8 research outputs found

    Accelerated Cardiovascular Magnetic Resonance Imaging Using Radial Acquisition with Compressed Sensing

    Get PDF
    Magnetic resonance imaging (MRI) is a medical imaging technique that can visualize internal organs for examination and diagnosis. It is non-invasive and ionizing radiation-free, and provides good contrast between different soft tissues. One of the drawbacks of MRI is its lengthy acquisition time. Significant research has been done in order to accelerate the MRI data acquisition and reduce the scan time. Compressed sensing (CS) has been recently proposed for accelerating MRI acquisition time. Compressed sensing recovers the desired image from undersampled MRI dataset by exploiting the sparsity of MR image in transform domain. In this thesis, we propose CS reconstruction methods in various cardiovascular MRI applications for accelerated imaging. We consider 3D whole-heart coronary MRI. Isotropic 3D radial trajectories allow undersampling of k-space in all three dimensions, enabling accelerated acquisition of volumetric data. Our CS based approach provides further acceleration by removing undersampling artifacts and improving image quality. However, the underlying heavy computational overhead of this method is also a limiting factor which depreciates the applicability of CS. A parallelized implementation of an iterative CS reconstruction for 3D radial acquisitions using a graphics processing unit is presented to reduce the reconstruction time. The efficacy of CS is also investigated in cardiac cine MRI. Cardiac function is usually assessed using segmented cine acquisition with multiple breath-holds (BHs). Subjects are given resting periods between adjacent BHs, where no data is acquired, resulting in low acquisition efficiency. We propose an accelerated radial acquisition for BH cine imaging which utilizes the resting period to acquire additional free-breathing (FB) data without increasing scan time. The difference image between BH and FB acquisitions is used as the sparsity regularization of the CS reconstruction. Compressed sensing can be used as a respiratory motion correction technique in FB whole-heart MRI. Respiratory motion causes aliasing artifacts and blurring on the resulting image. To obtain motion-free images, a respiratory navigator is often used to track the heart position, but the scan efficiency is reduced to 30-50% resulting in a prolonged scan. We propose a CS reconstruction to correct respiratory motion by using an undersampled dataset which only contains motion-free k-space lines whereas the motion-corrupted lines are excluded from the reconstruction.Engineering and Applied Science

    Efficient Model-Based Reconstruction for Dynamic MRI

    Full text link
    Dynamic magnetic resonance imaging (MRI) has important clinical and neuro- science applications (e.g., cardiac disease diagnosis, neurological behavior studies). It captures an object in motion by acquiring data across time, then reconstructing a sequence of images from them. This dissertation considers efficient dynamic MRI reconstruction using handcrafted models, to achieve fast imaging with high spatial and temporal resolution. Our modeling framework considers data acquisition process, image properties, and artifact correction. The reconstruction model expressed as a large-scale inverse problem requires optimization algorithms to solve, and we consider efficient implementations that make use of underlying problem structures. In the context of dynamic MRI reconstruction, we investigate efficient updates in two frameworks of algorithms for solving a nonsmooth composite convex optimization problem for the low-rank plus sparse (L+S) model. In the proximal gradient framework, current algorithms for the L+S model involve the classical iterative soft thresholding algorithm (ISTA); we consider two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA), and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient (CG) approach required by existing AL methods. Numerical results suggest faster convergence of our efficient implementations in both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters. In the context of magnetic field inhomogeneity correction, we present an efficient algorithm for a regularized field inhomogeneity estimation problem. Most existing minimization techniques are computationally or memory intensive for 3D datasets, and are designed for single-coil MRI. We consider 3D MRI with optional consideration of coil sensitivity and a generalized expression that addresses both multi-echo field map estimation and water-fat imaging. Our efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line search. Numerical experiments show the computational advantage of the proposed algorithm over state- of-the-art methods with similar memory requirements. In the context of task-based functional MRI (fMRI) reconstruction, we introduce a space-time model that represents an fMRI timeseries as a sum of task-correlated signal and non-task background. Our model consists of a spatiotemporal decomposition based on assumptions of the activation waveform shape, with spatial and temporal smoothness regularization on the magnitude and phase of the timeseries. Compared with two contemporary task fMRI decomposition models, our proposed model yields better timeseries and activation maps on simulated and human subject fMRI datasets with multiple tasks. The above examples are part of a larger framework for model-based dynamic MRI reconstruction. This dissertation concludes by presenting a general framework with flexibility on model assumptions and artifact compensation options (e.g., field inhomogeneity, head motion), and proposing future work ideas on both the framework and its connection to data acquisition.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168081/1/yilinlin_1.pd

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Microscopy Conference 2017 (MC 2017) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2017", die vom 21. bis 25.08.2017, in Lausanne stattfand

    Microscopy Conference 2017 (MC 2017) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2017", die vom 21. bis 25.08.2017, in Lausanne stattfand
    corecore