence used in cohort 1. Therefore, registration was more precise in cohort 1 than 

cohort 2. Field inhomogeneities at 9.4 Tesla strength produced distortions in the fMRI 

images, especially in the posterior ventral parts of the brain.  

Fourier decomposition of the fMRI signal fluctuations in each cohort showed that the spectral 

power of the timeseries was concentrated around the expected low frequencies, although with 

a spike in high-frequency power, especially in cohort 2, which was indicative of noise 

contamination (Figure 3.3).  
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Figure 3.3. Timeseries power spectra for cohort 1 (A, C) and cohort 2 (B, D). Average 

timeseries in black; individual ROI timeseries in RGB colours. Visual inspection of the 

spectral composition of the timeseries data suggests high frequency noise contamination 

(peak on the right of each plot), which was particularly problematic in cohort 2. However, 

regressing out WM and CSF noise confound signals did not improve the data quality in either 

cohort, as the noise peaks still persisted in C) and D), compared with A) and B). Created with 

FSLNets, nets_spectra; [a.u.] = arbitrary units.  

Resting-state networks replicate across the two cohorts (Q1) 

ROI connectivity. Despite the different lengths of the fMRI timeseries (n=100 volumes and 

n=450 volumes), different resolutions (0.35x0.35x0.4mm and 0.45x0.45x0.5mm) and the use 
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of medical air as opposed to oxygen as anaesthetic carrier gas in cohort 1 and cohort 2, 

respectively, rs networks in these two cohorts show a very similar organisation (Figure 3.4A, 

3.4B). The only significant difference in connectivity strengths was found between the 

hippocampus and retrosplenial gyrus ROIs. The correlation between these two areas was 

significantly higher in cohort 1 than in cohort 2 (two sample t-tests, FWE corrected p=0.007, 

Figure 3.4C). For detailed comparison of the connectivity networks, please refer to Figure 

3.4. Mean overall connectivity did not differ between the two cohorts, as mean correlation 

strength [SD] in cohort 1 was 0.348 [0.17] and mean correlation strength [SD] in cohort 2 

was 0.352 [0.23], (t34= -0.05, p=0.96).  

Figure 3.4. Resting state group mean networks in Cohort 1 (A) and Cohort 2 (B). After 

family wise error (FWE) correction for multiple comparisons, four significant differences in 

connectivity strengths between the two cohorts emerged (C): connectivity between the left 

hippocampus and retrosplenial (RSG) was significantly higher in cohort 1 than cohort 2 

(p=0.0072, FSL nets_glm). Further, the connectivity between the left hippocampus and right 

M1 area (pFWE=0.0242), connectivity between the right hippocampus and left M2 

(pFWE=0.0408) and right M1 (pFWE=0.0046) were significantly higher in cohort 2 than cohort 

1. We reanalysed the data by changing the pre-processing pipeline to include bandpass 

instead of highpass filtering, which had only small impact on the group comparisons. The 

details of this analysis are reported in Appendix 1.  
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Voxelwise connectivity. Dual regression of the RSG revealed that it is part of a network which 

includes auditory, visual and cingulate areas (one sample t-tests, threshold-free cluster 

enhanced (TFCE) corrected maps p<0.01). RSG connectivity did not differ significantly 

between cohorts (TFCE corrected p>0.05, Figure 3.5). Interestingly, although no significant 

group differences were found after multiple comparison correction, group mean maps in 

cohort 1 (in red, Figure 3.5) showed that RSG was indeed connected with the hippocampus, 

which we did not observe in cohort 2 mean maps. This is consistent with the differences in 

RSG-left hippocampus differences in ROI connectivity (Figure 3.4C).  

 

Figure 3.5. Dual regression for the RSG seed. Voxelwise connectivity of the RSG seed maps 

out the presumptive rat default mode network (DMN). Group mean networks for cohort 1 in 

red, cohort 2 in yellow; overlap in orange; p<0.01; no significant differences were found after 

correction for multiple comparisons (P>0.05).  

Cross-cohort mean network possesses small-world features (Q2) 

Given that the networks were organised in a similar way in both cohorts, the results of the 

two cohorts were combined to further investigate network organisation (Figure 3.6A). 

Thresholding the correlation matrices based on inter-individual subject variability (t35>3.1, 

two-tailed p<0.01) resulted in a network where 42% of all connections were retained. This 

thresholding procedure was chosen as it allows us to include only those correlations that are 

stable across all subjects by filtering out moderate group-level correlations that are driven by 
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large between-subject variability (Figure 3.6B). The resulting group mean network followed 

a small world architecture, with higher clustering and shorter path length than corresponding 

randomised or latticized networks (Figure 3.6C). Average small world coefficient 1 was 

above 1 (SWQ1=1.0458), while average small world coefficient 2 was above 0.5 

(SWQ2=0.57) after repeating the randomization 500 times.  

 

Figure 3.6. Graph theoretical analysis pipeline of the mean correlation network in all subjects 

(A). Each Pearson’s R value is the mean of 36 individual Pearson’s R values between each 

pair of ROIs. Standard deviation of the Pearson’s R values across subjects is shown in (B). 

Correlation matrices were thresholded based on a one sample t-test, t35>3.1, p<0.01, n=36 

and surviving correlations were binarized (C) and corresponding randomized (D) and 

latticized (E) networks were created. 
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The overall network is subdivided into two modules (Figure 3.7B), a prefrontal sub-

network that includes the cingulate, orbitofrontal and motor cortices, and a posterior cortical 

sub-network that includes retrosplenial gyrus, visual and auditory cortices and prelimbic 

cortex. Based on the node degree (Figure 3.7A), cingulate and motor cortices were the most 

interconnected nodes of the network, with information passing through cingulate and RSG 

and PrL (or right auditory cortex) to move between the two modules. 

Figure 3.7. Graph theoretical analysis results. (A) Node degree for each ROI in the group 

mean network. (B) Network partition into two modules. Using Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010) functions degrees_und.m and modularity_und.m.  

 

An exploratory analysis of functional OFC connectivity in rats expressing high versus 

low behavioural flexibility 

 In order to test for group-wise differences in functional connectivity patterns, two groups of 

high and low reversal animals were formed by taking the top quintile of animals (n=10) with 

the smallest number of total trials to criterion and the bottom quintile (n=10) of animals with 

the largest number of total trials to criterion. The two groups differed significantly in the 
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number of trials (t18=9.20, p<0.001) and number of errors (t18=4.00, p<0.001), but not the 

total number of perseverative errors (t18=1.80, p=0.09) before the rats achieved the criterion 

of three reversals (Figure 3.8). Thereafter, the analysis was repeated with the animal selection 

based on perseverative errors rather than on total trials to criterion.  

The high and low reversal groups did not contain different proportions of animals 

from cohort 1 or cohort 2 (X(1,N=20)2=0.52, p=0.47 for groups based on total trials and 

X(1,N=20)2=0.96, p=0.32 for groups based on perseverative errors). To validate the selection 

of high and low reversal groups, a median split approach to classify animals was also used. 

Further, correlations between reversal learning parameters and voxelwise and ROI-wise 

functional connectivity were used to test for dimensional associations.  

No significant differences in voxelwise connectivity of the RSG seed between the 

high versus low reversal groups were found after multiple comparison correction (FSL 

randomise). Similarly, no significant differences in ROI-wise connectivity between the high 

and low reversal groups were evident regardless of how the groups were classified. In 

addition, no significant correlations between reversal learning measures and ROI-ROI 

pairwise connectivity strength were found after familywise error correction.  
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Figure 3.8. Significantly higher number of total trials and total errors but not perseverative 

errors were found in the low reversal group than in the high reversal group. ***p<0.001 

Although no comparisons were significant at the FWE-corrected significance threshold, 

several interesting uncorrected ROI-wise connectivity differences were found (Figure 3.9). 

Firstly, the functional connectivity between right OFC and the RSG were significantly higher 

in the low reversal group (t18=3.13, p=0.006, Figure 3.9A), whereas the connectivity between 

let OFC and right M2 was significantly lower in the low reversal group (t18=2.66, p=0.016, 

Figure 3.9B) and the connectivity between Cg and left hippocampus was significantly higher 

in the low reversal group (t18=2.19, p=0.037, Figure 3.9C). Differences in OFC connectivity 

were not dependent on the way that the groups were selected as confirmed by a significant 

correlation between the rOFC-RSG connectivity and total trials to criterion (F1,33=4.37, 

p=0.045, Figure 3.9D) and between left OFC-rM2 connectivity and total trials to criterion 

(F1,33=5.95, p=0.02, Figure 3.9E). Further, a significant correlation between right OFC-rM2 

connectivity and total trials to criterion lend further support to the finding that OFC-M2 

connectivity may underlie reversal ability (F1,33=4.37, p=0.044, Figure 3.9F).  
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Group comparisons based on a median split between rats with the most and least number of 

total trials to achieve criterion on the reversal task revealed differences in the lOFC-rM2 

(t34=3.21, p=0.003) and in  rOFC-rM2 connectivity (t34=2.66, p=0.011), thus replicating the 

quintile-based findings and the correlations between total trials to criterion and the OFC-M2 

connectivity. No significant differences were found in rOFC-RSG connectivity (p=0.076) or 

between Cg-lHippo connectivity (p=0.27) in groups formed by a median split unlike in the 

quintile-based analysis. Contrasting high and low reversal groups (formed by the median split 

of perseveration errors) revealed a significantly higher connectivity between the lOFC and 

rHippo (t34=2.25, p=0.036).  

 

Figure 3.9. Relationship between functional connectivity metrics and reversal learning 

performance. Significant group differences between the top 10 and bottom 10 animals in 

functional connectivity between lOFC and RSG (A), lOFC and rM2 (B) and Cg and lHippo 

(C) were found without correcting for multiple comparisons. Family-wise error correction 

resulted in no significant differences. Significant correlations between total trials to criterion 



88 
 

and lOFC-RSG functional connectivity (D) and lOFC-rM2 functional connectivity (E) as 

well as between rOFC-rM2 and total trials to criterion (F) were found before multiple 

comparison correction. Increasing the threshold for statistical significance to correct for 

family-wise errors rendered all comparisons non-significant. The data was reanalysed by 

including  

 

DISCUSSION 

The objective of this chapter was three-fold: firstly, we aimed to validate two different resting 

state fMRI sequences; secondly, we aimed to characterise the network found in the combined 

group using graph theory and thirdly, we aimed to investigate potential associations between 

reversal learning and resting state functional connectivity. A detailed comparison of the two 

different fMRI sequences highlighted various methodological issues with data acquisition, 

suggesting a degree of caution when interpreting the findings. Group mean resting state 

networks resembled networks previously identified in the rodent literature (Hsu et al, 2016; 

Lu et al, 2012) and followed a small world network architecture. Finally, although reversal 

learning was not significantly associated with functional connectivity metrics after multiple 

comparison correction, interesting associations between reversal ability and OFC 

connectivity were identified, consistent with the widely recognised involvement of the OFC 

in reversal learning (Izquierdo et al, 2016).  

rs-fMRI sequence comparison and methodological issues 

Although the two resting state acquisition methods yielded largely similar networks, 

significant differences emerged in connectivity between the left hippocampus and the RSG 

ROIs. Further, although both sequences suffered from artefact contamination (Figure 3.1 and 

Figure 3.3), ghosting was more apparent in cohort 2, which attempted to collect multi-echo 
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data at shorter TR (1.832s as opposed to 3s in cohort 1). Despite attempts to introduce 

respiratory gating (scanning only between rat’s breath cycles) and relatively little motion in 

anaesthetised animals, the ghosting problem persisted in cohort 2. Eddy currents may have 

been a contributing factor as the diffusion-weighted data acquired in the same animals 

suffered from even greater distortion artefacts and eddy currents, a recognised issue at high 

field strength. The fact that the distortion was worse in some scans relative to other scans was 

likely also due to shimming quality as appropriate shimming can reduce eddy currents and re-

shimming is a common troubleshooting approach (Buonocore and Gao, 1997; Yang et al, 

1996). Other methods alongside re-shimming include reducing the number of echo images 

acquired, lowering the phase-encoding resolution and employing parallel imaging 

acceleration (Buonocore and Gao, 1997; Yang et al, 1996).  

Reducing image resolution from 0.35x0.35x0.4 mm in cohort 1 was also potentially 

problematic as it risks losing spatial precision needed to register white versus grey matter 

landmarks from functional to structural images. Indeed, registration issues were apparent in 

cohort 2. Reduced image resolution also did not fully compensate for the shorter TR in cohort 

2. The comparison between cohort 1 and cohort 2 suggests that a viable solution to ghosting 

in cohort 2 could have been to keep the TR at 3s just like in cohort 1 although it would result 

in an increase in the overall scanning duration. A further step would have been to abandon 

multi-echo acquisition and instead opt for a single echo readout.   

In order to control for the quality of acquired data, we regressed out the white matter 

and CSF signal, but unfortunately this processing step did not remove the noise peak in the 

high-frequency region of the spectrum. Since cardiological and respiratory traces were 

monitored but not recorded, we were not able to regress these traces from the timeseries data. 

However, we did reanalyse the data with bandpass filtering and found that the group 
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differences were relatively robust to this manipulation (Appendix 1), suggesting that the 

unknown noise peak did not affect the key results reported in this chapter.  

Group mean networks follow small world architecture  

Despite the methodological issues identified above, the group mean networks were consistent 

with previously reported resting state networks in rats (Hsu et al, 2016; Liang et al, 2017; Lu 

et al, 2012). In particular, network modularity in our experiments followed closely the 

anterior – posterior organisation found previously (Hsu et al, 2016). Cingulate cortex acts as 

the anterior module hub and the retrosplenial cortex acts as a posterior module hub. Together, 

these two areas connect the anterior and the posterior modules. Interestingly, the prelimbic 

cortex appears to route some information between the two modules, too. Cingulate prelimbic 

cortex, and the OFC are thought to receive high-level, processed information from various 

sensory modalities and can in turn exert control over autonomic function as well as cognitive 

and emotional functions such as learning and attention (Öngür and Price, 2000). In turn, the 

RSG is highly interconnected with the posterior sensory cortices as well as the hippocampal 

formation (Wyss and Groen, 1992) and may contribute to hippocampal-dependent learning 

and memory and possibly cognitive control (Nelson et al, 2014; Powell et al, 2017; Todd et 

al, 2016). 

We also predicted the rat brain network to follow the small world architecture, 

consistent with previous structural connectivity studies (van den Heuvel et al, 2016) and 

fMRI connectivity evidence (Liang et al, 2011) showing rat brains to have higher-than-

random small world coefficients. This architecture provides an efficient way of information 

sharing within a network as it results in relatively short path length and high clustering, 

allowing information to flow from one node to another relatively quickly without introducing 

an abundance of connections (Van Den Heuvel and Pol, 2011; van den Heuvel and Sporns, 
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2011). In fact, many other networks including the internet, social networks and even protein 

networks follow the small world organisation (Taylor, 2013; Wohlgemuth and Matache, 

2014).  

Functional connectivity differences in high and low reversal learning groups 

Having clarified the topology of functional brain networks in the group of animals, we then 

aimed to investigate potential associations between connectivity and reversal learning 

performance. Unfortunately, no results survived multiple comparison corrections. This was 

likely due to high amount of variability in scanning parameters (cohort 1 vs cohort 2) and 

noise contamination in cohort 2 (Figure 3.1 and Figure 3.3). In addition, no voxelwise 

differences were found, likely due to stronger effects of confounding variables that may have 

been “averaged out” in the ROI-wise analysis. However, OFC-centered trend differences in 

ROI-wise connectivity were uncovered that could be promising for future research. In 

particular, connections between the OFC and the motor cortex M2, both of which are part of 

the anterior module, were reduced in animals who performed sub-optimally at reversal 

learning. Weak OFC connectivity with other regions in the anterior module provides suggests 

that changes in communication within the anterior module of the cortical networks may 

provide be neural correlates of reduced behavioural flexibility, consistent with extensive 

evidence for the involvement of the OFC in reversal learning (Izquierdo et al, 2016).  

Interestingly, the low reversal group also showed higher connectivity between the 

OFC and RSG, which forms part of the posterior module. Similarly, connectivity between 

cingulate cortex, a node in the anterior module, and the hippocampus, a module in the 

posterior module, was also higher in the poor reversal group. These pairs of regions belong to 

separate modules and do not show significant connections in the group mean analysis. 

Increased cross-module connectivity at rest may be indicative of abnormal medial prefrontal 
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function, which could translate to worse task performance. Recent studies of reversal learning 

in mice suggest that reversal deficits coincide with increased connectivity between prefrontal-

cingulate regions and somatosensory-motor cortices (Shah et al, 2018), consistent with the 

increased connectivity between OFC and motor regions reported here.  

Summary and conclusions 

In summary, this chapter provides tentative evidence for changes in functional connectivity of 

the OFC as a neural correlate of suboptimal reversal learning, a measure of inhibitory control. 

As expected, functional correlates of reversal performance included long-range between-

module and within-module connectivity changes in the OFC. Disturbances in the resting-state 

functional brain organisation may play a role in inter-individual variability in behavioural 

flexibility and could contribute to the vulnerability for a range of psychiatric conditions 

including substance abuse. While Chapter 2 provides causal evidence for neuromodulation of 

monoaminergic neurotransmission by MAO-A inhibition on reversal learning, Chapter 3 

complements these findings by providing insights into macroscale network connectivity and 

implicates the same brain regions as neural correlates of reversal learning ability. Chapter 4 

will build on the understanding of neural causal and correlative neural mechanisms underlying 

reversal learning gained in Chapter 2 and Chapter 3. In particular, Chapter 4 will investigate 

the relationship between reversal learning and cocaine self-administration as a translational 

rodent model of stimulant use disorder. 
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Chapter 4 

A behavioural and computational analysis of psychostimulant drug effects on flexibility 

INTRODUCTION 

Despite considerable research, the psychological mechanisms underlying the maladaptive 

behaviour of individuals addicted to drugs remain poorly understood; in particular the 

propensity of such individuals to continue taking drugs despite mounting negative impacts. A 

disregard for harmful consequences implies an innate or acquired imbalance in how positive 

and rewarding outcomes are perceived and processed relative to punishment signals. 

Consistent with this view, rats exposed to cocaine fail to utilize outcome value to guide 

behaviour (Schoenbaum and Setlow, 2005) and continue to seek drugs despite their 

devaluation (Corbit et al, 2012; Hogarth et al, 2015; Miles et al, 2003) or the risk of 

punishment (Belin and Everitt, 2008; Pelloux et al, 2007; Vanderschuren and Everitt, 2004). 

The neural mechanisms underlying this maladaptive behaviour are not well understood but 

may underlie compulsive forms of drug seeking (Everitt et al, 2018).  

Persistent, compulsive forms of behaviour associated with addiction are reminiscent 

of perseverative behaviour following a shift in the stimulus-reward contingency during a 

reversal learning procedure, and may represent an underlying endophenotype of addiction 

and other compulsive brain disorders (Robbins 2012). To evaluate this possibility, the present 

chapter aimed to investigate whether naturally-inflexible behaviour on a spatial reversal 

learning task predicts excessive responding for self-administered cocaine and, in turn, 

whether prior cocaine exposure causes animals to be more inflexible on a reversal learning 

task. The findings of this chapter are a prelude to the chapters that follow on inhibitory 

response control mechanisms in human drug abusers.   

 The ability to flexibly respond to changing stimulus-response contingencies requires 

an animal to learn about the prospective values of the responses using both positive and 
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negative feedback. Reversal learning tasks require animals to optimize their choice strategy 

to maximize the rewards they obtain, while at the same time occasionally exploring alternate 

reward options. Using the representation of predictive relationships in the environment, 

acquired through trial and error, reversal learning requires animals to switch responding to a 

now correct stimulus while ignoring the interference of a recently rewarded, but now no-

longer-correct stimulus. Reinforcement learning has been proposed as a tractable 

computational process underlying trial-and-error learning (Miller et al, 1995; Rescorla and 

Wagner, 1972) with utility in modelling aspects of addiction (Dayan, 2009; Keramati et al, 

2017) and stimulant administration in rodents (Groman et al, 2018, 2019). Indeed, 

computational psychiatry has become an increasingly popular translational methodology to 

investigate mental health (Adams et al, 2016; Huys et al, 2016), especially if the 

computational models are constrained by neurobiological data (Stephan et al, 2015). 

Reinforced learning models such as Q-learning (Daw, 2009; Wilson et al, 2014) are popular 

tools to analyse sequential learning data. Further, Bayesian approaches to trial-by-trial 

learning have been recently used to explore impairments in various disorders including drug 

abuse (Harlé et al, 2015, 2016; Yu and Cohen, 2009).  

 Neural activity in the OFC is broadly acknowledged to represent outcome value and 

expectation used to guide value-based decision-making (Blanchard et al, 2015; Mansouri et 

al, 2014; Padoa-Schioppa and Assad, 2006; Rolls et al, 1996; Rudebeck and Murray, 2014; 

Stalnaker et al, 2014; Wallis, 2007). The OFC also plays a key role in behavioural flexibility, 

the capacity to rapidly track changing stimulus-response contingencies in reversal learning 

procedures (Dias et al, 1996; Fellows and Farah, 2003; Jentsch et al, 2002; McAlonan and 

Brown, 2003), and structural and functional changes in the OFC are present in individuals 

addicted to drugs (Dom et al, 2005; Everitt et al, 2007; Fettes et al, 2017; London et al, 2000; 

Moorman, 2018; Schoenbaum and Shaham, 2008; Volkow et al, 2001). Consistent with these 
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findings, reversal learning is impaired in rats and monkeys exposed to cocaine (Izquierdo et 

al, 2010; Jentsch et al, 2002; McCracken and Grace, 2013; Stalnaker et al, 2009b). Thus, 

drug-induced abnormalities in OFC networks that include the amygdala and striatum 

(Stalnaker et al, 2014) may underlie the inflexibility and insensitivity to outcomes associated 

with drug exposure (Schoenbaum and Setlow, 2005).  

In this study we therefore used behavioural and computational methods to define the 

nature of reversal learning deficits in rats with a history of escalated cocaine self-

administration, compared with food-reinforced, cocaine-naïve rats on the same spatial serial 

reversal task as in Chapter 2 and Chapter 3. We hypothesized that impaired behavioural 

flexibility in rats exposed to cocaine may arise from an insensitivity to negative feedback in a 

spatial-discrimination reversal learning task compared with drug-free controls. We further 

evaluated possible modulatory effects of trait anxiety given that this predicts the individual 

propensity to escalate cocaine SA under long-access conditions (Dilleen et al, 2012; 

Homberg et al, 2002; Walker et al, 2009), as well as response perseveration in a spatial 

reversal learning task (Zhukovsky et al, 2017). Finally, we measured ex vivo gene transcript 

levels of dopamine (DA) and serotonin (5-HT) receptors in the OFC and striatum as neural 

correlates of cocaine-induced impairments in reversal learning.      

 

METHODS 

Subjects 

Subjects were male Lister-hooded rats (n=48) weighing 280-300 g at the beginning of the 

experiments (Charles River, Kent, UK). Rats were maintained at 85–95% of free-feeding 

weights. Each animal received 18 g of food chow once a day within 2 h after behavioural 

testing and had ad libitum access to water. When no behavioural training or testing took 

place, rats received 20 g of chow per day. Rats were either housed in groups of four or singly 
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after catheter implantation and during the cocaine self-administration experiment under a 

reversed 12 h light/dark cycle (lights off 07:00 h until 19:00 h). Two cohorts of rats were 

trained and tested on a spatial-discrimination serial reversal learning task (Barlow et al, 

2015b; Zhukovsky et al, 2017) prior to the assessment of anxiety on an open field test (figure 

4.1A). Rats in cohort 1 (n=24) were trained to self-administer intravenous (IV) cocaine (6 

daily short access sessions; 7 daily long access sessions) whereas cohort 2 rats (n=24) were 

trained to lever-press for food pellets (Noyes dustless pellets, 45 mg, Sandown Scientific, 

UK) over an equivalent period of days. Rats from both cohorts were re-tested on the reversal 

learning task 8 days after cocaine or food self-administration. All experiments complied with 

the statutory requirements of the Animals (Scientific Procedures) Act 1986 following local 

ethical review by the University of Cambridge Animal Welfare and Ethical Review Body 

(PPL 70/8072). 
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Figure 4.1. (A) Experimental timeline. Two cohorts of rats (each n=24) were assessed for 

open field activity as a measure of anxiety followed by spatial-discrimination reversal 

learning. Rats in cohort 1 were trained to intravenously self-administer cocaine under short- 

and long-access schedules (ShA; LgA) while rats in cohort 2 (control group) responded for 

food reinforcement under identical schedules. Finally, rats in both cohorts were re-assessed 

for reversal learning prior to sacrifice and post mortem qRT-PCR and neurochemical 

analyses. (B-C) Frequency distribution plots of ‘total trials to criterion’ for the cocaine and 

control rats. (D) qRT-PCR was used to assess gene expression in the OFC, dorsal and ventral 

striatum.  
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Behavioural assessment 

Reversal learning  

Spatial-discrimination reversal learning was assessed using twelve 5-choice operant 

chambers placed in ventilated, sound-attenuating cubicles (Med Associates, Georgia, VT), as 

previously described (Barlow et al, 2015b; Zhukovsky et al, 2017). Subjects were initially 

habituated to the apparatus over 2 days, with each session lasting 20 min. They were then 

trained to enter the magazine to trigger the illumination of a single stimulus light (left or 

right) and to respond in one of the two illuminated apertures for food delivery under a fixed-

ratio (FR) 1 schedule of reinforcement. Once rats had achieved 50 correct responses, food 

reward was successively delivered under FR2 and FR3 schedules to the same criterion within 

a 30 sec limited hold period. Failure to respond within the 30 sec period resulted in a 5 sec 

time-out. Once rats were able to achieve criterion under a 5 sec inter-trial interval, they were 

tested for spatial discrimination followed the next day by a reversal of the stimulus-reward 

contingency. Firstly, rats were given a maximum of 1 h to complete the discrimination task 

by achieving 9 correct trials across the previous 10 trials. Once rats achieved this criterion 

and consistently responded at the rewarded (left or right) aperture, the session ended. On 

the following day, rats were given a retention test of the discrimination learned on the 

previous day, in which the same aperture was rewarded. Once rats achieved criterion (9/10 

correct), they then completed three reversals (Figure 4.3G). This test session lasted for 

approximately 1 hour. Following each contingency reversal, responses in the previously 

incorrect aperture were signalled as correct (and reinforced with a food pellet) whereas 

responses in the previously correct aperture were signalled as incorrect (and not reinforced 

with food). Two rats (one in the cocaine and one in the control group) who failed to achieve 

the criterion of three successful reversals were excluded from the analysis. In addition, 5 rats 

in the cocaine group were excluded from the study due to suspected catheter failure. 
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Following cocaine or food self-administration, rats were re-trained over five sessions to 

respond for food on the spatial discrimination task under a FR3 schedule of reinforcement. 

On the test day, rats were given a retention test prior to completing three reversals, identical 

to the procedure described above.  

 

Anxiety assessment  

A black, matte arena of 150 cm diameter and 50 cm high walls was used to assess behaviour 

in the open field (Gould et al, 2009) under white lights (70 lux). The central area of the arena 

was defined as a circle with a diameter of 75 cm. Exploratory behaviour in the maze was 

recorded and monitored on a ceiling-mounted Yi Action Camera (Xiaomi, Japan) connected 

to a computer via Wi-Fi and analysed using Icarus V2.09 (University of Manchester, UK 

2002-2003) software. Rats were placed in the centre of the arena with behaviour recorded for 

8 min. The arena was cleaned with water between each animal. An anxiety score was 

calculated as the proportion of time spent in the centre of the arena in the total time of 8 min.   

 

Intravenous cocaine self-administration  

Twenty-four operant chambers (31.8 cm long x 25.4 cm width x 34.3 cm high), constructed 

of Plexiglas and a metal grid floor, were each placed in ventilated, sound-attenuating cubicles 

(Med Associates, Georgia VT). Whisker Control software (Second Order, Cardinal and 

Aitken, 2010) controlled the apparatus. Two retractable levers and a white light emitting 

diode located above each lever were placed along one wall of the chamber, with a house-light 

positioned on top of the opposite wall. Cocaine infusions were delivered via implanted 

intravenous-dwelling catheters connected to a syringe-driven infusion pump (Semat 

Technical, Herts, UK) and Tygon tubing. Infusions were delivered at a rate of 20 μl/sec. Each 

infusion contained 0.25 mg cocaine hydrochloride.   
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A single-lumen catheter (CamCath®, Cambridge, UK, inner diameter 0.28 mm; 

outer diameter 0.61 mm; dead volume 12 μl) was implanted in the right jugular vein under 

ketamine hydrochloride (100 mg/kg, intraperitoneal, Ketaset) and xylazine (9 mg/kg, i.p., 

Rompun) anesthesia. The proximal end of the silastic catheter was inserted in the right 

atrium and the distal end was sutured subcutaneously between the scapulae. To prevent 

infection, rats were treated with a subcutaneous injection of 10 mg/kg Baytril® (Genus 

Express, Bury St. Edmunds, UK) on the day before surgery and were then given 10 mg/kg 

Baytril in mashed pellets for five days post-surgery. Following surgery, catheters were 

flushed daily with saline-heparin (100 IU/ml), with a recovery period of 10 days.  

Rats acquired cocaine SA during 6 daily 1 h long sessions (short-access; ShA), under 

a fixed-ratio (FR)-1 schedule of reinforcement, and each 0.05 ml infusion containing 0.25 mg 

cocaine hydrochloride (MacFarlan, UK) was delivered over 5.7 s. Thereafter, rats were given 

long-access (LgA) exposure to cocaine over seven daily 6 h long sessions. Catheters were 

flushed with saline-heparin before and after each session. Each session started with the 

chamber being illuminated and the 2 levers inserted. Active lever presses resulted in a 

cocaine infusion and a white cue light cue for 5 sec followed by a 20 sec time-out period, 

during which both levers were retracted. Inactive lever presses had no scheduled 

consequences. Active and inactive levers were randomly assigned to the 24 rats.  

 

Food reinforcement  

Twelve operant chambers of the same configuration and manufacturer as the cocaine SA 

chambers were used. These only differed by the presence of food pellet dispenser and 

magazine. Rats (n=24) were trained to make a lever-press response for a single food pellet 

(Noyes dustless pellets, 45 mg, Sandown Scientific, UK) under an FR1 schedule for the first 

6 daily 1 h sessions. Thereafter, rats responded under an FR5 schedule for the remaining 7 
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days. In order to maximize the time spent in the testing context, and in accordance with the 

cocaine SA experiment, the post-reinforcement time-out period was set to 60 sec. Inactive 

lever responses were recorded but had no programmed consequences. The maximum number 

of pellets available was adjusted to match the number of lever press responses made by the 

cocaine SA rats. Since rats consumed the food pellets whenever they became available, the 

maximum number of pellets determined the session duration.  

 

Reinforced Learner Model 

Several learning models were used to simulate the reversal learning data, including three 

variants of the Q-learning model (Daw, 2009), defined below and the three parameters: 𝛼, 𝛽 

and 𝜅. Model parameters were fitted to each animal’s reversal data individually and then 

compared using analysis of variance (ANOVA). The learning rate 𝛼 determines how quickly 

the model adjusts to the expected value of a response following positive or negative 

feedback. High  values allow the agent to increase (or decrease) the expected Q-value 

placed on that response if the response is followed by a reward (or not). The inverse 

temperature parameter 𝛽 regulates how much an agent explores by responding randomly or 

exploits what the agent learned about the responses to date. A low 𝛽 value would lead an 

agent to rely on the expected Q-values of the responses and hence exploit what they have 

learnt about the responses already. A high 𝛽 value would lead to exploration that under some 

circumstances may lead to higher rewarded outcomes. However, in the present reversal task, 

with deterministic outcomes, a high 𝛽 value would result in fewer rewards. Finally, the 

choice autocorrelation parameter 𝜅 is a measure of “stickiness”, or how likely an animal will 

perform the same response again regardless of reward outcome. Values of 𝜅 close to 1 

reflects an agent “sticking” to the previous response while 𝜅 values close to -1 reflects choice 

alternation.   
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Model-free Q-learning: model 1 

Simple Q-learning is equivalent to Rescorla-Wagner learning (Rescorla and Wagner, 1972) 

whereby an agent assigns an expected Q-value to each choice available; presently a left or 

right response (L or R) at each trial t. The expected Q-value is updated on each trial 

according to the following: 

𝑄𝑡+1(𝑐𝑡) = 𝑄𝑡(𝑐𝑡) + 𝛼 ∗ ( 𝑟 − 𝑄𝑡(𝑐𝑡)) 

where 0 ≤ 𝛼 ≤ 1 is a learning parameter, 𝑄𝑡(𝑐𝑡) is the value of the choice ct at trial t and r 

takes the value of 1 if the choice was rewarded and a value of 0 if not. A large 𝛼 implies 

faster updating of the expected Q-values of a response after a trial is completed. The 

probability of making the choice ct at trial t was calculated using the softmax rule: 

𝑃(𝑐𝑡 = 𝐿|𝑄𝑡(𝐿),  𝑄𝑡(𝑅)) =
𝑒𝑥𝑝( 𝛽 ∗ 𝑄𝑡(𝐿))

𝑒𝑥𝑝(𝛽 ∗ 𝑄𝑡(𝐿)) + 𝑒𝑥𝑝(𝛽 ∗ 𝑄𝑡(𝑅))
 

where 𝛽 is the inverse temperature parameter, with larger 𝛽 values leading to more 

exploration of the responses with lower Q-values. On the other hand, smaller 𝛽 values result 

in exploitation of the response with higher Q-values.  

Model-free Q-learning: model 2 

Model 1 was extended to include a separate 𝛼 for learning from rewards and losses,  

𝛼𝑅𝐸𝑊𝐴𝑅𝐷 and 𝛼𝑁𝑂 𝑅𝐸𝑊𝐴𝑅𝐷, depending on whether the animal received a reward on trial t. The 

decision probability was updated in the same way as in Model 1. 

 

Model-free Q-learning: model 3 

A different variation of Model 1 included only one learning parameter 𝛼 as in Model 1, but 

an additional autocorrelation parameter in the observational part of the model: 
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𝑃(𝑐𝑡 = 𝐿|𝑄𝑡(𝐿), 𝑄𝑡(𝑅), 𝐿𝑡−1, 𝑅𝑡−1)  

=
𝑒𝑥𝑝 (𝛽 ∗ 𝑄𝑡(𝐿) + 𝜅 ∗ 𝐿𝑡−1)

𝑒𝑥𝑝(𝛽 ∗ 𝑄𝑡(𝐿) + 𝜅 ∗ 𝐿𝑡−1) +  𝑒𝑥𝑝 (𝛽 ∗ 𝑄𝑡(𝑅) + 𝜅 ∗ 𝑅𝑡−1)
 

whereby a larger 𝜅 results in greater probability of the choice ct at trial t being the same as the 

choice ct at trial t-1. The same approach was applied to the right sided choice. 

 

Model fitting 

The probability of Data D (a sequence of choices and rewards) is the product of the 

individual probabilities of making a choice ct at trial t: 

𝑃(𝐷𝑎𝑡𝑎 𝐷|𝑀𝑜𝑑𝑒𝑙 𝑀, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜃) = 𝑃(𝐷|𝑀, 𝜃) = ∏ 𝑃(𝑐𝑡|𝑄𝑡(𝐿), 𝑄𝑡(𝑅)) 

Model space was treated as discrete, using the following range of parameters: 0.001 ≤ 𝛼 ≤ 1 

with a step size of 0.08; 0.005 ≤ 𝛽 ≤ 5 with a step size of 0.08 and -1 ≤ 𝜅 ≤ 1 with a step size 

of 0.08. Parameter range was chosen based on the a priori expectations regarding 𝛼 and 𝜅, as 

well as empirical information about best fit 𝛽 parameters. Best fit parameters (𝜃𝑀) were 

chosen to maximize the log-likelihood of the observed data for each participant over all 

parameter sets (𝜃) by finding the maximum of the probability density function, 

𝑎𝑟𝑔max
 𝜃

𝑃(𝐷|𝑀, 𝜃). 

Model comparison 

Nested models were compared using the likelihood ratio test that contrasts the log-likelihood 

of the data given the best fit parameters (𝜃𝑀):  

𝑑 = 2 ∗ [log 𝑃(𝐷|𝑀2 , 𝜃𝑀2
) −  𝑙𝑜𝑔 log 𝑃(𝐷|𝑀1 , 𝜃𝑀1

)] 

As d follows the -square distribution, the difference in data likelihood associated with 

increasing the number of parameters from two (𝛼, 𝛽) to three (𝛼𝑅𝐸𝑊𝐴𝑅𝐷, 𝛼𝑁𝑂 𝑅𝐸𝑊𝐴𝑅𝐷 , 𝛽 or 
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𝛼, 𝛽, 𝜅) is significant at p=0.05 for d >3.842. An example of model predicted probability of 

choosing left or right (for 𝜃𝑀) together with the sequence of observed responses and rewards 

is shown in Figure 4.3G. A biased measure of model fit, pseudo r2, was computed as follows: 

𝑝𝑠𝑒𝑢𝑑𝑜 𝑟2 =
log 𝑃(𝐷|𝑀 , 𝜃𝑀) − 0.5𝑛

0.5𝑛
  

where n represents the number of trials and the probability of observing the data when the 

best fit parameters are contrasted against the probability of observing the data at random 

(0.5𝑛). Although pseudo r2 will increase with the number of parameters fitted and does not 

penalize overfitting, it can be useful in linking the modelling results to more traditional 

statistical methods such as linear regression. Finally, the Bayesian Information Criterion 

(BIC) provided an alternative measure of model fit: 

𝐵𝐼𝐶 = 𝑙𝑜𝑔(𝑃(𝐷|𝑀)) ≈ 𝑙𝑜𝑔(𝑃(𝐷|𝑀, 𝜃𝑀)) −
𝑛

2
𝑙𝑜𝑔 𝑚  

where n=number of free parameters and m=number of observations. We implemented this 

analysis using in-house Matlab scripts (R2016a), which can be found in the following link: 

https://github.com/peterzhukovsky/reversal_learning).  

Bayesian Learner Model 

Model 1 

Bayesian learning is a plausible alternative to how organisms can adjust the values they place 

on an action in their environment based on the feedback they receive. It maintains the same 

Markovian dependence between the value of an action on trial t and the value of that action 

on trial t+1 as the reinforced learning models, although it updates its estimates based on the 

combination of the likelihood and the prior distribution. Following Den Ouden and O’Reilly 

(2015) as well as Yu et al (2009), Harle et al 2016, trial-by trial tracking of the response-

reward contingencies in a Bayesian model is achieved by introducing a “leak” such that the 

https://github.com/peterzhukovsky/reversal_learning
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estimated value Qt+1 can either have the same distribution as Qt, or it can be resampled from a 

prior distribution P(q).  

 

Where Likelihood 𝑃(𝑆𝑡|𝑞𝑡) is provided by the Bernoulli distribution: 

𝑃(𝑆𝑡|𝑞𝑡) =  𝑞𝑘 ∗ (1 − 𝑞)𝑛−𝑘 

Notably, Binomial distribution can be also used to increase “memory size” of the model, 

allowing the likelihood to take into account more than just the very last trial and thus be more 

robust to e.g. a rare omission of reward in probabilistic schedules.  

The prior at time t is given by the posterior from the previous trial or by the prior P(q) at trial 

1: 

𝑃(𝑞𝑡) = 𝑃(𝑞𝑡−1|𝑆𝑡−1) 

𝑃(𝑞1) = 𝑃(𝑞) 

Probabilities of taking an action are then computed the same way as in the reinforced learning 

model using softmax function and models are compared using log-likelihood, BICs and 

pseudo-r2 as before.  

In the learning part of the model, free parameters include the hazard rate, which determines 

how quickly a model can adjust to changes in the environmental contingencies and how 

sensitive it is to random variation in the reward presentation. In the observation part of the 

model, free parameters still include exploration, beta, and choice autocorrelation, kappa (Daw 

2009). More details on the modelling methods and source code for an analytic and numeric 

implementation are available online (https://github.com/peterzhukovsky/bayesian_learner) 

 

Model 2 

Model 2 differed from Model 1 only in having a flexible prior P(q). Whereas model 1’s prior 

was a flat prior wherein each q-value had equal probabilities, model 2’s prior varied the alpha 

https://github.com/peterzhukovsky/bayesian_learner
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and beta parameters in the beta distribution function to achieve the best model fit for each 

subject.   

 

Post mortem gene expression  

Aliquots of brain tissue (diameter 1.0 mm) were extracted from 150 m frozen slices. Their 

location is shown in Figure 4.1D. miRNeasy Mini kit (Qiagen, UK) with additional DNAse 

digestion was used to extract RNA from the frozen samples. RNA yields were quantified 

using a Nanodrop 2000 spectrophotometer (Thermo Fisher, UK). First-strand cDNA was 

synthesized from 5 ng total RNA using random hexamer primers from the RevertAid First 

Strand cDNA Synthesis Kit (Thermo Scientific, UK) and diluted to 2.5 ng per l. SYBR 

green-based quantitative real-time polymerase chain reaction (qRT-PCR) was performed on 

the CFX96 Touch Thermal Cycler (Bio-Rad, UK). PCR on duplicates was performed using 

0.25 mM of each primer. Efficiencies were calculated using linregPCR and the ΔΔCt method 

(Schmittgen and Livak, 2008), normalizing against two reference genes (Tubulin and -

Actin) and the mean of the food control group. Primer pairs were purchased from Sigma-

Aldrich, as detailed previously (Barlow et al, 2015b). PCR runs were set up as follows: 95°C 

for 5 min; 40 cycles at 95°C for 10 s; 60°C for 10 s, and 72°C for 1 min.  

 

Statistical analyses 

All statistical analyses were carried out using SPSS (IBM version 23). Rats assigned to the 

cocaine SA experiment were segregated into two groups (n1 =9; n2 = 10) using a median split 

based on the escalation ratio, defined as the proportion of infusions taken on the last two days 

of LgA to the infusions taken on the first day of LgA. A mixed-effects ANOVA with session 

(13 levels) and cocaine escalation group (High vs Low) as within- and between-subject 

factors, respectively, was used to confirm the different cocaine self-administration profiles. 
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Further, two-way ANOVAs were used to assess the effect of group (controls vs high vs low 

cocaine escalation) on reversal performance, including the total number of trials to reach 

criterion, the number of perseverative errors (7/10 incorrect) to criterion; lose-shift and win-

stay probabilities; alpha, beta and kappa model parameters. While group was used as a 

between-subject factor, time of testing (at baseline or post cocaine/food SA) was used as 

within-subject factor. A mixed effects two-way ANOVA was used to test for the between-

subject effects of group (controls, HE and LE) and the within-subject effect of region (OFC, 

VS, DMS) on mRNA expression of each mRNA receptor subtype (DRD2, DRD1, HT2AR, 

HT2CR). LSD tests were chosen for post-hoc comparisons due to the increased power. If 

sphericity was violated as indicated by Mauchly’s test, a Greenhouse-Geisser correction was 

used. Linear regressions were used to test for associations between reversal learning, cocaine 

escalation, and anxiety scores. Statistical significance threshold was set at p<0.05. 

 

RESULTS 

High escalation of cocaine SA impairs reversal learning following 8 days of withdrawal 

Following the assessment of reversal learning and anxiety, rats acquired IV cocaine SA over 

6 consecutive days (D1-D6), as shown in Figure 4.2A. Over the 13 days of cocaine SA rats 

responded differentially on the active and inactive levers and in response to increased cocaine 

availability (D7-D13) increased their responding for cocaine as shown by a significant 

increase in the number of active lever press responses during this period (F2.93,132=5.0, 

p=0.004, η2=0.19). Two groups of rats were subsequently formed – low escalation (LE) and 

high escalation (HE) – based on a median split of escalation ratio, calculated as the mean 

number of infusions during days 12 and 13 divided by the number of infusions on day 7 (i.e. 

the first day of long access exposure). The mean (± 1SEM) escalation ratio for LE and HE 

rats was 1.2 ± 0.04 and 2.1 ± 0.19, respectively (Figure 4.2B). However, the groups did not 
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differ in terms of the total amount of cocaine taken during the LgA sessions (total of 165.4 

mg/kg/rat and 176.4 mg/kg/rat for LE and HE rats, respectively, p>0.6). A separate group of 

control rats (n=23) responded for food reinforcement and were matched to the cocaine group 

in terms of the maximum number of lever press responses they could make.  

We next assessed whether variation in reversal learning predicted cocaine escalation 

and, in turn, what effect long-access cocaine exposure had on reversal learning itself, 

measured 8 days after the end of self-administration. As shown in Figure 4.2C, rats were 

generally faster to reverse when assessed for the second time on the reversal learning task 

(i.e. made fewer trials to criterion). Thus, a mixed effects ANOVA with exposure time (pre- 

versus post-food/cocaine) and group (control, LE and HE) as within- and between subjects 

factors, respectively, revealed a significant main effect of exposure time (F1,38= 7.74, 

p=0.008) and a trend for an interaction between group and exposure time (F2,38=3.1, 

p=0.056). Post-hoc LSD tests revealed that while the number of trials to criterion 

significantly decreased during the second (‘post’) assessment in control and LE rats, this was 

not the case in HE rats. No significant differences between the three groups were found at 

baseline or post-cocaine (post-hoc LSD, p>0.05).  

An analysis of perseverative errors revealed an interaction between time and group 

(F2,38=3.3, p=0.047). The low escalation group improved over time (LSD, p=0.007), resulting 

in significant group differences between LE and HE (LSD, p=0.035) and LE and controls 

(LSD, p=0.049) during the second assessment. However, baseline (i.e. ‘pre’) levels of 

perseverative responding were not significantly different between control, LE and HE rats. 

These findings indicate that rats with a history of escalated cocaine intake (HE) failed to 

show the expected improvement in behavioural flexibility after repeated testing on the 

reversal learning task. 
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Figure 4.2. (A) Active and inactive lever-press responses of rats trained to self-administer 

cocaine. Data shown are means ± SEM. Since rats responded on a fixed ratio 1 schedule, the 

number of lever presses was equivalent to the number of infusions received. Rats were 

divided into two groups: high-escalation (HE) and low-escalation (LE), based on a median 

split of escalation ratios. The escalation ratio was calculated as the ratio of the average 

number of active lever responses on days 12 and 13 to the number of lever responses on day 

7 (D7 – the first long-access session). During the first six days rats were given short access to 

cocaine (1 h daily sessions) under a fixed-ratio-1 (FR-1) schedule of reinforcement. On days 

7-13 inclusive, access to cocaine was increased to six hours under an FR-1 schedule. (B) 

Escalation ratios for each animal in the high and low escalation groups, based on a median 

split (independent samples t17=4.2, p=0.0006) (C) Individual reversal learning scores (total 

trials to criterion) before and after cocaine exposure in LE and HE rats compared with control 

rats. Data are means ± 1SEM.   *p<0.05. **p<0.01. Relationships between anxiety and 

escalation of intravenous cocaine self-administration are shown in plots (D) and (E), 
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including a line of best of fit with 95% confidence intervals in dotted lines. A lower anxiety 

score equates to increased anxiety in the open field arena. (D) Significant positive 

relationship between escalation ratio during the 1st hour of cocaine self-administration and 

anxiety scores (r2=0.29, p<0.05), consistent with significant group differences in anxiety 

scores between LE and HE rats (E). 

 

Anxiety but not reversal learning predicts cocaine escalation 

Figure 4.2 summarizes the dimensional relationships of anxiety with cocaine escalation. 

Anxiety was positively related to the escalation of cocaine SA (F1,17=9.3, r2=0.354, p=0.007, 

Figure 4.2D). Thus, anxiety scores were significantly different between future LE and HE 

rats (Figure 4.2E). However, using linear regression models, we found no relationship 

between baseline behavioural flexibility (total trials to criterion) and escalation ratio (r2=0.01, 

p > 0.05, Figure 4.1A) nor a significant relationship between anxiety and behavioural 

flexibility (r2<0.06, p>0.05, Figure 4.1B).  
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Figure 4.3. Modelling variables of learning and response flexibility on the spatial reversal 

learning task before and after intravenous cocaine self-administration compared with control 

rats. Data are means ± 1SEM. No significant differences in ,  and  were observed in 

future LE and HE rats compared with control rats (A, B and C respectively). Whereas the rate 

of learning of a response after the completion of each trial () was not significantly affected 

by cocaine exposure (D), a significant increase in  (E) and  (F) was observed in HE rats (* 

p<0.05; ** p<0.01). Thus, HE rats failed to exploit what they had previously learnt (increased 

) and showed an increased tendency to make the same response as the previous trial 

(increased ). An example of the model fit is shown in the lower panel (G) with individual 

left and right responses in the upper yellow traces alongside the rewarded side (violet trace) 
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and in the lower trace the modelled probabilities of the same animal making a left or right 

response using the modelled values of ,  and .   

 

High cocaine escalation decreases exploitation of previously learnt choice values and 

increases choice autocorrelation in a reinforced learner 

Adding a third parameter in models 2 and 3 significantly improved the model fit compared 

with model 1. Model 3 provided a better fit of the data derived from the cocaine group than 

model 2 (average pseudo r2=0.16 compared to pseudo r2=0.14, and average BIC=66.2 

compared to average BIC=67.6, respectively) while model 2 provided a better fit of the data 

derived from the control group than model 3 (pseudo r2=0.20 compared to pseudo r2=0.21, 

and average BIC=69.8 compared to average BIC=70.3, respectively). Model 3 was therefore 

chosen as the preferred model given its superiority in modelling the post-cocaine data, the 

main dataset of interest, and as a means to assess choice autocorrelation. A fourth model was 

also tested that included four parameters: a reward learning rate, a non-reward learning rate, 

beta and kappa. This model failed to improve upon the fit of model 3 and hence was not 

included in the analysis (Table 4.1).  

Figure 4.3 reports individual modelled parameters for control, LE and HE rats before 

and after cocaine SA. In addition to a significant main effect of time (F1,38=9.5, p=0.004) and 

group (F1,38=4.7, p=0.015), a significant interactive effect of group (controls vs LE vs HE) 

and time (pre vs post cocaine) was found on beta (F2,38=3.3, p=0.048) but not on alpha and 

kappa (F2,38=1.2, p=0.33, F2, 38=2.2, p=0.13). Post hoc comparisons revealed no significant 

group differences in 𝛼, 𝛽 or 𝜅 prior to cocaine exposure (all p>0.3, Figure 4.3A, 4.3B, 4.3C). 

However, following cocaine self-administration, HE rats showed a significantly increased 𝛽 

value (lower exploitation, Figure 4.3E) compared with controls (LSD, p=0.0002) and LE rats 

(p=0.024) together with a significantly increased 𝜅 value (an increased tendency to repeat the 
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last response, Figure 4.3F) compared with control and LE rats (p=0.049). Importantly, neither 

LE nor HE rats differed from controls in the rate of learning parameter, 𝛼, after cocaine SA 

(p>0.1, Figure 4.3D). 

 

High cocaine escalation decreases exploitation of previously learned choice values in a 

Bayesian learner 

Average BIC values in the Bayesian model 1 were higher than the BIC values for the 

reinforced learning model (Table 4.2) suggesting that the reinforced Q-learner was the more 

appropriate model. Nevertheless, we explored Bayesian models to test the robustness of our 

findings above (especially with regard to the observation part of the models) and to 

interrogate potential cocaine-induced impairments that may be specific to a Bayesian learner. 

One-way ANOVAs testing the effects of group have revealed significant differences between 

controls, LE, and HE rats in the exploration parameter 𝛽 (F2, 38=4.45, p=0.018, Figure 4.4D) 

but not in 𝜅 (F2, 38=0.3, p=0.73, Figure 4.4E) or in the hazard rate H (F2, 38=2.6, p=0.08, 

Figure 4.4F).  
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Figure 4.4. Bayesian and reinforced learning modelling variables on the spatial reversal 

learning task after intravenous cocaine self-administration compared with control rats. Data 

are means ± 1SEM. Significant differences in  and  but not in  were observed in HE rats 

compared with control rats post cocaine (C, A and B respectively). Similarly, Bayesian model 

also showed lack of exploitation or increased exploration  parameter in HE animals (D) but 

no differences in   (E) or in the hazard rate H, which can be compared to the learning rate  

in a reinforced learner (F). (* p<0.05; ** p<0.01). Increased  in the Bayesian model thus 

confirms the results from the reinforced learning model. 

 

High cocaine escalation also biases priors towards previously reinforced choice 

To extend the results of the initial Bayesian model, a model with flexible priors (beta 

distributions) was included, allowing the priors to be fitted to each subject’s data. We found 

that in the high escalation group (HE), priors were significantly more biased towards 

previously reinforced choice (F2, 38=9.375, p=0.0005; control group prior mean=0.40, LE 

group prior mean=0.41, HE group prior mean=0.1698, Figure 4.5A). No differences in prior 

variances between the three groups were found (p>0.3, Figure 4.5A). A prior with a mean of 

0.5 represents the belief that both responses are equally likely to be reinforced, whereas priors 

skewed towards 0 or 1 suggest that the Bayesian learner expects the rewards to come from 

either the response that was previously rewarded during the spatial discrimination (Prior≈0) 

or from the response that was previously not rewarded (Prior≈1), respectively. Importantly, in 

Bayesian model 2, HE rats still showed increased exploration parameter beta (F2, 38=4.873, 

p=0.013, Figure 4.5B), although no group differences in kappa (F2, 38=1.6, p=0.2, Figure 

4.5C) or hazard rate H F2, 38=1.0, p=0.36, Figure 4.5D) were found.  
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Figure 4.5. (A) Prior distributions for each subject in the high escalation group (dashed red 

lines) and in the low escalation group (dotted pink lines). Group average priors for HE, LE 

and control rats are shown in red, pink and blue, respectively. HE group’s priors were 

significantly lower or more biased towards the response that was previously rewarded at the 

SD stage. While neither the exploration parameter, beta, the choice autocorrelation, kappa, 

nor the learning parameter H differed significantly, they showed trends consistent with the 

results from the first Bayesian model that included a flat prior.  
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Cocaine exposure has differential effects on lose-shift and win-stay behaviour   

A mixed effect ANOVA revealed a significant interactive effect of time (‘pre’ vs ‘post’) and 

group (controls vs LE vs HE) on lose-shift probability (F2,38=5.2, p=0.01, Figure 4.6), but not 

on win-stay probability. Post hoc LSD tests revealed that this effect was driven by a 

significant decrease in lose-shift probability in HE rats (LSD, p=0.014) compared with 

control and LE groups (LSD, p=0.004, Figure 4.6B) and notably was not present before the 

rats were exposed to cocaine (Figure 4.6A). In contrast, win-stay probability was unaffected 

by cocaine exposure (Figure 4.6E) and was no different between control, LE and HE rats 

prior to cocaine SA (Figure 4.6D). Using linear models, we found no significant relationship 

between escalation ratio, assessed over 6 h sessions, and incorrect response latencies, defined 

as time to initiate a new trial after the end of the previous trial, (r2=0.13, p=0.14, Figure 4.6C) 

or correct response latencies (r2=0.06, p=0.8, Figure 4.6F).  
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Figure 4.6. Lose-shift and win-stay probabilities on the spatial reversal learning task before 

and after intravenous cocaine self-administration compared with control rats. Data are means 

± SEM. Prior to cocaine exposure there were no significant differences in lose-shift and win-

stay probabilities between any of the groups (A, D). However, in rats exhibiting high 

escalation, lose-shift probabilities significantly decreased compared with low escalation and 

control rats (B) unlike win-stay probabilities (E). Escalation ratios did not significantly 

correlate with incorrect (C) or correct (F) response latencies. Shown are the lines of best fit 

(solid lines) and 95% confidence intervals (dotted lines). 

 

Differential effects of cocaine on the expression of genes encoding DA and 5-HT receptors      

Figure 4.5 shows gene transcription levels of candidate DA and 5-HT receptors in the OFC, 

ventral striatum (VS), and dorsomedial striatum (DMS). Two-way ANOVA with group 

(control, LE and HE) and region (OFC, VS and DMS) revealed significant interactions 

between region and group for DRD2 (F4,113=4.6, p=0.002, Figure 4.7A) and 

HT2CR (F4,113=3.2, p=0.017, Figure 4.7D), but not DRD1 (F4,82=2.3, p=0.06, Figure 4.7B) 

and HT2AR (F4,82=1.5, p=0.20, Figure 4.7C). Post hoc LSD contrasts revealed significant 

increases in DRD2 expression in the VS of the HE group and in the DMS of LE and HE 

groups compared with the control group. DRD1 expression in the OFC significantly 

decreased in the HE groups compared with the control group, whereas HTR2A expression 

increased significantly in both escalation groups in the OFC compared with controls. HTR2C 

expression was significantly decreased in the VS of HE rats compared with controls.  
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Figure 4.7. mRNA expression of DRD2 (A) DRD1 (B), HTR2A (C) and HTR2C (D) in the 

orbitofrontal cortex (OFC), ventral striatum (VS) and dorsomedial striatum (DMS) of control 

(n=23), LE (n=9) and HE (n=10) rats. *p<0.05 versus controls. Data are means ± 95% CIs. 

 

DISCUSSION 

Our findings demonstrate several features and consequences of long-access cocaine self-

administration that selectively affect how negative and positive feedback signals are 

processed to guide behaviour in a reversal learning task. In agreement with our previous 

findings (Dilleen et al, 2012), we found that rats exhibiting high baseline trait anxiety showed 

greater escalation of cocaine. These rats were also more likely to perseverate with their 

previous response regardless of whether the outcome was rewarded or not. Importantly, high 

cocaine escalation rats learned as quickly as control and low cocaine escalation rats from the 
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outcome of each trial but were unable to exploit this information flexibility to adjust 

behaviour when the stimulus-reward contingencies were reversed. These findings support and 

extend previous findings that cocaine impairs insight and makes actions less sensitive to 

response outcomes (Lucantonio et al, 2014; Schoenbaum and Setlow, 2005) by showing that 

high rates of cocaine self-administration, associated with trait anxiety, cause a selective 

disruption in the way negative feedback is used to guide behaviour to a food incentive.                   

 Substantial evidence suggests that anxiety can be both a precursor and consequence of 

drug abuse (Ersche et al, 2012; Lejuez et al, 2008; Norton, 2001; Sinha, 2001), with the 

perpetuation of drug use possibly reflecting the self-medication of chronic anxiety states 

(Khantzian, 1985). Increased anxiety in rats predicts the propensity to develop a conditioned 

place preference for cocaine (Pelloux et al, 2009), increased oral and intravenous cocaine 

escalation (Dilleen et al, 2012; Walker et al, 2009), and increased motivation to self-

administer cocaine (Homberg et al, 2002). These findings were supported by the present 

study with increased cocaine escalation rates in high anxious rats particularly during the first 

hour of each session. However, unlike our previous study (Zhukovsky et al, 2017), where 

anxiety was assessed using an elevated plus maze rather than an open field, we found no 

relationship between trait anxiety and behavioural flexibility. This discrepancy may reflect 

the different measures of anxiety used in each case and that only 15% of the variance in 

perseverative errors was explained by trait anxiety in our earlier study. Whereas trait anxiety 

in humans has long been associated with a preferential bias toward negative external cues 

(Bar-Haim et al, 2007; Fox et al, 2001), and impaired set shifting (Caselli et al, 2004; 

Goodwin and Sher, 1992), deficits in task-switching reportedly only clearly manifest when 

attentional control is challenged in highly anxious individuals (Berggren et al, 2013; 

Berggren and Derakshan, 2013; Derakshan et al, 2009). Thus, the low attentional load of 

serial spatial reversal learning involving intra-dimensional rather than extra-dimensional 
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shifting (Robbins and Arnsten, 2009) may have impeded the expected relationship between 

trait anxiety and behavioural flexibility reliably to have been detected in the present study.  

 An important objective of this research was to investigate the nature of the widely 

reported impairing effects of cocaine on the flexibility of goal-directed behaviour (Calu et al, 

2007; Cox et al, 2016; Ersche et al, 2008; Jentsch et al, 2002; McCracken and Grace, 2013; 

Moreno-López et al, 2015). Our finding that lose-shift behaviour is decreased in HE rats who 

had some reversal experience is consistent with findings in rats exposed to methamphetamine 

(Groman et al, 2018, 2019) and in human addicts (Ekhtiari et al, 2017; Ersche et al, 2016; 

Parvaz et al, 2015). Rats self-administering methamphetamine have also been reported to 

show impaired learning from unrewarded outcomes, resulting in reduced model-free learning 

after stimulant treatment (Groman et al, 2019) and after non-contingent methamphetamine 

administration (Groman et al, 2018). In addition, model-based impairments have been 

reported in rats during reversal (Groman et al, 2019) and habitual behaviour on reinforced 

learning tasks has been reported in humans (Ersche et al, 2016). In the present study we used 

a model-free learning algorithm to explain performance on a spatial serial reversal task. By 

assessing reversal learning before and after response-contingent cocaine administration and 

using the reinforcement learning framework of Q-learning (Daw, 2009) we were able to 

define the effects of prior history of escalated cocaine intake on behavioural flexibility 

measured 8 days after the end of cocaine treatment. Our results demonstrate that rats in the 

control, low and high cocaine escalation groups learnt from negative and positive feedback 

on any given trial and appropriately updated internal representations of choice values, as 

revealed by no significant change in the alpha modelling parameter, both before and after 

food or cocaine exposure. Nevertheless, important differences became evident in the way the 

different groups of rats exploited the value assigned to each choice. This was particularly the 

case for HE rats, which were more likely to perseverate with their previous choice regardless 
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of the received outcomes. As this deficit was not present prior to drug exposure it was likely 

the consequence of cocaine itself.  

Crucially, Bayesian models also showed no differences in adjustment rates, but 

showed significant impairments in exploitation. Although HE rats modelled using Bayesian 

learning did not show significantly increased autocorrelation, they did show a marked bias in 

their prior expectations. While control animals had similar expectations on both responses, 

HE rats’ priors were strongly biased towards the response that was previously rewarded in the 

spatial discrimination session. This bias could account for lack of increased “perseveration” 

in the kappa parameter. Replicating reinforced model results using Bayesian models further 

lends credibility to the finding that HE rats show poor exploitation of the learned response 

values, suggesting that translating learned values of actions into actions may be fundamental 

to the acknowledged impairments in reinforced behaviour in humans addicted to cocaine and 

other stimulants. Interestingly, Bayesian models also suggest that cocaine may prevent rats 

from forming appropriate priors, starting a task with inflexible, biased expectations on the 

environment that may prevent them from adjusting their beliefs according to the evidence 

gathered through reinforcement feedback.   

Our analysis of lose-shift and win-stay probabilities revealed that those rats more 

prone to escalate cocaine self-administration subsequently were less likely to switch 

behaviour on trials that were not rewarded in the reversal learning task. This deficit was 

clearly the consequence of prior cocaine exposure and did not extend to trials with rewarded 

outcomes. Maladaptive exploration, as indexed by increased beta and kappa values in HE 

rats, was also significantly associated with decreased lose-shift probabilities, providing a 

behavioural validation of the modelling parameters. The relationship between lose-shift 

probabilities and kappa in cocaine and control rats is mathematically plausible since both 

measures attempt to capture the association between an agent’s choice on a given trial with 
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their choice on the previous trial. These findings reveal a hitherto unreported deficit in 

behavioural flexibility caused by cocaine that was restricted to rats with a greater propensity 

to escalate cocaine intake. Notably, this deficit was present eight days after the last cocaine 

session, suggesting it may be caused by relatively long-lasting neural changes, consistent 

with other studies (Bechard et al, 2018; Calu et al, 2007; McCracken and Grace, 2013). 

Previous research has shown that stimulant addiction in humans is associated with 

increased perseveration on reversal learning tasks (Chamberlain and Sahakian, 2006; Ersche 

et al, 2011b). The present findings go some way to explaining the nature of this deficit whilst 

building on the earlier finding that cocaine affects the utilization of expected reward value to 

guide behaviour (Schoenbaum and Setlow, 2005), possibly due to impaired executive control 

over action selection. Specifically, our computational analysis revealed that rewarded and 

non-rewarded trials were differentially exploited in rats with a history of high-escalation 

cocaine self-administration. The finding that rats that more readily escalate cocaine self-

administration do so because they become insensitive to the anxiogenic properties of cocaine 

is consistent with this account (David et al, 2001; Ettenberg et al, 1999; Rogerio and 

Takahashi, 1992). However, it should be noted that whilst anxiety predicted increased rates of 

cocaine self-administration, anxiety per se did not predict the failure of HE rats to exploit 

negative feedback to guide behaviour. Our findings suggest therefore that interactive effects 

between trait anxiety and cocaine exposure were somehow responsible for the inability of HE 

rats to exploit reward value during the reversal session.  

 Reversal learning has been widely shown to depend on monoaminergic mechanisms 

in the OFC and striatum (Clarke et al, 2004, 2011; Cools and D’Esposito, 2011; Floresco, 

2013; Haluk and Floresco, 2009; Roberts, 2011) with substantial evidence implicating D2 

receptors in the striatal indirect pathway (Groman et al, 2012; Van Holstein et al, 2011; 

Linden et al, 2018; MacPherson et al, 2016; Morita et al, 2016). However, rather than 
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decreasing DRD2 expression in the striatum, as predicted from prior positron emission 

tomography imaging studies in humans and other rats, (Dalley et al, 2011; Nader and Czoty, 

2005; Volkow et al, 1993), striatal DRD2 expression increased significantly in the DMS after 

eight days of abstinence from cocaine in LE and HE rats. This effect has been reported before 

after cocaine exposure and may reflect a delayed compensatory rebound in D2 receptor 

regulation (Belin et al, 2007; Przewłocka and Lasoń, 1995; Schmidt-Mutter et al, 1999). 

Since DRD2 expression in the DMS increased in both HE and LE rats, this was presumably 

the consequence of prior cocaine exposure rather than a contributing factor to the failure of 

HE rats to utilize outcome value during reversal. However, without additional studies to 

measure protein levels it is unclear whether increased DRD2 expression resulted in increased 

D2 receptor density. By contrast, HE rats exhibited increased DRD2 and decreased HTR2C 

expression in the ventral striatum, with a corresponding reduction in DRD1 expression in the 

OFC. However, one should be cautious about linking these differentially-expressed genes for 

OFC-striatal circuit function and specifically whether they contributed to the failure of HE 

rats to exploit previously-learnt outcome value, especially as qualitatively similar but 

statistically non-significant effects were also observed in LE rats. Nevertheless, highly-

impulsive rats that subsequently developed persistent cocaine-taking in the face of aversive 

outcomes (Belin et al, 2008a) also exhibited reduced HTR2C expression in the ventral 

striatum after long-access cocaine SA (Besson et al, 2013). Since the 5-HT2C receptor has 

been shown to modulate learning from negative feedback in the context of reversal learning 

(Nilsson et al, 2015; Phillips et al, 2018) impaired 5-HT2C receptor transmission may have 

contributed to the failure of HE rats to process negative feedback in the present study.     
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Synthesis and conclusions  

The present findings add to the growing body of evidence that cocaine impairs how negative 

feedback is used to guide behaviour. Using traditional and computational methods of analysis 

we report that rats exposed to response-contingent cocaine, and which more rapidly escalate 

intake, were able to learn the value of changing reward contingencies but were compromised 

in exploiting this knowledge to guide appropriate actions on a serial reversal task. Previous 

research has shown that the encoding of expected outcomes to acquired values depends on 

interactions between the OFC and basolateral amygdala (Schoenbaum et al, 2003) and that 

cocaine disrupts insight into the consequences of behaviour by OFC-dependent mechanisms 

(Lucantonio et al, 2014). Abnormalities within this circuitry may thus be relevant to 

understanding why individuals addicted to drugs persist with drug consumption despite 

adverse consequences of continued drug use. 
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Parameters alpha alpha No R beta kappa BIC pseudo-R2 

Pre-Cocaine             

Model 1 0.15  0.46  68.5 0.18 

Model 2 0.33 0.07 0.33  69.4 0.20 

Model 3 0.15  0.49 0.28 68.8 0.21 

Model 4 0.27 0.13 0.48 0.28 71.1 0.21 

Post-Cocaine             

Model 1 0.37  1.00  66.3 0.13 

Model 2 0.33 0.43 0.94  67.6 0.14 

Model 3 0.38  1.15 0.33 66.2 0.16 

Model 4 0.35 0.46 1.19 0.33 68.3 0.16 

Pre-Food             

Model 1 0.13  0.38  69.3 0.21 

Model 2 0.28 0.08 0.30  69.5 0.24 

Model 3 0.12  0.37 0.16 69.9 0.23 

Model 4 0.22 0.10 0.40 0.19 71.9 0.24 

Post-Food             

Model 1 0.19  0.50  69.2 0.18 

Model 2 0.37 0.11 0.33  69.8 0.21 

Model 3 0.20  0.52 0.22 70.3 0.20 

Model 4 0.33 0.15 0.47 0.19 72.6 0.21 

 

 

Table 4.1: Summary of modelling parameters and model fit using Bayesian Information 

Criterion (unbiased) and pseudo-R2 values (biased towards models with greater number of 

free parameters). All values are means across the cocaine and the control groups. Model 1 

included alpha and beta; Model 2 included alpha-reward and alpha-no-reward; Model 3 

included alpha, beta and kappa and Model 4 included alpha-reward, alpha-no-reward, beta 

and kappa. Lower BIC values indicate better model fit. Model 3 (alpha, beta, kappa) was 

chosen as it provided better fit than Model 2 to the cocaine group’s data (alpha-reward, alpha 

no reward) and due to our a priori interest in choice autocorrelation (kappa). 
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  M(Prior) Var(Prior) Hazard beta kappa BIC 

Post-
Cocaine             

Model 1   0.17 1.78 0.45 69.8 

Model 2 0.30 0.012 0.05 0.99 0.36 72.4 

Post-Sugar             

Model 1   0.07 1.66 0.45 75.5 

Model 2 0.40 0.008 0.04 0.49 0.32 77.9 

 

Table 4.2: Summary of modelling parameters and model fit using Bayesian Information 

Criterion (unbiased) for two Bayesian models. Model 1 included only three parameters, 

whereas model 2 also included flexible priors.  
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Chapter 5 

An investigation of inhibitory response control in stimulant-dependent volunteers and 

their siblings 

 

INTRODUCTION 

The preceding chapters identified several novel findings with respect to individual 

differences in behavioural flexibility and importantly demonstrated that escalation of cocaine 

self-administration was a strong predictor of subsequently impaired reversal learning. 

Regulation of response-contingent cocaine intake is known to be modulated by several stable 

traits, including anxiety (Chapter 4) and impulsivity, the latter also strongly implicated in the 

more-rapid transition of rats to develop compulsive cocaine self-administration (Belin et al., 

2008). In order to understand the contribution of impulsivity to stimulant use disorder, a 

Monetary Incentive Delay (MID) task was used to investigate the psychological and neural 

substrates of premature responses, an operational measure of impulsivity with translatable 

utility (Dalley and Robbins 2017). By also including non-drug-dependent siblings in the 

study we further investigated whether impulsivity is a cause or consequence of drug 

addiction.  

Impulsivity has been linked to numerous neuropsychiatric disorders and, as a 

multifaceted construct, incorporates a range of different traits and behaviours (Dalley et al, 

2011; Dalley and Robbins, 2017; Evenden, 1999). One key aspect of impulsivity is 

difficulties in the control of actions, including the tendency to act prematurely without 

foresight or sufficient regard to negative consequences (Robbins et al, 2012). Such inability 

to suppress inappropriate responses is believed to play a key role in stimulant drug addiction, 

both as a vulnerability factor and as a consequence of chronic drug use (Goldstein and 

Volkow, 2011). This can manifest in the day-to-day lives of drug users as difficulties in 
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suppressing excessive approach behaviours and urges to act, particularly when exposed to 

drug-related cues. Impulsive actions in humans have largely been investigated by assessing 

stopping or cancelling prepotent responses in non-incentivized contexts (Bari and Robbins, 

2013). Converging evidence shows that chronic stimulant drug use results in response 

inhibition impairments and top-down cognitive control abnormalities underpinned by 

aberrant fronto-striatal function (Morein-Zamir and Robbins, 2015). Unaffected siblings of 

stimulant-dependent individuals (SDI) also show response inhibition difficulties and 

associated structural brain abnormalities suggesting this may be a preexisting vulnerability 

factor (Ersche et al, 2013).  

Despite some cross-species convergence (Eagle and Baunez, 2010), research on 

impulsive responding in animals has largely focused on premature responses in incentivized 

contexts (Dalley et al, 2008). Premature responses gauge difficulties in suppressing responses 

by capturing the inability to resist responding until a waiting interval has elapsed. This 

complementary form of impulsive action appears to rely on overlapping, yet distinct, neural 

networks and neurochemical substrates (Dalley and Robbins, 2017). While stopping 

prepotent responses is associated with dorsal striatal (dStriatum) along with ventrolateral and 

dorsomedial PFC involvement (Swick et al, 2011), premature responding appears to involve 

the ventral striatum and ventromedial PFC (Dalley et al, 2011). Premature responding 

predicts the transition to compulsive cocaine-taking in rodents, suggesting it could also be a 

vulnerability factor (Belin et al, 2008b). Presently, greater translational links between animal 

and human empirical approaches are needed to advance impulsivity and addiction research. 

Recent studies using a specialized paradigm adapted from the animal literature have begun to 

make inroads, demonstrating increased premature responding in abstinent SDIs (Voon, 

2014). Greater premature responding has also been reported for tobacco smokers, cannabis 

users and binge drinkers (Mechelmans et al, 2017; Morris et al, 2016; Sanchez-Roige et al, 
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2014; Voon et al, 2016) reinforcing the importance of this measure to addiction more 

broadly.   

Impulsive actions are clearly intertwined with reward processing. Nevertheless, 

empirical research into mechanisms of reward has proceeded largely in parallel. This research 

has pointed to aberrant generalized reward processing in addiction, largely as a consequence 

of drug use (Balodis and Potenza, 2015; Cope et al, 2019; Koob and Moal, 2005). For 

example, abnormalities in mesocortico-limbic circuitries are believed to underscore 

exaggerated incentive salience to drug-associated stimuli (Berridge, 2007). Thus, the process 

of ‘wanting’ triggered when faced with drug-related cues yields upregulation of reward-

related regions (Berridge, 2007). In humans, the widely-used monetary incentive delay (MID) 

task has been employed to assess reward related processing in addiction. Anticipating 

monetary rewards in this task has been associated with robust ventral striatum in addition to 

dorsal striatum and vlPFC activations (Oldham et al, 2018). Contrary to expectations, drug 

users including SDIs do not appear to show consistent abnormalities in cross-sectional MID 

studies (Balodis and Potenza, 2015; Just et al, 2019). One possible reason for this may be the 

use of monetary incentives in these studies. Addiction is associated with blunted brain 

response in a wide array of non-drug-related tasks, but with increased engagement of brain 

networks during exposure to drug cues or drug-related incentives (Zilverstand et al, 2018). 

This is underscored in the theory of impaired response inhibition and salience attribution 

(iRISA) which points to the pivotal role of context and incentive type (Goldstein and 

Volkow, 2002, 2011). 

The current chapter capitalizes on the presence of premature responding in the MID 

task (Peña-Oliver et al, 2016), introducing a novel analysis approach. We focus our 

investigation specifically on these failures of inhibitory control in SDIs compared with a 

healthy control group (HC) and non-drug-dependent siblings. Premature responses are akin to 
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the everyday maladaptive behaviors exhibited by these individuals and reflect one form of 

impaired inhibitory response control that share parallels with compulsive responses that 

persist despite undesirable consequences (Dalley et al., 2011). By including two distinct 

contexts, one providing monetary incentives and the other with drug-related cues as 

incentives, we stipulate a direct empirical test of the iRISA model predictions. We thus 

assessed whether excessive premature responding constitutes a vulnerability factor preceding 

drug use by examining premature responses and corresponding brain activations in the first-

degree siblings (SIB) of the SDI group (Just et al, 2019). Given the importance of the 

striatum to top down control and reward processing in addiction and its abnormal neuronal 

connectivity with the PFC (Ma et al, 2014, 2015), we also investigated the selective 

involvement of this region and its effective connectivity with key nodes in the PFC using 

dynamic causal models (DCM). We expected to find higher levels of impulsivity and 

corresponding neural reactivity in SDI and SIB groups compared to HCs. We hypothesized 

differences between HC and SDI brain activation and connectivity and an intermediate 

profile in SIB. This chapter thus affords additional insights into response inhibitory control 

processes in humans and their underlying cortico-striatal networks in healthy and stimulant-

addicted participants.  

 

METHODS 

Participants. Participants were recruited for this study by advertisements, by word of mouth, 

and from local treatment services. Recruitment and screening procedures have been described 

in detail elsewhere (Ersche et al, 2012; Just et al, 2019). Briefly, three groups consisted of 

SDIs who met DSM-IV-TR criteria for cocaine or amphetamine dependence, their biological 

siblings who had no history of substance dependence except nicotine, and healthy individuals 

without familial risk with no drug history. Urine screen results were positive for all but 
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three SDI and negative for all other participants. The study was approved by the NHS 

Cambridge Research Ethics Committee (08/H0308/310) and all participants provided written 

informed consent. Data from these individuals as part of a larger sample have been published 

previously (Just et al, 2019). Additional inclusion criteria were that participants exhibit at 

least one premature response in the MID task in each context.  

  

MID task. The task consisted of money and drug incentive blocks, with the two 

counterbalanced across subjects. While the stimuli displayed differed between the two 

contexts, timings and task structure were the same. Each incentive block consisted of 66 

trials, of which 22 were neutral. Trials began with a cue (lasting 250 msec) signaling the 

reward. For money incentives, a circle with two, one or no horizontal lines indicated a 

possible win of 50 pence (large reward), 10 pence (small reward) or 0 pence (neutral), 

respectively. For drug incentives, images of cocaine, crack, IV or non-IV drugs (white 

powder) in commonly taken form, or a bottle of water as neutral, were used to signal the 

expected reward (see Figure 5.2A). Following cue presentation, participants awaited a target 

cue for an anticipation period lasting 3000-5000 msec. Subsequently, a white square target 

was presented, lasting 100-400 msec, with participants required to press a key while the 

target was still on screen. Target duration was titrated to maintain a 66% success rate. Target 

presentation was followed by a feedback message (1650 msec). For money incentives, 

successful responding was followed by a message “you’ve won 10p/50p” along with the 

respective coin. Neutral and unsuccessful trials were followed by a message “you’ve won 0 

p” accompanied by a white circle. For drug incentives, successful responding was followed 

by an image of a person taking cocaine, crack, IV or non-IV drugs for the reward conditions, 

or a person drinking from a clear water bottle for the neutral or unsuccessful trials. An inter-
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trial interval lasted 5000-2700 msec, during which a fixation cross was displayed. 

Participants first completed 66 practice trials prior to scanning with both incentive types.  

 

Neuroimaging acquisition. Images were collected on a Siemens TIM Trio 3-Tesla 

scanner (Erlangen, Germany) using whole-brain echo planar images for functional data and 

T1 images for high resolution structural data. The following parameters were applied for the 

functional scan: repetition time =2000ms; echo time=30ms, flip angle=78°; 32 slices with a 

thickness of 3mm plus a 0.75mm gap; matrix=64x64 field of view=192 x 192 mm with an in-

plane resolution of 3x3mm. T1 scans were acquired using: TR=2300ms; TE=2.98ms; 

TI=900ms; flip angle=9°; FOV=240x256mm, resulting in 176 slices of 1 mm thickness.   

 

 

Figure 5.1. Overview of the analysis pipeline. (A) Following pre-processing and estimation 

of first level GLM models, we compared group mean activations in 2nd level GLM models. 
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The GLM results were validated using custom MATLAB code and timeseries data from 

specific ROIs to distinguish between premature and all correct responses. Implementing these 

validated timeseries we report effective connectivity differences using DCMs. (B) Timeseries 

were extracted as follows: firstly, search ROIs were created as the intersection of an 

anatomical ROI mask and significant group mean activation for the premature vs correct 

contrast. Secondly, within each search ROI subject-specific activation peaks were selected by 

taking the largest activation cluster. Spheres of 5 mm radius were then placed on the peak 

voxels and timeseries were extracted.  

 

Data analysis.   

Task performance. Analyses contrasted the number of premature responses between groups, 

for the money and drug contexts. As data were positively skewed and deviated significantly 

from the normal distribution (Kolmogorov-Smirnov tests, p<0.05), one-way nonparametric 

comparisons using Kruskal-Wallis tests were conducted in each incentive condition and 

Dunn’s post hoc tests were used for pairwise group comparisons.   

Imaging data. An overview of the imaging data analysis pipelines is provided in Figure 5.1. 

Following the discarding of the first 5 volumes, 330 volumes were analyzed in each incentive 

context. First level analyses were carried out using FSL FEAT (FMRI Expert Analysis Tool, 

www.fmrib.ox.ac.uk/fsl) with standard settings in FSL 6.0. Image preprocessing included 

brain extraction using BET (Smith, 2002) nonlinear registration of T1 images to MNI 

standard space with 10mm warps and boundary-based registration of the functional image to 

the corresponding T1 image. Isotropic smoothing kernel with Gaussian FWHM of 5 mm was 

chosen. Second level analyses were in MNI standard space (resampled to 2x2x2 mm). 

Motion correction (mcflirt, Jenkinson et al, 2002) was used to linearly register all images in a 

4D volume to an average image and to estimate head motion parameters (rotation, temporal 
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derivatives). Temporal derivatives of explanatory variables (EVs) were included in the first 

level General Linear Model (GLM), in lieu of slice-timing correction.   

  These analyses focused on trials where participants responded during the anticipation 

window, i.e. before target presentation. For the GLM fMRI analyses, premature responses 

were matched with corresponding correct trials, wherein the response occurred during target 

presentation. Corresponding correct trials were selected to be the same trial type, occurring as 

close as possible to the premature response. This ensured contrasts included the same number 

of premature and correct events. For the purpose of the logistic regression fMRI analysis, all 

correct trials were used.  

  The first level design matrix included six EVs and their temporal derivatives: 1) 

premature responses for money incentive, 2) corresponding correct 

responses for money incentive, 3) premature responses with drug cue incentives, 4) 

corresponding correct responses for drug incentives, 5) all remaining correct responses, and 

6) all feedback events. EV1-EV5 were modelled with event onset and duration as the start 

and duration of the anticipation window. EV6 was modelled with onset times and durations 

for the feedback. Effects of motion were controlled by including 24 motion parameters in the 

design matrix. Parameter estimate contrasts were calculated for EV1-EV2 (premature 

> correctmoney) and for EV3-EV4 (premature > correctdrug).   

  Whole brain maps from the first level analyses were passed to a second level design 

matrix that tested mean group activations and pairwise group differences using one-sample 

and independent sample t-tests, respectively. Second level analyses used FEAT GLM with 

FLAME1 and a cluster forming threshold of z=2.3 and voxel-wise threshold of 

p<0.05. Demeaned gender was included as a covariate in the GLM. The striatum region of 

interest (ROI) mask was created by combining bilateral masks for caudate, putamen, and 

nucleus accumbens from the Harvard-Oxford atlas (Desikan et al, 2006).   
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  Interaction effects between groups (HC, SIB and SDI) and the within-subject factor 

of incentive block (money versus drug) were tested in the striatum ROI as follows: for 

each participant, difference maps were calculated for contrast of parameter estimates (COPE) 

between the premature>correctmoney and premature > correctdrug contrasts. Using 

FSL randomise with n=5000 samples (Nichols and Holmes, 2003; Winkler et al, 2014), one 

sample t-tests revealed the areas in which the groups showed greater activation to the 

premature>correctmoney contrast than to the premature > correctdrug contrast. An F-test 

comparing the three group means was used to detect any significant interaction between all 

three groups. This interaction was further investigated using independent sample t-

tests in FSL randomize (n=5000 samples), comparing the COPE difference maps between the 

groups (HCs vs SDIs, SIBs vs SDIs) to indicate regions with a significant interaction (Figure 

5.3). The resulting familywise-error corrected p-value maps with threshold-free cluster 

enhancement (Smith and Nichols, 2009) from the striatum ROI were thresholded at p<0.05 

and the ROI comprising voxels with a significant interaction between both HCs and SDIs and 

SIBs and SDIs was selected for extraction of % signal change using featquery  

(http://mumford.fmripower.org/perchange_guide.pdf; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Featquery_-

_FEAT_Results_Interrogation).   

  A potential limitation of the traditional mass univariate GLM in this instance, is the 

low number of events (premature and corresponding correct responses, see Figure 5.2A) 

as explanatory variables of interest. To test whether the GLM findings were robust, selected 

ROI timeseries during the anticipation windows for premature and for correct responses were 

extracted, preprocessed and served as predictors in a logistic regression to predict response 

type (premature versus correct). If ROIs are more active during premature than during correct 

responses, their activation should be sufficient to classify response type. For this analysis, all 

http://mumford.fmripower.org/perchange_guide.pdf
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correct responses were included. Search space ROIs were created by taking the Harvard-

Oxford anatomical atlas masks for bilateral IFC (pars opercularis), striatum (bilateral caudate, 

nucleus accumbens and putamen), ACC and parietal operculum regions. The anatomical ROI 

was masked by the group mean activations in the HC, SDI and SIB groups for money and 

drug incentive conditions, respectively, resulting in distinct search space ROIs for each 

group, which were then used to extract individual timeseries. Individual contrast 

parameter estimate maps (premature > correctdrug for SDIs; premature > correctmoney for 

HCs and SIBs) were masked with the search space ROI, and FSL cluster 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster) was used to extract the coordinates of the 

maximum intensity voxel in the largest cluster for each ROI (IFC, Caudate, ACC, pO). A 

sphere of 5 mm radius was placed at the maximum intensity voxel and the 

first Eigenvariate from each ROI was extracted sing fslmeants 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils).  

  The extracted timeseries were preprocessed using the rsHRF toolbox for SPM (Wu et 

al, 2013; Wu and Marinazzo, 2016) by deconvolving the timeseries with a canonical HRF 

with time and dispersion derivatives (TR=2s, length of HRF=32s), bandpass filtering (0.001-

0.3Hz) and despiking the timeseries. Subsequently, the timeseries were upsampled by a factor 

of 100 using spline interpolation (interp1, MATLAB) and the total area for each of the 

anticipation windows (premature or correct) for the relevant money and drug conditions, 

were extracted using numerical integration (trapz, MATLAB, Appendix Figure S5.1, 

Appendix figure S5.1).  

In HCs, the BOLD signal on each trial in the IFC, striatum, ACC and pO was used to 

predict trial type (premature vs correct) in money context, while the BOLD signal in the ACC 

was used to predict trial type in drug context.  In the SIBs, the BOLD signal on each trial in 

the IFC, striatum and ACC was used to predict trial type (premature vs correct) in money 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils
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context only.  In the SDIs, BOLD signal on each trial in the IFC, ACC and the pO was used 

to predict trial type in the money context, and BOLD signal in the IFC, 

ACC, striatum and pO was used to predict trial type in drug context.  Hierarchical logistic 

regression with subject-level random effects in RStudio (glmer function in the lme4 package) 

tested whether the ROI timeseries significantly predicted trial type. ROC curves and area 

under the curve (roc and auc functions in the caTools package, plot and lines functions in 

the ggplot package) provided an additional metric of model performance.   

Brain-behaviour correlations. To assess possible brain-behaviour relationships, logistic 

regression models were fitted for each participant individually (using glm, MATLAB). Beta 

regression weight values for the IFC, striatum and ACC were correlated with BIS11 (Patton 

et al, 1995) and a self-reported estimate of likelihood to pick up money on the floor (“Value 

of Money” variable). For SDIs, correlations were also assessed with the Obsessive 

Compulsive Drug Use Scale (OCDUS) scores. In the SDI group, ACC, striatum and IFC beta 

values from the drug incentive condition were analyzed, whereas in the HC and SIB groups, 

ACC, striatum and IFC values were used in the money incentive condition. Since the beta 

value distribution was non-normal, Spearman’s rank correlations with confidence intervals 

are reported, with p-values using Bonferroni-correction for multiple comparisons within each 

group.   

Dynamic causal modelling. To explore directional interactions (effective connectivity) 

between the regions identified by the mass univariate GLM analysis, a set of dynamic causal 

models were created, estimated and tested in SPM12 (v6906). Following the GLM 

activations, DCM was tested with the money incentive condition for the HC group and with 

the drug incentives for the SDI group. For two participants in each group, the DCM analyses 

for three or more models failed to converge, resulting in these participants being excluded for 

this analysis. During the DCM analyses for the SIB group, the Bayesian model selection 
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(BMS) phase did not yield a single winning model limiting any interpretation of their results. 

Additional information is reported in the supplementary information (SI). The network of 

interest included three ROIs: IFC (ventral subregion), Caudate and ACC, in keeping with the 

recommendation that only commonly activated regions in both groups be included as nodes 

(Seghier et al., 2010). Time series were extracted in similar way to the logistic regression 

analysis, i.e. based on the individual peak activations in response to the premature>correct 

contrast. Here, time series preprocessing only included despiking (>4SD from the mean) of 

the SDI group to address severe motion artifacts and were not mean centered (since 

the Eigenvariate extraction results in a mean of 0 and an SD of 1). First level GLM analyses 

were re-estimated in SPM12 for the money and drug incentive conditions in a separate GLM 

and combined with the preprocessed timeseries in the DCM. Second level group maps 

estimated in SPM12 were consistent with 2nd level group maps estimated in FSL.  

  Model space definition aimed to address two issues: firstly, we wanted to confirm the 

interactive architecture of the ACC – Caudate – IFC network by comparing a fully interactive 

model family (family A, Figure 5.4A) with architectures where one of the connections is 

pruned (model families B-G). Secondly, we wanted to investigate at which node or 

connection in the network the modulation by premature>correct contrast occurs (models A1-

A9). All principle experimental conditions (correct, premature, failure) were used as driving 

inputs to the ACC and IFC, similarly to previous DCM analyses of response inhibition (Rae 

et al, 2015, 2016). Modulatory effects were placed at each possible node and connection. 

Random effects (RFX) Bayesian model selection was ran on the full model space including 

families A-G, and on family A only; with both yielding the same results. Since strong a 

priori evidence from functional and structural connectivity studies (Choi et al, 2017b; 

d’Acremont et al, 2013; Menon, 2015; Sadaghiani and D’Esposito, 2015; Uddin, 2016) and 

family comparison results supported the fully interactive model, the comparisons reported 
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focus on models A1-A9. We computed exceedance probabilities (EPs) for each model and 

used those to determine the winning model (family) in a one-state, bilinear, deterministic 

DCM. Bayesian model averaging (BMA) provided estimates of the fixed and modulatory 

connections in each subject, weighted by the evidence of each model tested (A1-A9). Using 

individual parameter estimates, group mean activations and group comparisons were tested 

using one sample t-tests and independent sample t-tests (Figure 5.3).   

  

 

Figure 5.2.   Impulsive responding when anticipating an incentive. (A) Cues indicated the 

incentive available on each trial, and participants prepared during the anticipation phase to 

respond during the brief period when the target was presented. Incentives could be monetary 

(a small sum of money) or drug-related images, with 44 incentive and 22 neutral trials in each 

of the two contexts.  (B) The number of premature responses, where participants responded 

during the anticipation phase and before the target appeared, for each of the three groups and 

to the two incentives. Post-hoc tests with false discovery rate correction were used. (C) Axial 

brain slices (z=4, 21, 39, 56) demonstrating prefrontal and striatal activations when 

participants responded prematurely during the anticipation phase (whole brain cluster 
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corrected z=2.3, p=0.05). (D) ROC demonstrating good model performance of regions of 

interest timeseries in predicting whether participants responded prematurely or accurately to 

the target. Asterisks in figure denote level of significance (*p<.05; **p<.01) 

 

RESULTS  

SDIs exhibit greater premature responding to drug incentives. Participants in all three 

groups occasionally made ‘premature’ responses in the anticipation phase while waiting for 

the target to appear unpredictably (Figure 5.2A). There were significant differences between 

HCs, SIBs and SDIs in the number of premature responses for drug-related incentives using 

the nonparametric Kruskal-Wallis test (χ2(2)=10.56, p=0.005, Figure 5.2B). The groups did 

not significantly differ for money incentives (χ2(2)=3.39, p=0.18). Additionally, there were 

no significant group differences in performance accuracy for either money 

(F2,129=2.83, p=0.06) or drug incentives (F2,129=0.63, p=0.53). Mean (SD) numbers of correct 

trials for HCs, SIBs and SDIs were 41(4), 41(4), and 39(5), respectively in the money 

context, and 41(5), 41(4), and 40(5), respectively in the drug context. The behavioural results 

indicate that while infrequent (9% of total responses), premature responding is ubiquitous, 

exhibited by the majority of participants. SDIs exhibited elevated levels, specifically with 

drug-related incentives, with no differences between HCs and SIBs. This is consistent with 

greater self-reported general impulsivity in SDI (Table 5.1), whilst capturing their 

behavioural difficulties in action-restraint when anticipating drug-related rewards.   

  

Brain activation associated with premature responding depends on group-specific 

incentives. We next investigated whole-brain group activations associated with premature 

responding. To this end, trials where a premature response was detected were contrasted with 

adjacent trials with a correct response. fMRI analyses of the premature>correct contrast 
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revealed wide-spread incentive-specific neural correlates of premature responses in the three 

groups. Group level activations (Figure 5.2C) for the money incentive condition in HCs 

and SIBs and for the drug incentive condition in SDIs included the inferior frontal 

cortex pars opercularis (IFC), dorsal anterior cingulate cortex (dACC) and dorsal striatum 

(dStiatum encompassing the caudate and putamen). For money incentives, the HC and SDI 

groups showed activation in the parietal operculum and the thalamus in addition to 

the dACC and IFC. For drug incentives, SDIs also activated regions of the motor, temporal, 

parietal cortices and the thalamus (Figure 5.2C, one sample t-tests, cluster forming threshold 

z > 2.3, p<0.05).   

These findings suggest a similar pattern for the three groups with money incentives, 

but with drug incentives only SDIs exhibited activations associated with restraint failures. To 

assess this interpretation, group differences were interrogated using a whole brain mask. This 

revealed no significant differences in the monetary incentive condition. In contrast, in the 

drug condition, SDIs showed greater activation than SIBs and HCs in the IFC, striatum, 

primary motor cortex, PCC, parietal, temporal areas and the thalamus in addition to 

the vmPFC (SDI>HC only) and amygdala (SDI>HC only) (independent samples t-tests, 

cluster forming threshold z > 2.3, voxelwise FWE corrected p<0.05, SI Appendix Table 

S5.1). The BOLD results thus converge with the behavioural findings, with SDI showing 

clear abnormalities with drug incentives, and with SIBs differing from SDIs and being no 

different from controls.  

If the BOLD activity was dependent on individual factors regardless of incentive, then 

considerable overlap would be expected between money incentives in the HC and SIBs, and 

drug incentives in the SDI group. Conjunction analyses (fsl easythresh_conj) indeed 

confirmed large-scale overlap in the IFC, dACC, striatum and parietal operculum between the 

HCs and SIBs (money incentives) and SDIs (money and drug incentives). We can therefore 
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conclude that across three separate groups, the findings specify a set of fronto-striatal regions 

that are involved in impulsive responding when anticipating a personally-desired outcome. 

That similar regions were activated in the drug users, regardless of incentive type, suggests a 

general system that is associated with failures in self-restraint that is also sensitive to 

motivational processes.   

 

 

 

Figure 5.3. Striatum ROI activation during premature responding. (A) HC and SIB exhibit 

striatal activation during premature responding to money incentives, while SDI exhibit a 

similar pattern but with drug incentives (MNI [y z]=[10 0]). Activations in all groups span 

the caudate and putamen. (B) The striatum ROI (outlined in red), with the sub-region in 

yellow in the anterior dorsal caudate (n=6 voxels) exhibiting an opposing pattern with 

increased activation in both HC and SIB and decreased activation in SDI when responding 

prematurely to money versus drug incentives. (C) Mean percent signal change (with 95% CI) 

of the difference between activation for money versus drug incentives in the anterior dorsal 

caudate. A significant interaction, F(2, 123) = 5.99, p=0.003, was found between group and 

incentive condition. Specifically, the money-drug difference was significantly greater in the 
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HC than in SDI and in the SIB than in SDI (post-hoc tests with false discovery rate 

correction, p=0.0016 p=0.0074, respectively). Asterisks in figure denote level of significance 

(**p<0.01) 

 

BOLD activation in the IFC, dACC, dStriatum and parietal operculum predicts trial 

type, thus validating the GLM results. To ascertain whether the GLM group mean 

activation maps in the three groups were robust to the limited number of premature trials, we 

assessed whether the resulting BOLD activations could reliably predict trial type. 

Specifically, BOLD timeseries activation in the IFC (pars opercularis), dACC, dStriatum and 

the parietal operculum were used to predict whether trials were correct or premature (Figure 

5.2D). Hierarchical logistic regression models with subject-level random intercepts 

performed well in differentiating premature from correct responses in the money context 

(AUCHC=0.77; AUCSIB=0.73; AUCSDI=0.75) and in the drug context (AUCSDI=0.71). The 

differential contributions of each region of interest (ROI) to the prediction analyses can be 

found in SI appendix Table S5.2. The results for monetary incentives, found independently in 

the three groups, lends further support to the reliability of the involvement of these regions in 

premature responding. This, together with the considerable overlap between groups noted 

above, supports and validates our fMRI findings.  

 

Differential dStriatum involvement in SDI compared to HC and SIB. Previous work has 

established striatal involvement in addiction, task control and reward processing (Everitt and 

Robbins, 2016; Oldham et al, 2018). We thus focused on a ROI encompassing bilaterally the 

caudate, putamen and nucleus accumbens. To assess the selective involvement of the striatum 

in failures of restraint specifically to drug cues in SDIs, interaction effects between group 

(SDI vs SIB vs HC) and incentive type (money vs drug) were examined within this striatal 
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mask. Significant interaction effects in the caudate (MNI [-11 10 16], t=3.2, PFWE=0.05) and 

putamen (MNI [-34 -2 -4], t=3.9, PFWE<0.04) were driven by greater activation in money 

compared to drugs in the HCs versus the SDIs (SI Appendix Figure S5.2). Similarly, 

interactive effects in the caudate (MNI [-12 12 16], t=3.26, PFWE=0.04) and putamen (MNI [-

34 -2 -4], t=4.1, PFWE=0.01) were driven by greater activation in money compared to drugs in 

the SIBs versus the SDIs. Figure 5.3B shows a subregion of the caudate, in which SDIs show 

a different pattern of activation from both SIBs and HCs (MNI [-12 12 16], HC vs SDI 

t=3.31, PFWE=0.05; SIB vs SDI t=3.26, PFWE=0.04; region extent 6 voxels). This more 

stringent and focused approach indicated that the BOLD response in the dStriatum was 

differentially sensitive to impulsive responding for money in non-dependent individuals and 

to impulsive responding to drug cues in SDIs, regardless of familial vulnerability (Figure 

5.3C). Overall, there was a clear opposing pattern in the dStriatum with reduced 

activation for monetary incentives in SDIs compared to the other two groups, pointing to 

specific abnormalities in this region in the SDIs.  
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Figure 5.4. DCM connectivity analyses. (A) Model space and structure of the DCMs 

compared. Top row shows the 7 families, testing different possible connections between the 3 

regions. Black arrows denote driving inputs (all MID trials) and red arrows indicate the 

modulatory effect of premature responding (premature versus correct). Within the fully 

interactive family A, model A3 with modulation to the striatum is highlighted as having the 

greatest exceedance probabilities for both HC with money incentive and for SDI with drug 

incentives (see also SI Appendix S3). (B) Random effects Bayesian Model Selection within 

family A, demonstrating the evidence in support of model A3 for both groups, each with their 

relevant incentive. (C) Average connectivity estimates. All fixed connections survive 

Bonferroni corrections. Modulatory connections were significant at p<0.05, uncorrected. (D) 

Mean group modulation strength estimates (with 95% CI) from the BMA for HC and SDI 

(each with their respective incentive). Only the ACC to striatum modulation differed 

significantly between the groups. Asterisk in figure denotes level of significance (* p<.05, 

uncorrected); ACC: anterior cingulate; STR: striatum incorporating caudate and putamen 

subregions that were active in the HC and SDI group, respectively; IFC: inferior frontal 

cortex including the frontal operculum only. 

 

Limited associations between traits, behaviour and BOLD signal. We next investigated 

the relationship between neural activation associated with premature responses and self-

reported impulsivity (Barratt Impulsivity Scale; BIS), money valuation (Value of Money), 

and in SDI, also compulsive drug use (OCDUS). For dACC, rIFG and striatal regions, we 

used corresponding beta values from individual logistic regression models as a measure of 

each region’s sensitivity to premature responses. In SDIs, caudate activation in response to 

drug incentives was positively associated with self-reported impulsivity (rs=0.36, p=0.02, 

95%CI [0.06 0.6]) and with compulsive drug use (rs=0.40, p=0.011, 95%CI [0.1 0.63]). In 
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this group IFC beta values in drug context were also significantly associated with impulsivity 

(rs=0.36, p=0.02, 95%CI [0.06 0.6]), and with compulsive drug use (rs=0.42, p=0.008, 95%CI 

[0.14 0.64]). In HCs, there was a significant negative association between caudate betas for 

monetary incentives and money valuation ratings (rs=-0.36, p=0.02, 95%CI [-0.1 -0.6]). No 

correlations survived Bonferroni correction, with nine comparisons in SDIs and six in the 

HCs, and hence are reported within an exploratory framework. Finally, no significant 

correlations were found in SIBs. Whilst only suggestive, these correlations appear consistent 

with the interpretation above of an abnormal involvement of the striatum in impulsive 

responding in SDIs.   

 

Group differences in effective connectivity in the same network. Although HCs and SDIs 

showed activation in similar brain regions when failing to restrain responses to different 

incentives, it is possible that the underlying network architecture and their connectivity differ 

in some way. This would be consistent with evidence positing deficient communication 

between prefrontal and subcortical regions in addiction (Goldstein and Volkow, 2011; Ma et 

al, 2015). Namely, the direction of effective connectivity between regions or the influence of 

response type (premature vs correct) on connectivity may differ between the two groups. To 

test these possibilities, we used dynamic causal models (DCMs) based on neurobiologically-

plausible circuits (Choi et al, 2017b; Haber, 2016). Such DCMs fit generative models to 

assess the directed influence of one region over another, allowing us to compare competing 

hypotheses about functional interactions in a set of ROIs.  

First, we assessed the underlying functional architecture of the network including the 

IFC, dACC and striatum in the SDI (drug context) and HC (money context) groups. We 

tested models with either a pruned connection or the full model yielding seven model 

families. Within each family we varied all possible modulation locations, yielding 57 models 
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in total (Figure 5.4A). These models were estimated and the evidence for each family was 

compared using family-wise Bayesian Model Selection (BMS). For both groups 

independently, the fully interactive model architecture, including bidirectional connections 

between all regions of interest, was confirmed by family-wise BMS (exceedance 

probabilities>0.99). This is consistent with the literature reporting the presence of 

structural and functional (Choi et al, 2017b; Haber, 2016) connections between these 

regions.   

Additionally, we interrogated which connections were modulated by trial 

type. Focusing on the fully interacting model architecture of family A, BMS on models 

differing in the location of the modulation  (IFC, dACC, dorsal striatum nodes, or one of the 

six directed connections) revealed the same winning model for the HC group network active 

in money context as for the SDI group network active in drug context (Figure 5.4B). 

Therefore, both HC and SDI participants appeared to activate the same network, provided 

that they find themselves in the appropriate incentive condition (money or drug, 

respectively). At the same time, exceedance probabilities of the winning models (Figure 

5.4B), were below 0.9 (protected exceedance p=0.14 and p=0.21 for HCs and SDIs, 

respectively), suggesting some heterogeneity in the location of the modulation in both HC 

and SDI groups.   

Next, the strength of the modulatory effects of the task (premature>correct trial type) and the 

fixed connections between ROIs were explored within each group using one-sample t 

tests. We also questioned whether the coupling parameters of the network were different in 

the two groups, using independent sample t-tests. Bayesian Model Averaging (BMA), 

allowed us to compute means for each model parameter, weighted by the posterior 

probability of each model for each subject. A summary of all parameters, including fixed 

connections between ROIs and task modulatory effects can be seen in Figure 5.4C. In 



148 
 

HCs, BMA revealed a negative modulation of striatal activity by trial type (t39=2.0, p=0.03), 

while in SDIs trial type showed negative modulation of dACC activity (t38=2.0, p=0.03) and 

positive modulation of the dACC to dStriatum projection (t38=2.1, p=0.02). 

A dStriatum negative (autoinhibitory) fixed connection was thus amplified on premature 

trials in the HC group, whereas a dACC autoinhibitory connection and an excitatory 

connection from the dACC to the dStriatum was amplified on premature trials in the SDI 

group.     

Independent sample t-tests, comparing the groups in modulation strength, showed 

only a significant difference in modulation of the dACC to dStriatum projection by trial type, 

which was higher in SDIs than in HCs (t77=2.13, p=0.036, Figure 5.4D). Fixed connections 

between nodes did not differ between the two groups (all ps>0.05) except for ACC to ACC 

autoinhibitory connection, which was higher in HC than SDI (t77=2.36, p=0.021).    

To summarize, Bayesian model selection revealed a fully interactive model architecture given 

relevant incentives, with bilateral connections between the IFC, dACC and dStriatum. 

Among these interactive models, the striatum plays a critical role as it is modulated by the 

premature versus correct trial condition. Bayesian model averaging suggested differences 

between HC and SDI, with task-based modulation changing striatal activity directly in HC, 

while in SDI striatal modulation was driven by the dACC.   

 

DISCUSSION 

Our results integrate research on inhibitory control and reward-related processing, offering 

insight into how these manifest jointly in the human brain and relate to impulsivity. The 

findings point to the intrinsic importance of context and the nature of the relevant incentives 

in modulating inhibitory control processes, particularly in relation to drug addiction. We 

show that failure of inhibitory control when faced with anticipating rewards is underpinned 
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by fronto-striatal and cingulo-opercular network activations, wherein dorsal striatum regions 

play a key involvement. By focusing on failures of restraint in the MID task, the study 

demonstrates how impulsive responses can be elicited by contextually-relevant incentives. 

These findings thus define an important trigger for impaired behavioural inhibition that may 

operate alongside altered motivational and decisional processes controlling compulsive 

actions, as defined in the preceding chapters (e.g. a failure to exploit knowledge about 

negative feedback) and discussed more fully in the General Discussion (Chapter 7). 

  

Shared networks for premature responding to personally salient cues. This study 

identified key brain regions associated with failures of restraint in the presence of reward in 

SDI, their unaffected siblings and HC. Robust activation of the cingulo-opercular and fronto-

striatal network regions comprising dACC, IFC (pars opercularis), inferior parietal cortex 

(parietal operculum), striatum and thalamus were noted in healthy individuals and an 

attenuated version of this network (minus thalamic and parietal activation) in the unaffected 

siblings with monetary incentives. Activations were also seen in response to failed impulse 

control in SDI for money and drug incentives. A similar pattern of activations in all three 

groups reinforces the robust involvement of the cingulo-opercular and striatal networks in 

failure of impulse control. The regions identified here are known to be differentially activated 

to errors across a variety of cognitive tasks and populations  (Neta et al, 2015; Norman et al, 

2019). This is in keeping with the notion that premature responses are brought about by 

failure of control processes  (Brown, 2009). Analyses of failures when trying to stop a 

prepotent response reveal similar regions encompassing the IFC, ACC, dorsal caudate and 

inferior parietal cortex (Whelan et al, 2012). In the MID paradigm studied here, neural 

correlates of premature responding are likely also involved in error processing more 

generally, although the cingulo-opercular and striatal activation was incentive specific.  
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At the group level the neural correlates of action restraint were intimately linked to 

the personal relevance of the incentives. Thus, subjective value across all incentive types 

elicited activation in the regions described above (Bartra et al, 2013). Using multiple 

incentives revealed that healthy controls and unaffected siblings exhibited activations when 

responding prematurely to monetary incentives but not to drug-related cues. SDI 

demonstrated similar activations but most robustly to drug-related cues where they further 

showed increased activation in brain areas that encode motivation and emotional salience 

(i.e., amygdala, OFC). Greater activation to drug incentives in these regions was 

accompanied by elevated premature responding in the active drug users, suggesting that 

incentive salience was driving this behaviour. The behavioural effect is in line with similar 

measures capturing impulsive behaviours in animal models and in other addiction-related 

clinical populations (Dalley and Ersche, 2019; Voon, 2014).  

 

Neural correlates of impulsivity in drug addiction. Increased impulsive behaviour and 

corresponding increased activation in the presence of drug cues fit well within the iRISA 

framework (Goldstein and Volkow, 2002, 2011; Zilverstand et al, 2018). Drug cues such as 

those used in our version of the MID task are known to have abnormally high motivational 

significance to cocaine users (Goldstein et al, 2008) and elicit increased approach behaviours 

and upregulation across the brain including the cingulo-opercular network (Zilverstand et al, 

2018). These networks are generally underactive in active stimulant users during standard 

cognitive task performance including inhibitory control processing (Morein-Zamir and 

Robbins, 2015; Zilverstand et al, 2018). Presently, whole brain analyses did not find 

significant hypoactivation in the SDI in whole-brain analyses with monetary incentives. This 

is consistent with the limited differences in task performance and function between these 

same individuals in monetary reward processing (Just et al, 2019) and compatible with the 
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broader literature on processing of non-drug rewards in addicted individuals (Zilverstand et 

al, 2018). Whilst also consistent with the notion that brain activity during inhibitory control is 

stimulus-dependent (Czapla et al, 2017), this limits proposals that drug use diminishes the 

perceived value of non-drug rewards to only specific brain regions (Goldstein and Volkow, 

2011). 

The importance of incentive type to impulsive responding in addiction is reflected 

across the brain but most clearly by the activation of caudate and putamen subregions of the 

dorsal striatum. Here, not only was there greater activation in SDI in the presence of drug 

incentives, there was also a blunted response in the presence of monetary incentives 

compared to either of the two other groups. The temporal and correlational features of fMRI 

preclude us from determining the exact nature of dorsal striatal involvement in the processing 

of premature responding. This region could be directly implicated in triggering the impulsive 

responding or could be linked to monitoring processes. The dorsal striatum is involved in 

action control (Graybiel, 1995; Haber, 2016), but is also activated when participants 

anticipate rewards (Oldham et al, 2018), with neurons integrating reward information with 

movement processing (Schultz, 2016b). We therefore tentatively attribute the striatal 

involvement to the failure of control in the face of personally-meaningful incentives. This 

explanation dovetails with the role of the dorsal striatum in cancelling planned motor 

responses (Bari and Robbins, 2013; Eagle and Baunez, 2010) and impulsive choice (Kim and 

Im, 2018), whilst providing evidence for its involvement in additional aspects of impulsivity 

in humans. 

 Abnormal striatal processing in addiction has been consistently linked to general 

aberrations in cortico-striatal circuitry that subserves motor, cognitive and motivational 

processes (Choi et al, 2017b, 2017a). When considering this circuit, we show that SDIs 

and HCs share a strikingly similar network architecture, provided that a relative incentive is 
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present. Nevertheless, whilst the striatum was consistently modulated by premature 

responding in the two groups, effective connectivity between the IFC, dACC and striatum 

pointed to the differential involvement of the latter two regions. The dACC sits at the 

connectional intersection of the brain’s reward and action networks (Haber, 2016), and is 

ideally situated to regulate impulsive behaviours. This region thus provides top-down 

inhibitory control over striatal representations of action and stimulus values and has been 

found to over-activate in SDIs with failures of response inhibition (Morein-Zamir et al, 

2013). Here the observed enhanced directed connectivity from dACC to dorsal striatum in 

SDIs relative to HCs suggests that interactions between the salience network and dorsal 

striatum via the ACC may contribute to impulsive phenotypes in drug addiction. 

Investigations using dynamic causal models in a response inhibition task also pointed to 

aberrant modulation of the dACC to dorsal striatum projections in cocaine-dependent 

individuals (Ma et al, 2015), and specifically support deficient communication between 

prefrontal and subcortical regions in addiction (Goldstein and Volkow, 2011).  

 

Additional implications of the present findings. Interactions between mPFC areas and the 

striatum are also found in non-human animal studies investigating mPFC involvement in 

failures of restraint. The rodent prelimbic cortex, a homologue of human dACC in addition to 

rodent infralimbic cortex, a homologue of the human vmPFC, is implicated in premature 

responding (Dalley et al, 2011; Dalley and Robbins, 2017) and behavioural control (Yip et al, 

2014). We observed vmPFC activations in SDIs consistent with previous human and animal 

literature (Dalley et al, 2011; Morris et al, 2016), again reinforcing the importance of 

incentive salience in this group. We note that the ventral striatum did not appear to be 

uniquely activated by failures of restraint, though it was robustly associated in all groups with 

general reward anticipation (Just et al, 2019). Given its role in addiction, reward seeking, 
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impulsivity and action initiation, striatal dopaminergic dysregulation is a putative mechanism 

underlying present SDI findings. Lower dopamine D2 receptor binding in the human striatum 

is associated with impulsivity (Buckholtz et al, 2010) and addiction (Trifilieff and Martinez, 

2014). In chronic cocaine users elevated dopamine neurotransmission in the dorsal striatum 

specifically was noted in the presence of cocaine-related cues (Volkow et al, 2006), 

dovetailing with its involvement in incentive salience. Changes to dorsal striatum physiology 

involving D2 receptors have also been implicated in chronic exposure to cocaine in 

experimental animals (Porrino et al, 2004), consistent with its role in impaired impulsive 

control in the SDIs here. 

Assessing the unaffected siblings of SDI allowed us to test whether premature 

responding is a familial predisposition to stimulant drug addiction. Performance and neural 

correlates in siblings indicated this was not the case for both incentive types. The lack of 

differences in the number of premature responses and in neural activations to premature 

responses could be indicative of a lack of impairments in the SIB group. Such findings would 

contradict many animal studies showing that impulsivity is a predisposing factor for stimulant 

addiction. However, the version of the MID task used here may only be sensitive to the 

comparatively larger differences between stimulant users and healthy participants. In 

addition, potential increases in impulsivity in the at-risk SIB group could be masked by 

compensatory mechanisms that indeed prevented the SIBs from developing problematic drug 

use. Therefore, this study does not provide definitive evidence against the hypothesis that 

impulsivity is increased in those at higher risk for developing stimulant use disorder.  

 As the connectivity analyses for the siblings did not result in a single winning model 

(see SI Appendix Figure S5.3) we could not extend these conclusions to network 

connectivity. Nevertheless, on balance we conclude that an impulsive endophenotype does 

not appear to extend to premature responding, at least under reward-based conditions. It may 



154 
 

be that the ability to restrain is a protective factor for the siblings. Alternatively, it remains 

possible that restraint would be compromised in unaffected family members under more 

constrained conditions, such as those eliciting negative urgency (Um et al, 2019), with 

greater cognitive demands, or drug exposure (Sanchez-Roige et al, 2016). The MID task has 

been favoured in reward research in part as it requires participants to make simple decisions, 

minimizing cognitive confounds (Oldham et al, 2018). This allowed us to attribute premature 

responses to failures of inhibitory control specifically. This approach offers a parsimonious 

measure of impulsive responding to diverse incentives in clinical and non-clinical 

populations. The presence of a relatively wide anticipation window likely increased 

premature responding frequency overall and allowed greater individual variability. Future 

research is needed to explore what aspects of the MID task elicit or minimize premature 

responding, testing convergence with preclinical models. Additionally, performance and 

network changes in at-risk groups or following prolonged abstinence should be explored. 

This could better elucidate the exact role of various risk factors in addiction and point to 

potential mitigating factors.  

In conclusion, the results provide insight into the brain networks recruited during 

failures of restraint in a well-characterized sample of SDIs, their unaffected siblings and HC. 

Limited cognitive control over action was evident in the SDI group, particularly involving 

incentive-based situations in line with prominent theorizing. Whole brain analyses provide 

evidence for cortico-striatal network disruption in addiction involving top-down control by 

the PFC and its interactions with striatal structures with altered connectivity and abnormal 

striatal activation patterns. Our findings also demonstrate convergence of paradigms for 

measuring impulsive behaviour. By capitalizing on the presence of premature responses in 

this version of the MID and introducing a novel analysis, our results indicate that 
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anticipatory, impulsive behaviour is comprised of separable, though often overlapping neural 

networks.  

 

  



156 
 

Table 5.1. Demographic, personality and clinical measures for the three groups. Significant 

differences (p<0.05) are highlighted in bold; Chi-square tests were used for categorical 

comparisons and one-way ANOVAs were used to test continuous outcomes. Gender 

(Chi2=36.48, p< 0.001), Impulsivity (BIS-11, F2,123= 38.22, p<0.001) and Value Money 

(“How likely are you to pick up 10p/50p?”, F2,123=4.439, p=0.0138) were significantly 

different between the HC, SIB and SDI groups. 

 

 
Healthy Controls At-risk 

Siblings 

Stimulant Dependent 

Individuals 

(n=42) (n=43) (n=41) 

Demographics Mean (SD) Mean (SD) Mean (SD) 

Age (years) 32.6 (8.8) 32.3 (8.4) 34.7 (7.4) 

Gender (% male) 64.3 
 

47.8 
 

88.1 
 

Verbal Intelligence 

(NART) 

112.0 (8.4) 
  

110.6 (7.4) 

Monthly disposable 

income (£) 695 1000 403 410 399 672 

Duration of stimulant 

use (years) 

    

16.1 (6.5) 

Compulsive Stimulant 

Use (OCDUS) 

    

23.6 (9.3) 

Impulsivity (BIS-11) 59.7 (7.9) 67.3 (10.5) 77.3 (9.3) 

Value Money Ratings 71.3 (27.0) 58.6 (32.8) 76.1 (26.8) 
NART, National Adult Reading Test; OCDUS, Obsessive Compulsive Drug Use Scale; BIS-11, 

Barret Impulsivity Scale. 
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Chapter 6 

Response inhibition and effective brain connectivity in healthy and cocaine-dependent 

individuals 

INTRODUCTION 

 The findings of the previous chapter demonstrated the importance of incentive drug cues in 

triggering maladaptive failures in inhibitory response control. Such failures represent one 

aspect of impaired inhibitory response processing in stimulant users that potentially may 

contribute to the persistence of drug use in affected individuals. In a similar vein to the 

original findings presented in Chapter 4, using the technique of intravenous cocaine self-

administration in rats, impaired inhibitory response control was caused by exposure to 

cocaine itself rather than as a pre-existing behavioural abnormality. The experimental 

approach used in this chapter further explored the effects of prior cocaine exposure on a 

second, distinct form of inhibitory response control – the ability to stop an already-executed 

motor response, as assessed by the stop-signal reaction time (SST) task. The SST task aims to 

capture stopping efficiency, or the difference in speed of a “go” and a “stop” process, by 

measuring the difference between the most characteristic Go RT and the average onset of the 

stop-signal for each participant. (Logan and Cowan, 1984; Verbruggen et al, 2019).  

Chronic cocaine use may have its origins in the increased vulnerability conferred by 

greater impulsivity or manifest from maladaptive neural changes that in turn cause increased 

impulsivity (Belin et al, 2008a; Fernández-Serrano et al, 2012; Grant and Chamberlain, 2014; 

Jentsch et al, 2014; Kozak et al, 2018; Winstanley et al, 2009, 2012; De Wit, 2009). 

Although impulse control can take different forms that rely on distinct neural circuits (Dalley 

et al, 2011; Dalley and Robbins, 2017; Mitchell and Potenza, 2014), stopping impulsivity or 

the ability to successfully inhibit inappropriate actions, has been shown to be impaired in 
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drug use disorder (Elton et al, 2014; Fillmore et al, 2006; Lawrence et al, 2009; Morein-

Zamir et al, 2013).  

Response inhibition is sub-served by an intricate cortico-basal ganglia network 

(Leisman et al, 2013; Rae et al, 2015, 2016; Schroll and Hamker, 2013), in which higher 

associative cortex is known to project to the striatum and the subthalamic nucleus (STN) that 

in turn can exert inhibitory control over motor command execution in the motor cortex (M1). 

Polysynaptic connections between the cortex and the striatum form the direct, indirect and 

hyperdirect cortico-striatal-cortical pathways (Haber, 2016). Dorsal anterior cingulate 

(dACC) or the presupplementary area (pre-SMA) and the right inferior frontal gyrus (rIFG) 

are key cortical areas that play a causal role in response inhibition (Aron et al., 2003; Floden 

and Stuss, 2006; Nachev et al., 2007, Chambers et al., 2006; Cai et al., 2012). While 

interactions between the prefrontal cortex (PFC) and the STN have been previously 

elucidated using dynamic causal models (DCM) in healthy volunteers (Rae et al, 2015) and 

PD patients (Rae et al, 2016), differential contributions of the striatum and STN to stopping 

and action initiation remain unclear.  

Pharmacological interventions using the selective noradrenergic inhibitor atomoxetine 

have been shown to be very effective in  enhancing stopping performance in healthy 

volunteers (Chamberlain et al, 2006b) and at treating response inhibition impairments in both 

adults and adolescents with attention-deficit hyperactivity disorder (ADHD) (Chamberlain et 

al, 2007a; Garnock-Jones and Keating, 2009; Nagashima et al, 2014). Atomoxetine also 

improved response inhibition in Parkinson’s disease (PD) patients who showed stopping 

impairments (Rae et al, 2016; Ye et al, 2015). Convergent evidence from experimental 

animals also suggests that the effects of atomoxetine on noradrenergic (NA) signalling can 

enhance response inhibition (Bari et al, 2009, 2011; Bari and Robbins, 2013), decrease 

waiting impulsivity (Baarendse and Vanderschuren, 2012; Robinson et al, 2008) and improve 
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attentional performance (Navarra et al, 2008; Robinson, 2012). Further, atomoxetine also 

shows promise in enhancing cognitive attentional control in cocaine addiction (Potenza et al, 

2011) as it reduced the aberrant attentional bias towards cocaine-related cues in cocaine-

dependent individuals (Passamonti et al, 2017).  

Stopping improvements observed following atomoxetine treatment are largely thought 

to rely on its effects on the PFC. Firstly, improvements in stopping efficiency 

(operationalised as the differences in stop-signal response time, ΔSSRT) have been found to 

correlate with increased activation in the rIFG in healthy volunteers (Chamberlain et al, 

2009) and in PD patients (Ye et al, 2015) and enhanced corticostriatal connectivity (Ye et al, 

2015). Further, atomoxetine also enhanced resting state connectivity between the key nodes 

in the response inhibition network, the rIFG and the dACC, in PD patients (Borchert et al, 

2016). Despite the insights into neural correlates of response inhibition improvements under 

atomoxetine, it is unclear how this drug affects stopping network connectivity in healthy and 

cocaine-dependent individuals. Conflicting findings showing that atomoxetine did not 

improve inhibitory control on the continuous performance task in children with ADHD 

(Bédard et al, 2015) suggest that atomoxetine benefits may be conditional on individual’s 

characteristics such as age. Further, inter-individual variability in structural connectivity may 

also influence how much healthy volunteers and patients with impulse control disorders could 

benefit from atomoxetine as greater white matter integrity in the cortico-striatal tracts 

predicted stopping efficiency improvements in PD patients (Rae et al, 2016; Ye et al, 2015).  

To investigate atomoxetine-induced changes in stopping performance in participants 

with cocaine use disorder and in healthy control participants, we used pharmacological 

functional magnetic resonance imaging (fMRI) of the stop signal task (Aron et al, 2003). We 

extend previous findings of atomoxetine benefits from PD patients to healthy and cocaine-

dependent individuals and identify putative neural substrates that underlie beneficial effects 
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of atomoxetine. We further aimed to identify behavioural, structural and functional 

connectivity markers that determine whether healthy and cocaine-dependent participants 

experienced stopping improvements on atomoxetine. We predicted that 1) stopping (as 

reflected by stop-signal response time, SSRT) would be prolonged in the cocaine group; 2) 

increased task-related rIFG activation would predict stopping improvements following 

atomoxetine treatment (Chamberlain et al, 2009); 3) enhanced hyperdirect pathway 

connectivity (Rae et al, 2015) would predict atomoxetine efficacy; 4) enhanced corticostriatal 

(e.g. ACC-putamen) connectivity would also predict atomoxetine efficacy (Ye et al, 2015).  

 

METHODS  

Participants were twenty-eight healthy controls and twenty-six individuals diagnosed with 

cocaine use disorder (DSM-IV-TR, APA), recruited from Drug and Alcohol services, local 

treatment providers and by word of mouth. Healthy control participants were recruited from 

the Cambridge BioResource volunteer panel (www.cambridgebioresource.org.uk). All 

participants were screened for psychiatric disorders using the Mini-International 

Neuropsychiatric Interview (Pettersson et al, 2018; Sheehan et al, 1998), and were excluded 

if they had a history of psychotic disorder. Urine screens verified current cocaine use in all 

cocaine-dependent participants and were negative for all control participants. Participants 

were excluded if they 1) had a history of neurological disorder, head or brain injury, or 

metabolic disorder, 2) were taking any medication that would interact with atomoxetine, 3) 

were pregnant, or 4) had been involved in a clinical trial within the past six months. In 

addition, eight cocaine-dependent participants were excluded from the analysis because their 

behavioural performance on the task did not meet the assumptions of the race model, as 

explained below, leaving a total sample of n=46 (28 control, 18 cocaine users). Demographic, 

http://www.cambridgebioresource.org.uk/
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clinical and personality measures are reported in Table 6.1. Healthy participants showed no 

significant neurologic or psychiatric disorders. All participants gave their written informed 

consent to be part of the study, which received ethical approval from National Ethics 

Committee (Dr Karen Ersche, MREC No. 12/EE/0519 UKCRN ID 13999). 

Experimental Design. The study followed a randomised, double-blind, placebo-controlled, 

crossover, balanced design. Consistent with previous studies (Chamberlain et al, 2009), 

participants received orally either 40 mg atomoxetine or a placebo of identical appearance. At 

least seven days separated the sessions for each participant. Plasma concentration of 

atomoxetine is known to peak approximately two hours after oral intake (Sauer, Ring, and 

Witcher 2005). Therefore, blood samples for plasma were collected two hours after 

administration (mean 366 ng/mL, standard deviation 200 ng/mL).  

Stop-Signal Task. During the stop-signal task, a measure of response inhibition, participants 

were required to respond with a left or right key press to the corresponding left and right 

arrow stimuli (100ms) on Go trials, while lying in the scanner (Morein-Zamir 2013). On stop 

trials, participants saw a stop signal (an orange upward arrow, 300 ms) and had to cancel their 

response. Left and right trials were counterbalanced and intermixed, and the delay between 

go and stop stimuli was adjusted in 50 ms steps from the starting time of 250 ms aiming to 

achieve 50% successful stopping rate (Logan et al 1997). The task was modified for MRI by 

including 48 stop trials and 240 go trials. When participants responded before stop signal 

onset, the trial was repeated. Inter-trial-intervals varied randomly in duration between 900 

and 1100 ms (Whelan et al, 2012). Participants were instructed to respond as quickly as 

possible and not to wait.  

Those participants who did not meet the assumptions of the race model (Logan and 

Cowen 1984, Logan et al 2014, 2015) were excluded. More specifically, participants were 
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excluded if their p(respond|stop signal) was lower than 0.35 or higher than 0.65 (Congdon et 

al., 2012) and made a response before the stop signal appeared on more than 30 trials. 

Two key measures from the task included mean reaction time (RT) on Go Trials and 

the stop signal reaction time (SSRT) calculated using the integration method with 

replacement of go omissions (Verbruggen et al, 2019). The integration method estimates the 

finishing time of the stop process by integrating the RT distribution and finding the point at 

which the integral equals p(respond|stop signal). Go RT distribution includes all trials on 

which a response was made, including stop trials on which a response was made before the 

stop signal appeared and also Go omissions, which are assigned the maximum RT (1000 ms). 

The finishing time of the stop process then corresponds to the nth RT, whereby n = the 

number of RTs in the RT distribution multiplied by the overall p(respond|stop signal). SSRT 

can then be calculated by subtracting mean stop-signal delay from the nth RT. 

In addition to the stop signal task, participants also completed the Beck Depression 

Inventory version II (BDI-II), the National Adult Reading Test (NART, a measure of fluid 

intelligence (Bright et al, 2018)), the Obsessive Compulsive Drug Use Scale (OCDUS), 

Alcohol Use Disorders Identification Test (AUDIT), Cannabis Use Disorders Identification 

Test – Revised (CUDIT-R) and Barratt Impulsivity Scale (BIS-11).  

fMRI data acquisition and analysis 

Acquisition. MRI data were acquired using a Siemens Trio 3T scanner (Erlangen, Germany). 

Functional images used a whole-brain echo planar image sequence (repetition time, 2000 ms; 

echo time, 30 ms; flip angle, 78°; 32 slices with 3mm slice thickness and a 0.75mm gap; 

matrix=64x64; field of view, 192x192mm; 3 x 3mm in-plane resolution; number of volumes 

ranging between 278 and 305). High resolution T1-weighted gradient echo images were 



163 
 

acquired for registration purposes (176 sequential slices of 1mm thickness; repetition time, 

2300 ms; echo time, 2.98 ms; flip angle, 9°,FOV, 240x256mm).  

Pre-processing. An overview of the MRI data processing pipeline is provided in Figure 6.1. 

fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 

6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Registration to 

structural and standard space images was carried out using FLIRT (Jenkinson 2001, 2002) 

and FNIRT (Andersson 2007a, 2007b). Pre-processing included motion correction using 

MCFLIRT (Jenkinson 2002); non-brain removal using BET (Smith 2002); spatial smoothing 

using a Gaussian kernel of FWHM 5mm and grand-mean intensity normalisation; highpass 

temporal filtering (100s). First level analysis (Woolrich et al, 2001) included four regressors 

of interest: successful stops, failed stops, successful go and failed go responses convolved 

with double-gamma haemodynamic response function. Temporal derivatives were also 

included for each of the regressors. Successful stops were contrasted with successful go 

responses (stopping contrast) and with unsuccessful stops (monitoring contrast). Twenty-four 

movement parameters were included as covariates of no interest along with a pre-whitening 

step. By including such covariates in the GLM design, we were able to test for group 

differences, while controlling for motion.  

GLM analysis. We used one-sample t tests in the whole brain to identify significant group 

mean activations in the control and the cocaine groups using FEAT FLAME1 analysis 

(Woolrich et al, 2004). To test for overlap between groups, conjunction analysis 

(easythresh_conj.sh, T Nichols) was used. Independent sample t-tests were used to compare 

groups on placebo and atomoxetine in two separate GLMs for each drug condition. Another 

GLM included the difference maps in contrasts of parameter estimates under placebo and 

atomoxetine for all participants. In this GLM, one sample t-tests of the atomoxetine versus 

placebo difference maps were used to evaluate drug effects across subjects. A group-by-drug 

http://www.fmrib.ox.ac.uk/fsl
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interaction was tested using independent sample t-tests (cocaine versus control) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide). Images were thresholded using 

threshold-free cluster enhancement in randomise with 5000 permutations. Demeaned order of 

drug versus placebo sessions was included as a second-level covariate of no interest in all 

three GLMs. Finally, the difference in stop-signal reaction time between atomoxetine and 

placebo conditions (ΔSSRT) was included as a covariate in the GLM in order to test for 

associations between the changes in stopping efficiency and the changes in task-based brain 

activity on atomoxetine compared to placebo.  

DCM. In order to examine the directed connectivity in the network identified by group mean 

GLM maps, dynamic causal models (DCM, Friston 2003) were built and tested in each group 

and each drug condition in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 

Briefly, DCMs allow us to estimate generative models of brain connectivity between a set of 

regions of interest, which can then be compared in terms of their posterior probability given 

the BOLD timeseries data (Stephan et al, 2010). Building on previous evidence (Rae et al, 

2015), we aimed to examine the interactions between well-known nodes of the stopping 

network that included the IFG, dACC, M1, STN and the putamen on the stop signal task. We 

aimed to replicate effective connectivity networks found in stop signal task between the IFG, 

dACC, M1 and STN (Rae et al, 2015) and extend the insights into stopping by adding the 

putamen, a key component of the direct and indirect cortico-basal ganglia pathways (Beeler 

et al, 2013; Schroll and Hamker, 2013) underlying action initiation and response inhibition. 

The addition of the putamen allows us to more directly assess the striatal contributions to 

response inhibition via the indirect pathway (Shipp, 2017) by explicitly modelling its 

connections with cortical regions such as the dACC and the IFG as well as subcortical 

regions such as the STN.  

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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DCMs allowed us to compare a) fixed connections between these regions of interest 

(DCM.a), b) modulatory effects of the task (successful stop > go contrast) on these 

connections (DCM.b), c) inputs that drive network activity (all trials, regardless of trial type 

or outcome) and finally d) nonlinear modulatory effects of one ROI on connectivity between 

other ROIs (DCM.d). A set of models guided by a priori hypotheses was compared using 

Bayesian model selection based on the free-energy bound F, adjusted for model complexity. 

Further, subject-specific connectivity values from the DCM.a, b, c and d matrices was 

extracted for the most likely model in the whole group using Bayesian model averaging. 

Subject-level connectivity between ROIs and modulatory effects were then used to explain 

the variance in the behavioural measures.  

Model space included 33 models (Figure 6.2B), systematically varying in the location 

of fixed connections (DCM.a), nonlinear modulatory connections (DCM.d) and finally 

location of task modulation effects (DCM.b). Fixed connections in linear models tested for 

systematic differences in the connectivity between the IFG and putamen (linear models A-F). 

Linear models A-C aimed to test whether ACC-Putamen-STN pathway could replace the 

hyperdirect pathway (ACC-STN) in stopping; models D-F tested for the role of the IFG given 

the presence of the hyperdirect pathway and a parallel pathway from the ACC to the STN via 

the putamen. In particular, we tested whether the IFG-putamen connection was likely given 

the data (model D vs model F) and whether an additional projection from the IFG to STN 

was likely (model E). Nonlinear models examined the addition of nonlinear modulation of the 

ACC-STN or the ACC-Putamen-STN pathway by the IFG (models A-C). Nonlinear models 

D and E tested whether putamen may be modulating projections from the ACC to M1 or from 

the STN to M1. Each of these 11 models had three versions, with task demands (successful 

stop vs go) modulating the IFG, ACC or Putamen in each model. This resulted in 33 models 

in total, although three models failed to converge (Figure 6.3) and were excluded. In each 
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model, all ROIs also had an autoinhibitory or an autoexcitatory self-connection and all trials 

provided driving inputs (DCM.c) to the dACC and the IFG following previous definitions of 

stopping DCMs (Rae et al, 2015).  

The first Eigenvariate of the BOLD timeseries was extracted from the pre-processed 

images taken from the 1st level analysis. The location of the dorsal ACC and IFG spheres was 

determined as follows: firstly, a search region was created from the intersection of the 

significant group mean activation for the successful stop versus go contrast and the 

anatomical masks of anterior cingulate and bilateral IFG (pars opercularis and pars 

triangularis) taken from the Harvard-Oxford cortical atlas (Desikan et al, 2006; Frazier et al, 

2005; Goldstein et al, 2007; Makris et al, 2006). Next, each participant’s contrast of 

parameter estimates maps for the successful stop vs go contrast were masked using the search 

region. A sphere (5mm radius) was then placed at the individual peak activation. Motor 

cortex search region was created from the intersection of the significant mean activation for 

the successful go vs stop contrast and the precentral gyrus ROI from the Harvard Oxford 

cortical atlas. Subject-specific spheres (5mm radius) were placed at that subject’s peak 

activation for the stop>go or go>stop contrast in the search ROI. The putamen sphere (3mm 

radius) was placed at the subject-specific peak activation in the left putamen anatomical 

region taken from the Harvard-Oxford subcortical atlas. Finally, subthalamic nucleus sphere 

was created as in Rae et al 2015 (5mm radius).  

Twenty-four extended motion parameters generated in the first level analyses were 

regressed out of the extracted timeseries and the remaining variability in the BOLD signal 

was then used to estimate dynamic causal models. Bayesian model selection (BMS, Stephan 

et al 2009) was used to compare models and model families in each group in each condition 

by evaluating model posterior probability in a fixed effects analysis. Model parameters taken 
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from each participant’s model that corresponded to the winning model in the group were then 

used in explaining stop signal task performance.  

 

Figure 6.1. MRI data analysis pipeline. Task-based fMRI data was pre-processed using FSL 

Feat and group mean comparisons were tested using FSL FLAME. Since no group 

differences were found, effective connectivity differences between the ROIs identified in the 

GLM were tested using DCMs. Tracts were traced between brain regions identified in the 

DCM and mean FA was measured in these tracts to explore brain-behaviour associations.  

Probabilistic tractography. Probabilistic tractography was used to estimate structural 

connectivity between regions-of-interest identified in the DCMs (bedpostx and probtrackx in 

FMRIB's Diffusion Toolbox, Behrens et al 2003, 2007). For each individual, tracts between 

1) ACC and bilateral STN, 2) ACC and left putamen were estimated based on the findings 

from the effective connectivity analysis. The target mask was set as a waypoint and as a 
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termination mask, forcing tracts to stop once they reach the target area. The most likely 

pathways for each participant were thresholded at 98% probability (Rae et al, 2015), 

binarized and transformed into MNI standard space, added together and thresholded (such 

that at the pathway was present in at least 18 of the 44 participants) to remove spurious tract 

streamlines. The tracts were then transformed back into diffusion space and the mean 

diffusivity within each tract in addition to its volume (in voxels) were estimated. Pearson’s 

correlations between fixed DCM connections (DCM.a) and the volume of the corresponding 

tracts were calculated to test for consistency in structural and functional brain networks. Tract 

strength (assessed using mean FA intensity in the tract) was then used in explaining stop 

signal task performance.  

Statistical analysis. Given the study design, generalised linear models with subject-level 

random effects (equivalent to mixed-effect ANOVAs) were used to assess the main effect of 

group (cocaine versus control), drug (atomoxetine versus placebo) and the group-by-drug 

interaction (nlme and car packages in RStudio v3.4.1) on stopping efficiency (SSRT), Go RT 

and on each of the fixed connection strengths (DCM.a). Age and plasma levels of 

atomoxetine after atomoxetine were included as covariates of no interest. Where appropriate, 

post-hoc comparisons with false discovery rate correction were used. Finally, regression 

weights with their respective t and p values are reported. Type-III ANOVAs (car package) 

were used to verify the presence of main effects after the other main effects and interactions 

were accounted for.  

Three ANCOVA models (aov package in RStudio, v3.4.1) were fitted to explain the 

variability in ΔSSRT and ΔGo RT: one model for all participants (ΔSSRT), one model for the 

control group (ΔSSRT) and one model for cocaine group (ΔGo RT) described in more detail 

below.  
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Figure 6.2. Model space definition for dynamic causal modelling. Six linear models and 

seven nonlinear models were initially defined. Among the nonlinear models, models A, B and 

C included interactive effects by the IFG, models D and E included interactive effects by the 

putamen. The initial set of 11 models was testing for modulatory effects of the stop signal 

task (parametric modulator comprising successful stopping (parametric modulator contrasting 

Stop success > Go success trials) at the IFG. However, model space was expanded to 

compare the modulatory effects of stopping at 1. IFG, 2. SMA, 3. PUT, resulting in 3x11=33 

models. 11 model families were created to test for fixed (DCM.A) and interactive effects 

(DCM.D) regardless of task modulation. Three model families tested a different combination 

of 33 models, grouping them by the location of task modulation to assess effects of task 

modulation (DCM.B) regardless of the exact fixed and interactive architecture. IFG, inferior 
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frontal gyrus; SMA, dACC dorsal anterior cingulate; STN, subthalamic nucleus; M1, motor 

cortex.  

 

RESULTS 

Behavioural results 

Results of the neuropsychological assessment are summarized in Table 6.1. Despite 

the initial group size of 28 controls and 28 cocaine dependent individuals, 10 cocaine 

participants had to be excluded from analysis since their performance violated the 

assumptions of the race model, with p(stop|signal)>0.65 in either the placebo or the 

atomoxetine condition. The remaining participants were well matched in terms of their sex, 

education and alcohol use (AUDIT). Cocaine-dependent participants were younger (average 

age difference of 5.9 years, p=0.008), showed significantly lower fluid intelligence scores 

(NART), and higher problematic cannabis use (CUDIT-R) as shown in Table 6.1. 

Stopping performance is summarized in Table 6.2. No main effect of drug condition 

(β=12.6, SE=9.5, t44=1.3, p=0.19) or group (β=5.3, SE=14.6, t42=0.4, p=0.72) and no 

interaction (β=-17.3, SE=12.2, t42=1.4, p=0.16) were found for SSRT as an outcome variable, 

while controlling for age (β=1.9, SE=0.9, t44=2.1, p=0.04) and plasma atomoxetine levels 

(p=0.39). A significant main effect of condition on Go RT was found (β=28.5, SE=11.1, 

t44=2.6, p=0.01). No significant interaction (β=-17.5, SE=14.3, t44=1.2, p=0.23) or main effect 

of group (β=-27.2, SE=19.1, t42=1.4, p=0.16) on Go RT were found, however. The 

behavioural benefit of atomoxetine was conditional on individual differences in stopping 

ability, impulsivity and functional brain connectivity (see below). No main effects of group 

or condition or interactions were found on the stopping accuracy. 

fMRI Results 
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Whole-brain group mean activations were found in the ACC, IFG, MFG, parietal and 

visual areas for the successful stop > go contrast. Group mean activations in the left 

precentral gyrus, contralateral to the right-handed responding on task, were found for the 

successful go > stop contrast. Conjunction analysis revealed wide-ranging overlap in the 

above areas activated by both cocaine and control groups on both conditions (Figure 6.2A). 

Significant group mean activations in the putamen were found in the healthy controls on 

atomoxetine, but not in cocaine users or in control group on placebo.  

Using a whole brain mask, no significant differences were observed between the 

cocaine and control groups on placebo; on atomoxetine cocaine users showed significantly 

greater activation in the dorsal ACC (peak MNI [X, Y, Z] coordinates, [-6, 16, 52], 

zmax=3.89, p=0.002). No significant drug effects were found in either the cocaine or the 

control group and no interaction between the between-subject factor of group or the within-

subject factor of drug was found.  

Since both groups showed robust and consistent activations in the key nodes of the 

stopping network (ACC, IFG, Precentral gyrus) regardless of the drug condition, we tested 

for connectivity differences between these regions of interest and the STN and putamen with 

dynamic causal modelling. 
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Figure 6.3. Relative log-evidence for each of the thirty models included in the Bayesian 

model comparison and selection. Models 1-10 are nonlinear models A, B, C, D, E and linear 

models A, B, C, D, E, F with task modulation of the IFG; models 11-20 are the nonlinear 

models A, B, C, D, E and linear models A, B, C, D, E, F with task modulation of the ACC; 

models 21-30 are nonlinear models A, B, C, D, E and linear models A, B, C, D, E, F with 

task modulation of the putamen. Three models were excluded since they failed to converge 

for several subjects: nonlinear model D with IFG modulation, nonlinear model E with ACC 

modulation and nonlinear model E with putamen modulation. The winning models and are 

highlighted in red. In the placebo condition, nonlinear model C provided the best fit to data 

from both control and cocaine groups, although stopping modulated the IFG in the controls 
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and the putamen in the cocaine group. In the atomoxetine condition, linear model D with task 

modulation of the putamen gathered the most evidence in both control and cocaine groups.  

 

DCM Results 

Figure 6.3 summarizes the results of Bayesian model selection (BMS, Stephan et al 

2009) between thirty DCMs representing competing hypotheses regarding the causal 

interactions between prefrontal cortical regions and the subcortical response inhibition 

pathways (Figure 6.2B). The winning models in both groups in both conditions did not differ 

in terms of fixed connections between ROI pairs (DCM.a). However, only on placebo and not 

on atomoxetine, the winning model in both groups included nonlinear modulation of the 

hyperdirect pathway (ACC to STN) by the IFG (DCM.d). Further, stopping modulated the 

IFG in the control group in the placebo condition, but the location of stopping modulation 

changed to the putamen when healthy participants were given atomoxetine. In cocaine 

dependent individuals, stopping modulated the putamen activity regardless of drug condition.  

Despite various methodological differences (age, task and contrasts, bilateral ROI 

definition, addition of putamen) stopping network architecture observed in controls on 

placebo was remarkably similar to previous investigations of the stopping network using 

DCM (Rae et al, 2015). Exactly the same connections between the IFG, ACC, M1 and STN 

were present in the winning model, while the added putamen ROI was found to provide 

inputs to the STN in parallel to the hyperdirect pathway.  

Having clarified the presence or absence of connections and modulatory effects, we 

investigated the connectivity strength within the winning model identified by BMS. 

Estimating connectivity strength of fixed connections (DCM.a) allows us to assess whether a 

region is providing excitatory or inhibitory inputs to another region, while nonlinear 
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modulations inform us about increase or reduction in connectivity between two regions by a 

third modulatory ROI. 

The average connection strengths in the most likely model in the control group on 

placebo are summarized in Figure 6.4A. The analysis revealed striking similarities to the 

network architecture previously identified in humans and animals. In particular, the 

hyperdirect pathway (dACC to STN) as well as the nonlinear modulatory influence of the 

IFG on the hyperdirect pathway were excitatory. This finding is consistent with a role for the 

IFG in increasing the excitatory connectivity in the hyperdirect pathway when participants 

successfully stop a motor response and allowing ACC to activate the STN more strongly. The 

STN exerts inhibitory control over motor cortex (Redgrave et al 2010) and can thus relay the 

stopping command it received from the ACC to successfully inhibit the initiated response in 

the motor cortex.  

The dACC provides excitatory inputs to the M1, likely facilitating motor action 

initiation on Go trials, as Go RT performance was related to the dACC-M1 connectivity. 

Finally, cortical projections to the putamen were excitatory, consistent with models of the 

direct and indirect pathway (Schroll and Hamker, 2013). The putamen itself provided 

inhibitory inputs to the STN. It is possible that due to fMRI resolution, the putamen mask 

included some of the Globus pallidus external, which is thought to have inhibitory projections 

to the STN.  

Although the same fixed network connections (DCM.a) were present in both cocaine 

and control groups, differences in average strength of these connections were explored using 

a mixed effect ANCOVA with age and plasma atomoxetine concentration as covariates and 

subject-level random effects (nlme). We found a significant interaction between group 

(cocaine versus control) and drug (atomoxetine versus placebo) on the connectivity between 
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IFG and dACC (β=0.24, SE=0.12, t44=2.0, p=0.049), and between dACC and M1 (β=0.18, 

SE=0.09, t44=2.1, p=0.042). Finally, a trend interaction in the autoinhibitory connection at the 

dACC was also found (β=0.11, SE=0.06, t44=1.73, p=0.09, Supplementary Figure 6.5A). 

Post-hoc tests with FDR correction revealed that the connectivity between IFG and dACC 

was significantly lower in cocaine-dependent participants than in control participants on 

placebo (p=0.016) and decreased in controls (p=0.006) but not in cocaine users when they 

were given atomoxetine. Although no FDR-corrected differences in connectivity between 

dACC and M1 were found, uncorrected LSD tests revealed trend differences in this metric, 

with higher connectivity in the cocaine group than in the control group when they received 

atomoxetine (p=0.043). No significant differences in dACC-M1 connectivity were detected 

in the placebo condition (p>0.05).  

 

Figure 6.4. Average parameter estimates for the control and cocaine groups in placebo and 

atomoxetine conditions. In bold are highlighted the connections that were significantly 

different from 0 (1 sample t-tests, FDR-adjusted for multiple comparisons). In grey are the 

average connectivity strengths that did not survive multiple comparison correction. 

Autoinhibitory and autoexcitatory connections for IFG, PUT, STN and M1 are not shown. 
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Task modulation locations are highlighted in red. None of the task modulation parameters 

were significantly different from 0 due to high inter-individual variability.  

 

𝚫𝐒𝐒𝐑𝐓 and 𝚫𝐆𝐨 𝐑𝐓 results 

Although group mean stopping performance did not improve with atomoxetine (compared 

with placebo), several factors predicted the change in stopping ability induced by 

atomoxetine, underscoring the importance of inter-individual variability in baseline 

impulsivity and in network connectivity. 

 

Figure 6.5. Improved stopping efficiency (stop signal reaction time, SSRT) on atomoxetine is 

predicted by changes in the rIFG/rOFC activation (A). T-statistic maps thresholded with 

threshold-free cluster enhancement (tfce) corrected p<0.05 are shown. In the control group, 

SSRT improvements on atomoxetine were also predicted by changes in the ACC-STN 
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connectivity (B). In both groups combined, IFG modulation of the ACC-STN connectivity 

also predicted the improvements in stopping efficiency (delta SSRT) (C). Relationships 

between other significant predictors such as the placebo SSRT and plasma atomoxetine levels 

and delta SSRT are shown in Supplementary Figure S6.2.  

 

Firstly, stopping efficiency improvement, measured as shorter SSRT on atomoxetine 

than on placebo, were correlated with increased activation of the rIFG across all participants 

in a voxelwise GLM analysis (Figure 6.5A). However, when the analysis was repeated for 

each group separately, the relationship between ΔSSRT and ΔrIFG activation was only 

significant in the control group suggesting that it was driving the correlation. In addition, 

DCM metrics also predicted improvement in ΔSSRT (SSRT-atomoxetine versus SSRT-

placebo) when included in mixed effect GLMs (aov package). 

The full model explained a significant amount of variance in ΔSSRT in all participants (r2= 

0.55, F4,41=12.5, p<0.001). 

 

ΔSSRT = 𝛽1 × 𝑆𝑆𝑅𝑇𝑝𝑙𝑎𝑐𝑒𝑏𝑜 +  𝛽2 × [𝑝𝑙𝑎𝑠𝑚𝑎 𝐴𝑡𝑥] + 𝛽3 × [Δ 𝑟𝐼𝐹𝐺 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛]

+  𝛽4 × [𝐼𝐹𝐺 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝐶𝐶 − 𝑆𝑇𝑁]  

 

Firstly, greater activation of right IFG predicted shorter SSRTs (Figure 6.4B; beta=-

253.1, t42=2.1, p=0.046). Further, stronger IFG modulation of the hyperdirect pathway 

(dACC-STN) in placebo condition was associated with improvement in stopping efficiency 

measured by shorter SSRTs (beta=-0.06, t42=2.2, p=0.034, Figure 6.5C). Other factors 

impacting stopping improvement following atomoxetine included baseline stopping ability, 
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with poor stoppers benefitting from atomoxetine (beta=-0.36, t42=3.8, p<0.001) and plasma 

levels of atomoxetine, with higher levels of the drug predicting lower SSRT (beta=-0.06 

t42=2.9 p=0.005).  

In the control group, the full model of ΔSSRT was significant (r2= 0.67, F4,23=11.8, p<0.001). 

ΔSSRT = 𝛽1 × 𝑆𝑆𝑅𝑇𝑝𝑙𝑎𝑐𝑒𝑏𝑜 + 𝛽2 × [𝑝𝑙𝑎𝑠𝑚𝑎 𝐴𝑡𝑥] +  𝛽3 × [Δ 𝑟𝐼𝐹𝐺 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛]

+ 𝛽4 × [Δ𝑑𝐴𝐶𝐶 − 𝑆𝑇𝑁]  

Two primary correlates of improvement on atomoxetine were identified in healthy controls: 

the ACC-STN hyperdirect pathway connectivity changes (beta=-43.6, t25=2.1, p=0.047, 

Figure 6.5B) and right IFG activation changes (beta=-0.1, t25=4.60 p<0.001). Neither baseline 

SSRT (beta=-0.15, t25=1.7, p=0.098) nor the plasma atomoxetine levels (beta=-0.03, t25=1.7, 

p=0.096) made a significant contribution to explaining the SSRT changes induced by 

atomoxetine. 

Although no significant explanatory factors of the ΔSSRT were found apart from the baseline 

SSRT (beta=-0.70, t25=3.6, p=0.003), improvement on the stop signal task in cocaine users 

can also be operationalised using ΔGo RT (Go RT-Atomoxetine vs Go RT-Placebo). Cocaine 

users showed significantly shorter Go RT on atomoxetine than on placebo, which was further 

explained by the following significant model (r2= 0.83, F4,12=14.7, p<0.001): 

ΔGoRT = 𝛽1 × 𝐺𝑜𝑅𝑇𝑝𝑙𝑎𝑐𝑒𝑏𝑜 + 𝛽2 × [Δ𝑑𝐴𝐶𝐶 − 𝑃𝑈𝑇] + 𝛽3 × [Δ𝑑𝐴𝐶𝐶 − 𝑀1]

+ 𝛽4 × [mean FA, d𝐴𝐶𝐶 − 𝑃𝑈𝑇] 

Participants showing slower GoRT at baseline (beta=-0.8, t25=5.6, p<0.001) and those with 

lower white matter connectivity in the ACC-PUT tract (mean FA, beta=-1610.2, t12=2.9, 

p=0.013) experienced greatest speeding of the GoRT. Increases in dACC-PUT pathway 

connectivity (beta=-167.6 t12=3.9 p= 0.002) also predicted faster GoRTs in SDIs. Effective 
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connectivity change in the ACC-M1 pathway was also included as a predictor since it showed 

a trend correlation with the Go RT improvement (r=-0.46, p=0.054, supplementary Figure 

6.3) but it did not significantly contribute to the model (beta=-33.0 t12=1.2 p=0.246). 

Interestingly, baseline GoRT in the cocaine group on placebo was highly correlated with the 

mean FA intensity in the dACC-PUT tract (F1,15=9.6, p=0.008), with longer GoRT seen in 

cocaine users with low FA intensity in the dACC-PUT tract (Figure 6.6B).  

 

Figure 6.6. Improvements in response execution (Go RT) on atomoxetine in the cocaine 

group were associated with baseline dACC-PUT (D) and dACC-M1 (E) connectivity 

changes. ACC-putamen tract (A) connectivity (mean FA in tract) was significantly correlated 

with baseline Go RT (B) and with problematic cocaine use (OCDUS, C).  
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Effective connectivity and structural connectivity comparison 

Correlations between structural connectivity (mean FA in tract) and effective 

connectivity (DCM.a) measures in control and cocaine groups are summarised in Tables 6.3 

and 6.4, respectively. In the healthy control group on placebo, we found good agreement 

between structural and functional connectivity in the dACC-STN pathway. This relationship 

was not present in the cocaine group. Effective connectivity also provided a sensitive and 

specific prediction measure for condition (atomoxetine vs placebo), with classification 

accuracy of 70% in a leave-one-out cross validation sample. For more details on the methods 

and results please see supplementary information.   

 

DISCUSSION 

This study used a well-established stop signal task to model effective connectivity changes 

underlying changes in response inhibition induced by the selective noradrenaline reuptake 

inhibitor atomoxetine in healthy and cocaine-dependent individuals. No significant group 

differences were found in stopping efficiency, in the efficiency of response execution or in 

the brain activations or in the group DCM networks. Although no uniform improvements in 

stopping were observed across groups, atomoxetine facilitated response execution. Several 

factors were identified that explain beneficial effects of atomoxetine on stopping and 

response execution in keeping with previous literature. In both control and cocaine-dependent 

participants, stronger rIFG modulation of the hyperdirect pathway on placebo, increased rIFG 

activation, greater levels of plasma atomoxetine and poor baseline stopping performance 

accurately predicted increased benefits of atomoxetine on stopping efficiency. However, 

many of these effects, including the rIFG activation and plasma atomoxetine levels were 

driven by the control participants. Consistent with previous evidence, enhanced hyperdirect 
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pathway connectivity also predicted atomoxetine-induced stopping benefits in control 

participants. On the other hand, the cocaine group showed marked improvements in response 

execution, predicted by enhanced connectivity between the dACC and putamen and between 

the dACC and M1. Striking consistency in networks identified here with stopping networks 

previously found using dynamic causal models and white matter connectivity (Rae et al, 

2015; Ye et al, 2015) as well as task-based fMRI (Chamberlain et al, 2009) lends further 

credibility to the novel neuropharmacological findings. 

Replicating and extending stopping networks by including putamen: effective 

connectivity mechanisms underlying the effects of atomoxetine on stopping efficiency 

The results reported here replicate and extend the existing literature on stopping 

impulsivity in two novel ways. Firstly, increased rIFG activation was associated with more 

efficient stopping, consistent with previous neuropharmacological effects of atomoxetine in 

adults (Chamberlain et al, 2009), PD patients (Ye et al, 2015) and children with ADHD 

(Nagashima et al, 2014). Increased task-related rIFG activation in stopping conditions likely 

enhanced top-down prefrontal cortical control and allowed for cancellation of the initiated 

response via the subcortical loop modulated by the IFG. Importantly, we extend these 

findings by elucidating the contributions of the hyperdirect pathway modulation by the IFG 

in atomoxetine benefits.  

Secondly, despite some methodological differences such as bilateral instead of 

unilateral ROI placement, and the inclusion of putamen as an ROI, we identify the same 

stopping network in the healthy control group as the network reported in (Rae et al, 2015), 

with notable agreement of structural and effective connectivity in the hyperdirect pathway 

and even agreement in the directionality of connections between regions of interest. More 

specifically, the cortical projections from dACC to M1, putamen and STN were excitatory, 
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while the projection from the subthalamic nucleus to M1 was inhibitory. Positive modulation 

of the hyperdirect pathway by the IFG, which in turn is modulated by stopping task demands, 

allows for top-down control over response cancellation. The only area of disagreement 

between our network and that identified by Rae et al 2015 is in the connectivity between 

dACC and IFG, which appears to be excitatory rather than inhibitory. This could be due to 

the fact that in some participants, the putamen ROI spheres also encompassed portions of the 

globus pallidus external due to the size of the ROI. This may be important as the globus 

pallidus provides inhibitory inputs to the STN (Joel and Weiner, 1997).  

Spared stopping efficiency in cocaine-dependent individuals 

Since the effective connectivity networks of the cocaine and control groups in the 

placebo and atomoxetine conditions included the same fixed connections, we were able to 

examine interactive effects of the presence of cocaine use disorder and atomoxetine on fixed 

connection strength. We extend previous effective connectivity findings by adding the 

putamen to the model, which allowed us to capture network connectivity underlying response 

execution that we observed was impaired in cocaine-dependent individuals.  

Contrary to substantial evidence of response inhibition impairments in cocaine use 

disorder (Morein-Zamir et al, 2013; Zilverstand et al, 2018), our cocaine group did not show 

significantly longer SSRTs compared to the control group. This may be due to the sample 

size limiting power to reveal group differences, but could also reflect genuine lack of 

differences and preserved stopping function. We propose another explanation: the two groups 

differed in several demographic characteristics including age, fluid intelligence and 

depression as well as impulsivity. Interestingly, a significantly younger control group 

(Morein-Zamir et al, 2013) performing the same version of the stop signal task showed 

significantly shorter SSRTs than both our control and cocaine group, hence it is unclear 
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whether the lack of group differences may be due to the stopping efficiency of the control 

group. Although the modest sample size of the cocaine group after participant exclusions 

could have provided a potential explanation, reanalysis including all cocaine-dependent 

participants revealed no significant differences in stopping efficiency. 

Nevertheless, lack of significant differences in stopping efficiency together with 

strong overlap in task-based brain activations and dynamic causal models underlying these 

activations between the cocaine and control group suggests that neural function underlying 

response inhibition is spared in cocaine-dependent individuals. Potential differences could be 

masked by compensatory mechanisms and by the lack of power to detect more nuanced 

differences. Strong relationships between stopping improvements and plasma atomoxetine 

and rIFG activation in both groups combined suggests that atomoxetine can produce 

beneficial effects in those with poor response inhibition if baseline cortico-subcortical 

stopping network connectivity is strong and if atomoxetine administration can help enhance 

rIFG activation in response to stopping demands.   

Lack of overall group effects on stopping efficiency may be consistent with an 

inverted-U function of NA in stopping (Aston-Jones and Cohen, 2005; Clark and Noudoost, 

2014; Gamo et al, 2010; Xing et al, 2016). While in some participants atomoxetine could 

help elevate low baseline NA levels, in other participants enhanced NA signalling may be 

detrimental to SST performance. Lack of stopping improvements in active users more 

specifically is consistent with lack of stopping improvements on atomoxetine in abstinent 

users (DeVito et al, 2017). Although only modest effects of atomoxetine on mood and 

cognitive performance were found in abstinent cocaine users (DeVito et al, 2017), active 

users may benefit more from atomoxetine as it may counteract some of the effects of recent 

cocaine exposure.  
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Atomoxetine remediates impaired response execution in cocaine users 

Indeed, we found that atomoxetine reliably speeded up the Go RT in cocaine users. 

Longer Go RTs have been previously reported in cocaine-dependent individuals (Bolla et al, 

2014; Hanlon et al, 2010) and alcohol-dependent individuals (Lawrence et al, 2009), and 

animal studies of chronic cocaine treatment (Hienz et al, 1994). Go RTs or the speed of 

response execution can be seen as a proxy for thinking latencies or the speed of the Go 

process and is thought to be associated with attentional vigilance (Langner and Eickhoff, 

2013) and executive function or psychomotor speed (Bolla et al, 2014). Motor action is 

thought to be initiated by signalling in the direct/indirect pathways, whereby cortical regions 

excite the striatum, which in turn disinhibits the motor cortex output (Leisman et al, 2013). 

The network architecture we identify using the stop signal task is in agreement with the 

response execution mechanism proposed by animal literature cortical areas providing 

excitatory inputs to the putamen (Alexander and Crutcher, 1990; DeLong, 1990; Shin et al, 

2018).  

In addition, we show that enhanced frontostriatal connectivity between the dACC and 

putamen is a correlate of the Go RT benefits induced by atomoxetine in the cocaine group. 

Longer Go RTs on placebo were predicted by weaker white matter integrity of the dACC-

putamen tract, which itself was associated with cocaine use severity (OCDUS). Frontostriatal 

connectivity has been previously shown to be critical to stopping efficiency performance 

impairments in PD patients and is thought to underlie atomoxetine benefits (Ye et al, 2016). 

Decreased resting state functional connectivity between the striatum and cingulate cortex and 

other cortical regions has been previously found in cocaine-dependent individuals (Hu et al, 

2015) and impaired prefrontal cortical control over the striatal circuits is thought to form a 

key impairment in cocaine addiction (Volkow et al, 2016; Volkow and Morales, 2015). We 

further extend existing theories of frontostriatal dysfunction in cocaine use by elucidating the 
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associations between response execution processes and structural and effective connectivity 

between the dACC and putamen.  

Limitations and conclusions 

Several limitations in this study should be acknowledged. Firstly, the cocaine group 

did not show stopping impulsivity impairments relative to the healthy control group. While 

this may be due to the poor performance of the control group, it is also likely that stopping 

efficiency was spared in this particular group of cocaine users despite this group showing 

high levels of self-reported impulsivity (BIS-11) and lower IQ scores. Interestingly, cocaine 

users did not show problematic alcohol (AUDIT) or cannabis (CUDIT) use, with average 

scores of under the cut-off limits of eight points. Secondly, this study provides limited 

insights into the neurochemistry of atomoxetine action on the brain. While both NA and DA 

pathways may be affected by atomoxetine, previous studies have argued that atomoxetine’s 

action is specific to NA systems (Rae et al, 2016; Ye et al, 2015), animal studies of 

atomoxetine’s action have also suggested that atomoxetine can affect DA transmission 

(Bymaster et al, 2002). Secondly, spatial resolution of fMRI methods limits the spatial 

precision to which smaller regions of interest such as putamen and the STN can be resolved.  

In conclusion, this study replicates and extends existing literature on noradrenergic 

mechanisms of stopping in healthy and cocaine-dependent groups in two important ways. 

Firstly, we replicate previous dynamic causal model studies of stopping impulsivity and show 

that prefrontal modulation of the subcortical hyperdirect pathway is critical to atomoxetine-

induced improvements in stopping efficiency. Secondly, cocaine-dependent individuals in 

this study showed response execution impairments which were associated with poor 

structural connectivity in the corticostriatal pathway. These impairments were remediated in 

cocaine-dependent individuals by enhancing connectivity in this corticostriatal pathway, 
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suggesting that atomoxetine may be a useful pharmacological agent for cocaine-dependent 

individuals. Finally, this study underscores the presence of inter-individual variability in 

stopping impulsivity in both healthy and cocaine-dependent individuals and highlights the 

promise of personalised treatments in psychiatric conditions.  

 

  Control Cocaine Group Effects 

Male:Female 27:1 18:0 ns 

Age (Years) 44.7 (7.4) 38.8 (6.5) p=0.008 

Education (Years) 12.8 (2.8) 11.7 (2.2) ns 

Fluid Intelligence (NART) 115.3 (6.7) 104.4 (8.8) p<0.001 

Impulsivity (BIS-11 Total) 58.4 (6.8) 74.3 (7.9) p<0.001 

Depression (BDI-II Total) 3.0 (4.4) 16.9 (8.6) p<0.001 

Alcohol use (AUDIT) 3.9 (2.1) 5.6 (6.5) ns 

Cannabis use (CUDIT) 0.1 (0.2) 8.4 (5.4) p<0.001 

Compulsive drug use 

(OCDUS) - 24.4 (8.6) - 

Years of cocaine and crack  - 16.0 (5.6) - 

Years of THC - 23.2 (9.5) - 

Plasma atomoxetine ng/ml 293.5 (191.8) 478.4 (159.4) p<0.001 

        

Table 6.1. Neuropsychological assessment of the sample. 

 

 

  

Control 

Plc Control Atx 

Cocaine 

Plc Cocaine Atx 

Group 

Effect Atx Effect 

SSRT (msec) 218 (46) 222 (43) 224 (47) 211 (39) ns  ns 

Go RT 

(msec) 414 (57) 403 (55) 449 (63) 420 (52) ns  p<0.05 

Table 6.2. Stop signal task performance summary. Plc – placebo, Atx - atomoxetine 
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Structural 

Connectivity (FA) 

Effective 

Connectivity DCM.a 

  

ACC-

STN 

ACC-

lPUT 

ACC-

STN 

ACC-

lPUT 

FA 

ACC-

STN   0.57* -0.47* 0.07 

 

ACC-

lPUT    -0.25 -0.18 

DCM.a 

ACC-

STN     -0.16 

  

ACC-

lPUT         

*p<0.05     
n=28 controls; bilateral STN mask 

Table 6.3. Structural and effective connectivity correlations in control group (Pearson’s R). 

 

 

    

Structural 

Connectivity (FA) 

Effective 

Connectivity DCM.a 

  

ACC-

STN 

ACC-

lPUT 

ACC-

STN 

ACC-

lPUT 

FA ACC-STN   0.11 0.21 0.46 

 ACC-lPUT    0.12 0 

DCM.a ACC-STN     0.42 

  ACC-lPUT         

p<0.05 in bold     

n=18 cocaine users; bilateral STN mask   
Table 6.4. Structural and effective connectivity correlations in cocaine group (Pearson’s R). The 

correlations between effective and structural connectivity in the ACC-STN pathway were 

significantly different between groups (Rcontrol=-0.47, Rcocaine=0.21, z=2.15, p=0.03). 
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Chapter 7 

General discussion 

SUMMARY 

This thesis spans a broad range of rodent-to-human translational investigations into the neural 

substrates of behavioural inhibitory control mechanisms and their relevance for stimulant use 

disorder (SUD). Behavioural inhibition, or “the overriding of a planned or already initiated 

action”, refers to the imperative of cognitive control and encompasses distinct neural and 

psychological processes (Bari and Robbins, 2013). Here, behavioural inhibition was 

operationalized using three distinct behavioural measures (1) perseveration during a sudden 

change in the stimulus-reward contingency on a spatial reversal learning task; (2) premature 

responding in anticipation of an impending reward-associated target stimulus; (3) stopping 

performance upon receipt of a stop stimulus to suppress pre-potent ‘go’ responses. The 

overarching objective of this thesis was to illuminate the neural, psychological and 

computational processes underlying response inhibition and to use this knowledge at different 

levels of analysis ranging from investigations of synaptic neurotransmission to macroscale 

brain network function and computational models to inform the aetiology and behavioural 

manifestation of SUD. The key methods and findings of this research are summarised in 

Figure 7.1. 

 

Hypothesis testing and integration with existing literature 

We hypothesised that response inhibition measured in a reversal learning task would be 

facilitated by enhancing monoaminergic neurotransmission using MAO-A inhibition. Indeed, 

the data obtained in rodents confirmed this hypothesis, emphasizing the role of 

monoaminergic signalling in response inhibition. Next, we probed the macroscale 

connectivity as a neural correlate of response inhibition in a reversal learning task. As 

expected, OFC connectivity was important for more flexible behaviour. We then examined 
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whether exposure to cocaine alters reversal performance. We found that rodents that showed 

more pronounced cocaine escalation also exhibited impaired response inhibition. We then 

extended the investigations of the effects of stimulant drugs on response inhibition and brain 

connectivity to human studies of stimulant use disorder. In the last two chapters we 

investigated whether cocaine addiction results in impaired response inhibition in a waiting 

and stopping impulsivity task. We found increased impulsivity and thus impaired response 

inhibition in individuals with stimulant use disorder in a waiting impulsivity task. Stimulant 

users further showed aberrant task-based brain activation, consistent with the hypothesis that 

corticostriatal connectivity would be deregulated. While we expected healthy siblings of drug 

users would also show impaired response inhibition, this was not the case, due possibly to 

compensatory mechanisms that prevented siblings of cocaine dependent individuals from 

developing problematic substance use. Therefore, this finding is not sufficient to disprove the 

preclinical theories that increased impulsivity is an endophenotype for drug addiction (Belin 

et al, 2008a). Finally, we expected atomoxetine to improve stopping efficiency and hence 

improve response inhibition in cocaine users but failed to find either impairments in stopping 

efficiency in cocaine users or enhanced stopping ability in cocaine users administered 

atomoxetine. Instead, we identified strong dimensional associations between atomoxetine 

effects on brain activity and connectivity and behavioural improvements in stopping and 

response execution in both drug users and healthy individuals that were consistent with 

previous work (Chamberlain et al, 2009). The lack of group effects may be due to either 

smaller sample size or the selection of the control group whose performance differed from a 

previously reported younger healthy cohort performing the same stopping impulsivity task. 

Overall, several hypotheses about impaired response inhibition and underlying neural and 

psychological underpinnings in healthy subjects and in cocaine addiction have been 

confirmed, while in some cases, null hypotheses could not be rejected.  
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Integrating insights into neurocircuits underlying response inhibition in reversal 

learning, stopping and waiting 

Behavioural inhibition relies on intact functioning of cortico-basal ganglia circuits (Figure 

7.2), with distinct circuits subserving different aspects of inhibitory control (Dalley and 

Robbins, 2017). In particular, the vlPFC-pre-SMA-putamen circuit is critical for exerting 

inhibitory control over action cancellation (Rae et al, 2015), and reduced activation in this 

network is associated with drug use (Morein-Zamir et al, 2013; Whelan et al, 2012). Further, 

value and reward processing rely on vmPFC-ventral striatum functional connectivity (Cao et 

al, 2019; Haber and Behrens, 2014; Oldham et al, 2018), and aberrant modulation of these 

circuits by dopamine D2 receptors associates with SUD (Ashok et al, 2017). OFC-striatal 

interactions are important in value learning and updating in the face of changing 

environmental contingencies (Gremel and Costa, 2013; Stalnaker et al, 2015). OFC-striatal 

circuits have also been proposed as targets for therapeutic intervention and a greater 

understanding of SUD pathophysiology (Fettes et al, 2017; Moorman, 2018).  

 



191 
 

 

Figure 7.1. Overview of the conceptual and empirical content of the results chapters in this 

thesis (2-6). In Chapter 2 reversal learning and complementary neurochemical assays were 

used to demonstrate that enhancing monoaminergic signalling by inhibiting monoamine 

oxidase A improves reversal learning performance in rats. In Chapter 3, using resting-state 

fMRI, exploratory evidence was presented to show that orbitofrontal network connectivity 

underlies reversal learning performance in rats. In Chapter 4, it was shown that cocaine 

impairs reversal learning by altering the balance in learning from positive and negative 

feedback. Subsequent chapters provided empirical evidence that cocaine affects behavioural 

inhibition in both the Monetary Incentive Delay (MID) task (Chapter 5) and the stop-signal 

reaction time task (SST) (Chapter 6). Failures in response inhibition in the MID task were 

elicited by the presence of motivationally-salient cues and was subserved by cingulo-

opercular and striatal networks. Using the SST and the independent race model in Chapter 6, 

we report that ‘stopping impulsivity’ was impaired in humans with cocaine use disorder. 

Finally, we show that atomoxetine, a selective noradrenaline reuptake inhibitor, improved 

SST performance by improving functional connectivity in corticostriatal circuits.   
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This thesis extends our understanding of the neural substrates and mechanisms 

underlying each aspect of inhibitory control summarised above. Firstly, using reversal 

learning in rats, we provide evidence for the involvement of cortical monoaminergic 

neurotransmission via the MAO-A enzyme in inhibitory control underlying behavioural 

flexibility (Chapter 2). While MAO-A inhibition resulted in elevated monoamine levels in 

the OFC and facilitated reversal performance, OFC resting-state functional connectivity was 

associated with improved reversal learning in rats (Chapter 3). We extend these findings to a 

rodent model of cocaine reinforcement by showing that cocaine escalation results in impaired 

reversal learning performance as inferred using a reinforced learning model (Chapter 4).  

In parallel to rodent models of SUD in which animals self-administer cocaine, we add 

to the understanding of inhibitory control mechanisms in stimulant-dependent individuals 

using two psychological paradigms of impulse control: stopping in the SST (Chapter 5) and 

premature or “too early” responses in the MID task (Chapter 6). Consistent with existing 

evidence, we implicate a cingulo-opercular-striatal network as a neural correlate of impulse 

control failure in both tasks. Notably, rIFG activation and connectivity were critical to the 

ability of participants to exert top-down inhibitory control over impulsive actions elicited by 

the experimental manipulations. Moreover, rIFG activation was enhanced by the selective 

noradrenaline inhibitor atomoxetine, implicating a complementary contribution of 

monoaminergic signalling in inhibitory that aligns with the earlier MAO-A findings in a 

reversal learning paradigm.  
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Figure 7.2. Cortico-basal ganglia neural circuits underlying behavioural inhibition and the 

clinical implications of circuit dysfunction for disorders of impulsivity and compulsivity. 

Novel insights into cortico-basal ganglia function in health and SUD from this thesis are 

highlighted using chapter numbers (2, 3, 4, 5, 6). Figure adapted from (Heilbronner et al, 

2016; Voon and Dalley, 2016) (rat striatum topography), and a PFC slice adopted from 

(Paxinos and Watson, 2013) and (Bizon et al, 2012). Neurochemistry overview adapted from 

(Dalley and Roiser, 2012); for clinical implications see (Fineberg et al, 2014).  

 

 

 

CONCEPTUAL SYNTHESIS 

Operationalising response inhibition: reversal learning vs stopping impulsivity vs 

waiting impulsivity 



194 
 

The three measures of response inhibition assessed in this thesis engage distinct but 

overlapping cognitive processes. For instance, both SST and MID tasks rely on speeded 

motor responses and place high attentional demands on the participants due to very quick 

timing of stimuli and target presentation. By contrast, reversal tasks do not require speeded 

responses, but instead introduce a parallel challenge of value learning and updating of an 

individual’s expectation on causal relationships in the environment (contingencies), which 

can be distinct from inhibiting previously rewarded responses. Assessing neural correlates 

using generalised linear models in task-based fMRI attempts to separate these different 

cognitive processes by contrasting trial types (e.g. premature vs on target trials or stop vs go 

trials). The subtraction of one trial type from the other is assumed to measure only the 

cognitive process relevant to response inhibition, e.g. the “premature” or “stopping” 

component of a response.  

However, although a particular  brain region such as the dACC may be activated both 

during premature responding and stopping impulsivity, the functional contributions of this 

region may be different and reliant on the recruitment of non-overlapping neural networks in 

a context-dependent manner (Stalnaker et al, 2015). In addition, due to the relatively coarse 

temporal resolution of fMRI (TR=2s), in comparison with events underlying synaptic 

transmission, and the delayed neurometabolic coupling between changes in neuronal firing 

and blood oxygenation, it is often difficult to resolve whether local brain activations occurred 

before or after the event of interest. Because the events themselves can be shorter than 1s in 

duration, the evidence provided by fMRI is correlative. Thus, dACC could be involved in 

providing inhibitory inputs via the hyperdirect pathway (dACC to STN) to stop an initiated 

action (Rae et al, 2015), consistent with other published evidence (Swick and Turken, 2002). 

However, this region has also been implicated in post-error conflict detection and monitoring 
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(Carter and Veen, 2007) and therefore could be a correlate of stopping and waiting 

impulsivity.  

In addition, even though the reversal learning and impulsivity tasks assess aspects of 

response inhibition, these are likely mediated by dissociable processes (Bari and Robbins, 

2013). Waiting and stopping impulsivity networks are associated with error-related brain 

activity more generally (Neta et al, 2015), suggesting that the cingulo-opercular networks 

may indeed be responsible for convergent impulse control processes. Reversal learning 

networks, on the other hand, appear to be centred on the OFC (Izquierdo et al, 2016), 

supported by our resting-state fMRI findings. The function of the OFC itself is less clear, as it 

has been proposed to range from signalling and updating value to representing complex 

cognitive maps of task states (Schoenbaum et al, 2011; Stalnaker et al, 2009b, 2015; Wilson 

et al, 2009). Nevertheless, differences in patterns of functional connectivity underling 

reversal learning and effective connectivity underlying impulsivity reported in this thesis may 

also be due to the resting state and task-based methodologies employed.  

 

Methodological considerations: preclinical MRI and DCM 

The experiments reported in this thesis involved a number of methodological approaches to 

identity the neural substrates underlying behavioural inhibitory control. Non-invasive MRI is 

widely used in humans and experimental animals. Preclinical fMRI in experimental animals 

is an important translational imaging technique that enables the neural assessment of 

behavioural (and inferred) cognitive correlates associated with brain disorders. Conducting 

longitudinal studies in humans can be costly and causal interventions may often not be 

feasible. Experimental approaches in non-human animals is facilitated by powerful, within-

subject longitudinal designs to assess changes in brain function and integrity over the lifespan 

of an animal. A crucial first step to this translational imaging technique is to identify the 
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functional correlates of the cognitive process under investigation, which has been the main 

goal of this thesis. In addition, once the suggested improvements in fMRI data acquisition are 

adopted, as outlined in Chapter 3, it will would be important to replicate and extend the trend 

associations reported between resting state networks and reversal flexibility.  

Several challenges arise when attempting to translate resting state findings from 

humans to experimental animals. Even across different rat strains, differences in resting state 

networks exist (Huang et al, 2016). Further, anaesthetic effects can dramatically alter resting 

state networks (Chuang and Nasrallah, 2017; Gozzi and Schwarz, 2016), with low levels of 

isoflurane causing networks to deviate substantially from awake rat imaging (Paasonen et al, 

2018). Notably, awake animals show far greater stress-related modulation than humans due to 

the need to be restrained during scanning (King et al, 2005). Thus, although our rs-fMRI 

analysis resembles the findings of other studies using a general anaesthetic (Hsu et al, 2016; 

Lu et al, 2012), it will be important to optimise the imaging protocol for awake, but 

nevertheless restrained animals, thereby achieving a greater correspondence with resting-state 

network analysis in humans.     

As acknowledged in Chapter 1, an additional methodological challenge with the 

analysis of fMRI data lies in the selection of the analytic approach for functional 

connectivity. In particular, connectivity analyses can be subdivided into effective 

connectivity and non-directional connectivity approaches such as those employed in resting 

state analyses. Effective connectivity estimated in dynamic causal models attempts to 

quantify how brain activity in one region may influence the rate of change in activity in 

another region (Stephan et al, 2010). In Chapters 5 and 6 we used dynamic causal models to 

investigate “top-down” and “bottom up” directional connectivity between prefrontal cortical 

areas and striatal areas in stimulant use disorder. An imbalance in cortical control over striatal 

regions lies at the core of many brain theories of SUD (Volkow et al, 2016; Zilverstand et al, 
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2018). Therefore, we expected downregulation of top-down PFC-to-striatum connectivity and 

tested it using the main toolbox available for such analyses (DCM in SPM12).  

However, DCM results must be interpreted with caution since they attempt to infer 

causal relationships between brain activities in different regions based on data with poor 

temporally-resolved fMRI data. Such causal inference is better supported with other methods 

with greater temporal resolution such as MEG and EEG. Further, DCM is limited by the 

selection of a narrow set of regions of interest based on a) activation patterns in the GLM and 

b) previous evidence. This may be less problematic in this thesis given that a very specific set 

of regions (dACC, IFG, striatum) are known to be crucial in the tasks in Chapters 5 and 6. 

Nevertheless, effective connectivity estimates may change if other potentially important 

regions are added to the DCM analyses. In the resting state fMRI analysis reported in Chapter 

4, on the other hand, no definite hypotheses with regard to directional connectivity could be 

formed and therefore a more encompassing approach, i.e. undirected network connectivity 

and follow-up graph theoretical analysis (Bullmore and Sporns, 2009) was chosen. 

 

Considerations of translation between experimental animals and humans 

A major challenge to investigating different aspects of response inhibition is how to relate 

these reliably in different species. The use of analogous paradigms such as the two-choice 

reversal learning task in humans and rats is intuitively appealing, especially when combined 

with computational models of the underlying cognitive process. With the Bayesian and 

reinforced learner toolboxes developed in this thesis (https://github.com/peterzhukovsky), we 

were able to show that a specific style of learning develops in rats that previously escalated 

cocaine intake. Based on these original findings, it will next be important to re-analyse 

existing reversal learning datasets collected from individuals diagnosed with SUD, 

https://github.com/peterzhukovsky
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specifically to evaluate the similarities in performance of Bayesian and reinforced learning 

models in humans and experimental animals.  

The use of convergent imaging techniques such as fMRI, diffusion and structural MRI 

is critically important in identifying homologies in structural and functional brain 

organisation. Nevertheless, humans and rats differ profoundly in the complexity of their 

cortical and subcortical network cytoarchitecture, with the prefrontal cortex being more 

highly developed in humans (Donahue et al, 2018; Geschwind and Rakic, 2013). For 

instance, task-based fMRI of reversal learning implicates the ACC in human reversal learning 

(Ghahremani et al, 2010; Votinov et al, 2015; Waegeman et al, 2014; Xue et al, 2013), 

whereas only equivocal evidence exists for an involvement of the ACC in rodent reversal 

learning (Dias and Aggleton, 2000; Ragozzino and Rozman, 2007; Schweimer and Hauber, 

2005), possibly due to somewhat different demands of the human and rodent reversal 

versions and different cognitive strategies that are presumably recruited by each species. The 

results reported here are thus consistent with the idea that simple, two-choice deterministic 

reversal tasks (as opposed to more complex rule shifting or ID/ED reversal tasks) may not tap 

fully into attentional and error monitoring processes assumed to be engaged by reversal 

learning procedures in humans (Robbins and Arnsten, 2009). Recalibrating tasks to achieve 

activation in homologous brain regions could provide a potential solution to the evident 

translational gap described above.   

Nevertheless, the search for neural and psychological mechanisms of SUD and 

antecedent behavioural traits has been extraordinarily successful in recent years, an enterprise 

that has benefited most by ‘translational hubs’ of preclinical and clinical neuroscientists 

working in collaboration to implement consistent behavioural and MRI protocols. In addition, 

while experimental approaches in animals provide a rich understanding of the neural 
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mechanisms of behavioural control, they can be further linked to studies in humans using 

appropriate computational models, as demonstrated in this thesis.  

 

Impaired response inhibition: cause or consequence of stimulant use disorder? 

The findings reported in Chapter 4 and Chapter 5 help to inform the longstanding debate 

whether deficits in inhibitory response control in SUD are a cause or a consequence of prior 

drug exposure. While there is general agreement in the literature that response inhibition can 

both be a cause and consequence of SUD (Belin et al, 2008b; Fernández-Serrano et al, 2012; 

Grant and Chamberlain, 2014; Jentsch et al, 2014; Kozak et al, 2018; Winstanley et al, 2009, 

2012; De Wit, 2009), we did not find predictive relationships between reversal performance 

and subsequent cocaine escalation (Chapter 4). These findings tentatively suggest that while 

impulsivity is an endophenotype for drug addiction (Belin et al, 2008b; Ersche et al, 2010; 

Robbins et al, 2012), inflexible behaviour in reversal learning as a proxy for compulsivity 

does not confer vulnerability for drug addiction. However, to confirm this conclusion, it 

would be necessary to repeat the experiment with a larger sample size to increase statistical 

power, specifically to detect a genuine but weak relationship between natural inter-individual 

variability in reversal learning and subsequent maladaptive drug-related behaviours. Indeed, 

the statistical contrasts reported in Chapter 4 had a statistical power of 0.65 to detect 

moderate linear associations between reversal performance and cocaine escalation (r2=0.2) 

and 0.94 to detect strong associations (r2=0.36). Further, an additional validation of impaired 

reversal learning as an endophenotype for drug addiction would require an assessment of 

compulsive drug seeking, measured operationally as the persistence of drug seeking in the 

face of adverse consequences (Belin et al., 2016). This experiment, which is currently in 

progress, would reveal whether conceptually-related forms of compulsivity (i.e. perseveration 
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despite non-reinforcement on a reversal learning task vs persistence of drug seeking in the 

face of concurrent punishment) depend on distinct rather than overlapping processes. 

In addition to investigating impaired reversal learning performance in rats as a 

potential endophenotype for SUD, Chapter 5 focused on an additional component of 

response inhibition, namely waiting impulsivity, which has received widespread support as 

an endophenotype for SUD (Dalley and Ersche, 2019). However, we did not find evidence 

for impaired waiting impulsivity in siblings of stimulant-dependent participants, who were 

themselves at risk for substance abuse. Similarly, previous studies of stopping impulsivity did 

not find impaired stop-signal reaction time performance in siblings of stimulant-dependent 

participants (Morein-Zamir et al, 2013). However, studies employing different 

methodologies, notably longitudinal follow-up designs and self-reported trait impulsivity 

rather than motoric impulsivity tasks or delayed discounting, report significant associations 

between adolescent trait impulsivity and subsequent alcohol use (Hamilton et al, 2019) and 

stimulant use (Ersche et al, 2010). Moreover, self-reported measures of impulsivity assessed 

using the Barratt Impulsiveness scale do not always correlate with laboratory measures of 

impulsivity (Sánchez-Kuhn et al, 2017), creating a further challenge for cross-species 

translation.   

A more sensitive test of human SUD vulnerability would require longitudinal follow-

up designs such as the ABCD study (https://abcdstudy.org/), which hold the promise of 

identifying SUD risk by combining biomarkers from functional and structural brain imaging, 

personality traits and cognitive task performance as well as genetic information. Given 

sufficiently large datasets encompassing different modes of assessment, it may be possible to 

identify neurocognitive profiles at risk for future drug initiation and loss of control over the 

use of illicit substances. Animal models complement the search for addiction-related 

endophenotypes in two ways: first, they provide an alternative to longitudinal human trials as 

https://abcdstudy.org/
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they require substantially shorter timeframes to complete; second, they enable researchers to 

investigate causal mechanisms through the use of invasive (intracerebral) interventions. 

However, a critical limitation of animal models is the uncertainty surrounding ecological 

validity of the models used and the formidable challenge of translating insights from 

experimental approaches in rodents to real-world SUD in humans. Resolving these 

limitations requires continued efforts to understand the psychological mechanisms 

underpinning the persistence of drug use and why in affected individuals mounting harms 

associated with drug-taking activities are apparently disregarded. In this regard, the original 

findings reported in Chapter 4, demonstrate that cocaine exposure in a subset if high-

escalating animals specifically affects the way in which negative feedback is exploited to 

guide behaviour (Zhukovsky et al. 2019) and this may be relevant to the evident disregard 

that people addicted to drugs have for harms associated with their drug taking activities.      

 

FUTURE RESEARCH DIRECTIONS  

This thesis focuses on smaller-scale experiments (n≈50 subjects per group), testing well-

informed hypotheses based on decades of research on response inhibition in rodents, primates 

and humans. However, given the availability of large-scale datasets that include medical 

records, future research is likely to be informed by data-driven investigations of brain 

structure and function as well as behavioural and cognitive information and their value for 

disease diagnosis, progression and treatment outcomes. Cortico-basal ganglia circuitry, as 

part of the whole-brain network function is a crucial substrate for cognitive control and 

response inhibition. However, future research will face the challenge of going beyond group-

level impairments and accounting for inter-individual heterogeneity in both cognitive profiles 

and corresponding drug-induced neural adaptations. In this regard, large-scale datasets such 

as the UK Biobank (https://www.ukbiobank.ac.uk/) will be of paramount importance in 

https://www.ukbiobank.ac.uk/
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establishing links between structural and functional brain integrity alongside daily activity, 

lifestyle choices and clinical diagnostic outcomes.  

Novel statistical approaches arising from machine learning and supervised image 

recognition algorithms (Iandola et al, 2017; Krizhevsky et al, 2012) could be especially  

informative in identifying predictive relationships that rely on more complex patterns not 

presently detected by conventional univariate approaches or kernelized classification 

algorithms such as support vector machines. Instead, using convolutional filters and a multi-

layer “deep” architecture with dropout regularisation and deep learning models it is now 

conceivable that improved classification and prediction of SUD is realistically achievable 

within the next decade. Unsupervised clustering algorithms can supplement such insights 

from supervised learning (Ye et al, 2016) by assessing whether non-labelled data analysis 

overlap with those identified with labelled approaches.  

Large-scale datasets could also be instrumental in informing smaller-scale laboratory 

studies in SUD, including pharmacological therapies (Kampman, 2009; Orson et al, 2008; 

Vocci et al, 2005) and direct brain stimulation (Barr et al, 2011; Bolloni et al, 2018; Coles et 

al, 2018; Terraneo et al, 2016). Specifically, by combining these interventions with insights 

into brain integrity and function from population-level datasets such as Adolescent Cognitive 

Brain Development (ABCD) and All of Us (https://allofus.nih.gov/) it may be possible to 

target treatments to those who are most likely to respond to them (Volkow and Boyle, 2018).  

 

CONCLUSIONS 

The findings reported in this thesis collectively show that distinct aspects of response 

inhibition, notably reversal learning, waiting and stopping impulsivity, rely on distinct, yet 

overlapping cortico-basal ganglia neural circuits that each depend on modulatory influences 

from the monoamine neurotransmitter systems. By combining analogous experimental 

https://allofus.nih.gov/
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approaches in rodents and humans the findings presented in this thesis demonstrate that it is 

possible to translate shared neural and psychological substrates to inform the aetiology of 

SUD. This amalgamation of findings was further enhanced using the principles of 

computational biology to model the empirical datasets obtained in the two species. Although 

the findings did not reveal an obvious predictive relationship between innate variation in 

behavioural flexibility and aspects of cocaine reinforcement, we were able demonstrate that 

cocaine itself is sufficient to cause rigid behavioural output that is relatively insensitive to 

negative feedback. These findings add to a growing body of evidence for response inhibition 

impairments in SUD by revealing several novel mechanisms that underpin inhibitory control 

failures: firstly, that cocaine disrupts the ability to exploit learnt values of actions; secondly, 

that recruitment of striatal-cingulo-opercular networks results in  greater failures of waiting 

impulse control in response to drug incentive cues in stimulant-dependent individuals; 

thirdly,  that response execution impairments in a stopping impulsivity paradigm are related 

to frontostriatal structural connectivity and can be ameliorated by selective NA reuptake 

inhibition. Future research should aspire to continually improve the congruence of 

experimental paradigms and assessment methods in rodents and humans, thereby enabling a 

deeper understanding of the neural and psychological mechanisms of impaired behavioural 

inhibition in SUD. Ideally, this research enterprise should embrace the explanatory power of 

large-scale data analyses to inform the personalised treatment of SUD and related impulse 

control disorders.   
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APPENDIX 1: Supplementary Information for Chapter 3 

Results 

In order to assess the impact of the noise peaks shown in Figure 3.3, we bandpass-filtered the 

timeseries using the bpfilt function in MATLAB, which removed the unknown peak in the 

high frequency range (Supplementary Figure S3.1). We then repeated the statistical group 

comparisons for 1) Cohort 1 vs Cohort 2 and 2) high vs low reversal animals. Importantly, 

the pattern of significant differences (at the uncorrected level) was very similar for both 

preprocessing methods (panels A and B for highpass filtering and panels C and D for 

bandpass filtering, Supplementary Figure S3.2 and Supplementary Figure S3.3). This 

reanalysis highlights the reliability of the results obtained in Chapter 3, as they appear to be 

relatively unaffected by changes in pre-processing methods that remove some of the temporal 

data artefacts.  
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Supplementary Figure S3.1. Power spectra of the timeseries (15 regions in individual colours, 

average in black) in Cohort 1 (A, C) and Cohort 2 (B, D) with highpass vs bandpass filtering. 

Filtering out frequencies higher than 0.1Hz removes the peak in the higher frequency bands. 
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Supplementary Figure S3.2: Familywise-error (FWE) corrected p-values for regions with 

significant differences between the cohort 1 and cohort 2, which differed in acquisition 

parameters. Panels A and B include the p-values for t-tests comparing Cohort 1 vs Cohort 2 

and Cohort 2 vs Cohort 1 animals pre-processed using only the highpass filter (filtering out 

frequencies lower than 0.01 Hz or 100s), whereas panels C and D were obtained using 

bandpass filtering (0.01 – 0.1 Hz). P-values in the 15x15 region matrices shown above were 

generated using FSLNets, nets_glm and thresholded at puncorrected<0.05.  
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Supplementary Figure S3.3: Uncorrected p-values for regions with significant differences 

between the high and low reversal learning groups. Panels A and B include the p-values for t-

tests comparing high vs low and low vs high reversal animals pre-processed using only the 

highpass filter (filtering out frequencies lower than 0.01 Hz or 100s), whereas panels C and D 

were obtained using bandpass filtering (0.01 – 0.1 Hz). P-values in the 15x15 region matrices 

shown above were generated using FSLNets, nets_glm and thresholded at puncorrected<0.05.  
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APPENDIX 2: Supplementary Information for Chapter 5 

Methods 

Timeseries extraction. Following the mass univariate GLM analysis, we investigated BOLD 

timeseries from several regions of interest for a) their ability to predict trial type and b) the 

causal role they play as part of a Dynamic Causal Model network.  

To maximize power and sensitivity in the BOLD timeseries, we used individual 

subjects’ peaks within significant group mean activation in the premature>correct contrast. 

The ROIs were located within significant group mean activations and anatomically 

constrained to facilitate the interpretation of the results. In practice, the mean group 

activations were masked with anatomical ROIs from the Harvard Oxford atlas: frontal 

operculum (ventral IFC), dorsal striatum (dStriatum), anterior cingulate (ACC) and parietal 

operculum (IPL). Subject-specific peak was not constrained to either side when group effects 

were bilateral (e.g. in the IFC for HC and SIB in money incentive context or SDI in drug 

incentive context).  

In order to validate the relatively sparse GLM design, we selected several ROIs 

(including the ACC, IFC and dorsal striatum) that were associated with the 

premature>correct contrast. Next, we extracted and pre-processed the timeseries from those 

ROIs and extracted the activations for correct and premature responses (areas underneath the 

ROI timeseries highlighted in red and blue). These activations were then used to predict the 

response type in a logistic regression with subject-level random effects (see main Methods 

for additional details). This validation analysis revealed a strong discriminative effect of the 

BOLD activation in the selected ROIs on response type (Figure 5.2D). 

The validation analysis also included the parietal operculum when appropriate (for 

SDI and HC in the money incentive context and SDI in drug incentive context). DCMs used a 
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subset of ROIs from this analysis, which were shown to be predictive of trial type, lending 

further credibility to the neurobiological data constraining the dynamic causal models.  

Driving inputs for the DCM. The driving inputs for the DCM assume that all trials 

activate the PFC areas including the ACC and IFC. This assumption is justified by other 

studies employing DCM to investigate stopping impulsivity (Rae et al, 2015, 2016), based on 

the expectation that impulse control requires top-down inhibition provided by the IFC and the 

ACC. Furthermore, data-driven experiments show this assumption to be justified in context 

of response inhibition in the Go/No-Go task (Ma et al, 2015), as DCM discovery studies 

show that ACC, vlPFC, dlPFC and hippocampus are reliable driving inputs for all Go/No-Go 

trials, whereas caudate has only been a reliable input for easy Go/No-Go trials. Analyses 

results from all reported random effects DCMs (RFX) in the main text were verified and 

confirmed using fixed effects analyses (FFX).  

 

Results  

Inspection of the unaffected sibling group (SIB) revealed several points. Firstly, the 

SIB winning DCM family was also fully interactive in terms of fixed connections (Family 

exceedance probability≈1). However, the location of task modulation varied substantially 

across participants (Figure S5.3). Models placing the modulation location at the ACC, IFC, or 

the connections between IFC and dStriatum or between the ACC and dStriatum all received 

some evidence. Bayesian Model Averaging revealed strong effective connectivity between 

the ROIs in the SIB group, but no significant task modulation inputs were identified due to 

interindividual variability. Since SIB also showed worse fit of the DCMs to data compared to 

the other groups, we focused on the more robust DCMs in HC and SDI.  

Additionally, we noted that on average SIBS showed lower self-reported money valuations 

(Table 5.1). Taken together, attributing lower incentive salience to monetary rewards within 
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the context of this study compared to the other two groups could have been critical in a) 

eliciting attenuated network activations and b) inter-individual variability in DCM task 

modulation in the SIB group.  

 

 

 

 

 

Supplementary Table 5.1. Whole brain group comparisons for the Premature > Correct 

response contrast in the drug incentive context. 

SDI>HC group comparison       

Region (Brodmann Area) Size Xmm Ymm Zmm Z PFWE-cor 

Primary Motor Cortex (BA6) - 

Left 

9343 -52 2 46 4.23 6.96E-30 

Primary Motor Cortex (BA6) - 

Right 

1288 62 -10 38 4.13 4.77E-07 

Temporal Pole (BA38) - Right 787 40 20 -32 4.44 0.000103 

Angular gyrus (BA39) - Right 761 46 -50 22 4.06 0.000139 

Amygdala - Left 715 -20 -8 -12 3.85 0.000241 

PCC (BA23) - Right 591 10 -54 8 3.31 0.00113 

PCC (BA31) - Left 573 -14 -44 36 3.65 0.00142 

Occipital cortex (BA19) - Right 362 30 -82 -12 3.97 0.0266 

OFC/vmPFC (BA11) - Left 353 -10 34 -14 3.25 0.0305 

OFC (BA47) - Right 353 32 38 -12 4.02 0.0305 

OFC (BA47) - Left 333 -32 20 -22 3.94 0.0412 

Thalamus (BA50) - Right 338 20 -28 8 3.6 0.0382 

       

Striatum* 171     0.0365 

WM between Cau and Put  -22 2 18 3.31 0.0365 

Left Cau  -12 10 16 3.23 0.0365 

Left Cau  -14 8 20 3.15 0.0365 

Left anterior Cau  -14 18 12 3.12 0.0365 

WM between Put and Insula  -32 -4 12 2.8 0.0365 

Left putamen  -22 2 8 2.49 0.0365 
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SDI>SIB group comparison       

Region (Brodmann Area) Size Xmm Ymm Zmm Z PFWE-cor 

Primary Motor Cortex (BA6) - 

Left 

23758 -52 4 46 5.1 <0.0001 

Occipital (BA19) - Left  -34 -82 16 4.66 <0.0001 

Occipital (BA18) – Left  -32 -92 10 4.29 <0.0001 

Superior temporal gyrus (BA22) 

– Left 

 -50 -6 -14 4.33 <0.0001 

Thalamus (BA50) - Left  -10 -20 12 4.31 <0.0001 

Supramarginal gyrus (BA40) - 

Right 

1046 56 -44 46 4.09 5.78E-06 

IFC (pars opercularis) (BA44) - 

Right 

646 52 14 32 3.8 0.000562 

Primary Motor Cortex (BA6) - 

Right 

570 46 -14 40 3.72 0.00148 

Temporal lobe (BA21) - Right 558 62 -26 -12 3.48 0.00173 

       

Striatum* 350     0.00176 

WM between Put and Thal  -24 -26 6 3.94 0.00176 

Left Putamen  -18 -6 6 3.5 0.00176 

WM between Put and Insula  -36 -2 2 3.41 0.00176 

Left dorsal caudate  -20 -4 24 3.01 0.00176 

Left dorsal putamen  -24 -4 14 2.86 0.00176 

WM between Put and Insula  -32 -24 10 2.79 0.00176 

*Striatum clusters were extracted from a 2nd level analysis with a whole striatum mask as 

shown in Figure 5.3 rather than the whole brain mask; WM, white matter; PCC, posterior 

cingulate cortex; OFC, orbitofrontal cortex; Cau, Caudate; Put, Putamen; Thal, thalamus; 

FWE, family wise error. 
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Supplementary Table 5.2. Results from the hierarchical logistic regression analyses with ROI 

activation as predictors of premature or correct trials. 

Healthy Controls (money context) summary 

 Estimate SE Z-value Pr(>|z|)  
Intercept -2.294 0.164 -14.0 2E-16 *** 

IFG 0.005 0.005 0.9 0.352  
ACC 0.018 0.005 3.3 0.001 *** 

CAU 0.009 0.004 2.2 0.030 * 

PO 0.007 0.005 1.4 0.149  

   BIC 1379.5  

      
Healthy Controls (drug context) summary 

 Estimate SE Z-value Pr(>|z|)  
Intercept -2.294 0.164 -14.0 2E-16  
ACC 0.014 0.003 4.4 1E-05 *** 

   BIC 1320.6 *** 

      
Unaffected Siblings (money context) summary 

 Estimate SE Z-value Pr(>|z|)  
Intercept -2.169 0.125 -17.3 2E-16 *** 

IFG 0.010 0.003 3.1 0.002 ** 

ACC 0.014 0.003 4.0 7E-05 *** 

CAU 0.001 0.003 0.3 0.77111  

   BIC 1418.8  

      
SDIs (money context) 

summary    

 Estimate SE Z-value Pr(>|z|)  
Intercept -1.916 0.135 -14.2 2E-16 *** 

IFG 0.029 0.005 6.1 1E-09 *** 

ACC -0.015 0.005 -2.9 0.004 ** 

PO Left 0.003 0.005 0.6 0.574  
PO Right 0.013 0.005 2.5 0.011 * 

   BIC 1503.1  

      
Stimulant Dependent Individuals (drug context) summary 

 Estimate SE Z-value Pr(>|z|)  
Intercept -1.830 0.111 -16.4 2E-16 *** 

IFG 0.008 0.004 1.9 0.064  
ACC 0.000 0.005 -0.04 0.971  
CAU 0.014 0.005 3.0 0.003 ** 

PO 0.008 0.005 1.8 0.077  

   BIC 1553.4  
IFG, inferior frontal gyrus; ACC, anterior cingulate cortex; Cau, caudate; PO, parietal operculum; SE, 

standard error; BIC, Bayesian Information Criterion. 
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Supplementary Figure S5.1. Example timeseries from a single participant used in the 

validation analysis of the fMRI GLM, with correct and premature trials modelled as events of 

interest.   
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Supplementary Figure S5.2. Two-way interactions between group and incentive (money 

versus drug) in the striatum ROI. Differential response to incentives for SDI versus HC are 

shown in red/orange and for SDI versus SIB in blue. A significant interaction between group 

(HC vs SDI, SIB vs SDI) and incentive was found in the left caudate and left putamen. Z=[0 -

2 4 8 10 14 16 18],  (Multiple comparison corrected using FSL randomise and thresholded at 

p<0.05 FWE).   
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Supplementary Figure S5.3. DCM results including the SIB group. (A) Similarly to the 

findings from the SDI and HC groups, the fully interactive model reliably characterises the 

network connectivity in the unaffected siblings (SIB). (B) In contrast to the SDI and HC, the 

SIB group showed substantial interindividual variability, mirrored by the lack of a 

consistently winning model within the winning model family. (C) This was accompanied by 

an absence of significant modulatory effects as the location of task modulation varied across 

individuals. (D) Depiction of all models included in the BMS and BMA analyses. The first 

row contains models 1-3 (left to right), while the second and third rows contain models 4-6 

and 7-9, respectively.   
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APPENDIX 3: Supplementary Information for Chapter 6 

Methods 

Condition classifiers. In order to assess whether distinct patterns of effective connectivity can 

be identified in the stopping networks on placebo and on atomoxetine, several classifiers 

were built. 46 participants were included in the analysis (n=28 controls and n=18 cocaine 

users as in the fMRI analyses) with two conditions (placebo and atomoxetine) for each 

participant, amounting to 92 datapoints. Cocaine and control groups were combined since 

there was substantial overlap between the groups in task-based fMRI analysis.  

As predictors, effective connectivity values from three pathways were chosen in 

which a significant or a trend interaction between group and condition were observed in the 

mixed effect GLMs: dACC to dACC autoinhibitory condition, dACC to M1 and IFG to 

dACC. Linear support vector machine (SVM), logistic regression, naïve Bayesian classifier, 

random forest classifier and an SVM with a Gaussian kernel were tested (MATLAB R2016b, 

glmfit, fitcsvm, fitcnb, TreeBagger functions). For SVMs and random forest classifiers, 

leave-one-out cross-validations were constructed using custom code. Classifier performance 

was assessed using accuracy measures (custom code, Supplementary Figure S6.4D) and 

using ROC curves measuring sensitivity and specificity (perfcurve, Supplementary Figure 

S6.4C).  

Results 

Gaussian SVM was the most reliable predictor with out-of sample leave-one-out cross 

validation (LOOCV) accuracy of 70% (Supplementary Figure S6.4B). In-sample accuracy 

was higher in random forest models (98%) than in Gaussian SVMs (77%) but dropped to 

almost chance level (54%) following leave-one-out cross validation. Therefore, Gaussian 

SVMs were selected as the best fitting model. 
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Discussion 

A distinct pattern of effective connectivity of the dACC, including autoexcitatory connections 

to the dACC, projections from dACC to M1 and from the IFG to dACC, was identified in the 

placebo and atomoxetine conditions. The ability to predict drug condition serves several 

purposes. Firstly, it mirrors the findings in univariate GLM analyses identifying significant 

differences in the control group on placebo and atomoxetine, suggesting that atomoxetine can 

change the overall pattern of stopping network organisation and further extends the role of 

the ACC in error monitoring and response inhibition. Secondly, the ability of DCM 

parameters to predict participants’ drug condition is promising for future longitudinal fMRI 

studies and the personalized psychiatry approach as changes in network connectivity patterns 

may also be able to predict psychiatric diagnosis subcategory or even treatment responses 

(Ye et al, 2016).  

 

Supplementary Figure S6.1. Significant activation maps for the [Successful Go>Successful 

Stop] contrast showcase the motor cortex activation – precentral/postcentral gyrus. Shown is 
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the conjunction between control and SDI group, cluster corrected with the cluster forming 

threshold of z>2.3 and p<0.05.  

 

Supplementary Figure S6.2. Summary of GLM models predicting changes in SSRT in both 

groups (A), and in the control group only (B) as well as Go RT changes in the cocaine group 

(C). Scatterplots plot each predictor vs outcome variable (columns 1-4) and predicted vs 

observed outcome values (column 5).  
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Supplementary Figure S6.3. Average parameter estimates for the control and cocaine groups 

in placebo and atomoxetine conditions. In bold are highlighted the connections that were 

significantly different from 0 (1 sample t-tests, uncorrected for multiple comparisons). 

Autoinhibitory and autoexcitatory connections for IFG, PUT, STN and M1 are not shown. 

Task modulation locations are highlighted in red. None of the task modulation parameters 

were significantly different from 0 due to high interindividual variability.  
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Supplementary Figure S6.4. Results of the mixed-effects linear models examining the 

interaction between group (cocaine, control) and condition (placebo, atomoxetine) (A) 

provided the motivation for including dACC-dACC, dACC-M1 and IFG-dACC connectivity 

strengths in the classification analyses. Compared with other models, Gaussian SVMs 

showed the best leave-one-out cross validation (LOOCV) performance (D) and showed a 

good sensitivity-specificity trade-off (C). A partitioning of the predictor space using SVMs is 

shown in (B). 




