705 research outputs found

    An Efficient Online Prediction of Host Workloads Using Pruned GRU Neural Nets

    Full text link
    Host load prediction is essential for dynamic resource scaling and job scheduling in a cloud computing environment. In this context, workload prediction is challenging because of several issues. First, it must be accurate to enable precise scheduling decisions. Second, it must be fast to schedule at the right time. Third, a model must be able to account for new patterns of workloads so it can perform well on the latest and old patterns. Not being able to make an accurate and fast prediction or the inability to predict new usage patterns can result in severe outcomes such as service level agreement (SLA) misses. Our research trains a fast model with the ability of online adaptation based on the gated recurrent unit (GRU) to mitigate the mentioned issues. We use a multivariate approach using several features, such as memory usage, CPU usage, disk I/O usage, and disk space, to perform the predictions accurately. Moreover, we predict multiple steps ahead, which is essential for making scheduling decisions in advance. Furthermore, we use two pruning methods: L1 norm and random, to produce a sparse model for faster forecasts. Finally, online learning is used to create a model that can adapt over time to new workload patterns

    Adaptive microservice scaling for elastic applications

    Get PDF

    Uncertainty-Aware Workload Prediction in Cloud Computing

    Full text link
    Predicting future resource demand in Cloud Computing is essential for managing Cloud data centres and guaranteeing customers a minimum Quality of Service (QoS) level. Modelling the uncertainty of future demand improves the quality of the prediction and reduces the waste due to overallocation. In this paper, we propose univariate and bivariate Bayesian deep learning models to predict the distribution of future resource demand and its uncertainty. We design different training scenarios to train these models, where each procedure is a different combination of pretraining and fine-tuning steps on multiple datasets configurations. We also compare the bivariate model to its univariate counterpart training with one or more datasets to investigate how different components affect the accuracy of the prediction and impact the QoS. Finally, we investigate whether our models have transfer learning capabilities. Extensive experiments show that pretraining with multiple datasets boosts performances while fine-tuning does not. Our models generalise well on related but unseen time series, proving transfer learning capabilities. Runtime performance analysis shows that the models are deployable in real-world applications. For this study, we preprocessed twelve datasets from real-world traces in a consistent and detailed way and made them available to facilitate the research in this field

    COSCO: container orchestration using co-simulation and gradient based optimization for fog computing environments

    Get PDF
    Intelligent task placement and management of tasks in large-scale fog platforms is challenging due to the highly volatile nature of modern workload applications and sensitive user requirements of low energy consumption and response time. Container orchestration platforms have emerged to alleviate this problem with prior art either using heuristics to quickly reach scheduling decisions or AI driven methods like reinforcement learning and evolutionary approaches to adapt to dynamic scenarios. The former often fail to quickly adapt in highly dynamic environments, whereas the latter have run-times that are slow enough to negatively impact response time. Therefore, there is a need for scheduling policies that are both reactive to work efficiently in volatile environments and have low scheduling overheads. To achieve this, we propose a Gradient Based Optimization Strategy using Back-propagation of gradients with respect to Input (GOBI). Further, we leverage the accuracy of predictive digital-twin models and simulation capabilities by developing a Coupled Simulation and Container Orchestration Framework (COSCO). Using this, we create a hybrid simulation driven decision approach, GOBI*, to optimize Quality of Service (QoS) parameters. Co-simulation and the back-propagation approaches allow these methods to adapt quickly in volatile environments. Experiments conducted using real-world data on fog applications using the GOBI and GOBI* methods, show a significant improvement in terms of energy consumption, response time, Service Level Objective and scheduling time by up to 15, 40, 4, and 82 percent respectively when compared to the state-of-the-art algorithms

    Learning workload behaviour models from monitored time-series for resource estimation towards data center optimization

    Get PDF
    In recent years there has been an extraordinary growth of the demand of Cloud Computing resources executed in Data Centers. Modern Data Centers are complex systems that need management. As distributed computing systems grow, and workloads benefit from such computing environments, the management of such systems increases in complexity. The complexity of resource usage and power consumption on cloud-based applications makes the understanding of application behavior through expert examination difficult. The difficulty increases when applications are seen as "black boxes", where only external monitoring can be retrieved. Furthermore, given the different amount of scenarios and applications, automation is required. To deal with such complexity, Machine Learning methods become crucial to facilitate tasks that can be automatically learned from data. Firstly, this thesis proposes an unsupervised learning technique to learn high level representations from workload traces. Such technique provides a fast methodology to characterize workloads as sequences of abstract phases. The learned phase representation is validated on a variety of datasets and used in an auto-scaling task where we show that it can be applied in a production environment, achieving better performance than other state-of-the-art techniques. Secondly, this thesis proposes a neural architecture, based on Sequence-to-Sequence models, that provides the expected resource usage of applications sharing hardware resources. The proposed technique provides resource managers the ability to predict resource usage over time as well as the completion time of the running applications. The technique provides lower error predicting usage when compared with other popular Machine Learning methods. Thirdly, this thesis proposes a technique for auto-tuning Big Data workloads from the available tunable parameters. The proposed technique gathers information from the logs of an application generating a feature descriptor that captures relevant information from the application to be tuned. Using this information we demonstrate that performance models can generalize up to a 34% better when compared with other state-of-the-art solutions. Moreover, the search time to find a suitable solution can be drastically reduced, with up to a 12x speedup and almost equal quality results as modern solutions. These results prove that modern learning algorithms, with the right feature information, provide powerful techniques to manage resource allocation for applications running in cloud environments. This thesis demonstrates that learning algorithms allow relevant optimizations in Data Center environments, where applications are externally monitored and careful resource management is paramount to efficiently use computing resources. We propose to demonstrate this thesis in three areas that orbit around resource management in server environmentsEls Centres de Dades (Data Centers) moderns són sistemes complexos que necessiten ser gestionats. A mesura que creixen els sistemes de computació distribuïda i les aplicacions es beneficien d’aquestes infraestructures, també n’augmenta la seva complexitat. La complexitat que implica gestionar recursos de còmput i d’energia en sistemes de computació al núvol fa difícil entendre el comportament de les aplicacions que s'executen de manera manual. Aquesta dificultat s’incrementa quan les aplicacions s'observen com a "caixes negres", on només es poden monitoritzar algunes mètriques de les caixes de manera externa. A més, degut a la gran varietat d’escenaris i aplicacions, és necessari automatitzar la gestió d'aquests recursos. Per afrontar-ne el repte, l'aprenentatge automàtic juga un paper cabdal que facilita aquestes tasques, que poden ser apreses automàticament en base a dades prèvies del sistema que es monitoritza. Aquesta tesi demostra que els algorismes d'aprenentatge poden aportar optimitzacions molt rellevants en la gestió de Centres de Dades, on les aplicacions són monitoritzades externament i la gestió dels recursos és de vital importància per a fer un ús eficient de la capacitat de còmput d'aquests sistemes. En primer lloc, aquesta tesi proposa emprar aprenentatge no supervisat per tal d’aprendre representacions d'alt nivell a partir de traces d'aplicacions. Aquesta tècnica ens proporciona una metodologia ràpida per a caracteritzar aplicacions vistes com a seqüències de fases abstractes. La representació apresa de fases és validada en diferents “datasets” i s'aplica a la gestió de tasques d'”auto-scaling”, on es conclou que pot ser aplicable en un medi de producció, aconseguint un millor rendiment que altres mètodes de vanguardia. En segon lloc, aquesta tesi proposa l'ús de xarxes neuronals, basades en arquitectures “Sequence-to-Sequence”, que proporcionen una estimació dels recursos usats per aplicacions que comparteixen recursos de hardware. La tècnica proposada facilita als gestors de recursos l’habilitat de predir l'ús de recursos a través del temps, així com també una estimació del temps de còmput de les aplicacions. Tanmateix, redueix l’error en l’estimació de recursos en comparació amb d’altres tècniques populars d'aprenentatge automàtic. Per acabar, aquesta tesi introdueix una tècnica per a fer “auto-tuning” dels “hyper-paràmetres” d'aplicacions de Big Data. Consisteix així en obtenir informació dels “logs” de les aplicacions, generant un vector de característiques que captura informació rellevant de les aplicacions que s'han de “tunejar”. Emprant doncs aquesta informació es valida que els ”Regresors” entrenats en la predicció del rendiment de les aplicacions són capaços de generalitzar fins a un 34% millor que d’altres “Regresors” de vanguàrdia. A més, el temps de cerca per a trobar una bona solució es pot reduir dràsticament, aconseguint un increment de millora de fins a 12 vegades més dels resultats de qualitat en contraposició a alternatives modernes. Aquests resultats posen de manifest que els algorismes moderns d'aprenentatge automàtic esdevenen tècniques molt potents per tal de gestionar l'assignació de recursos en aplicacions que s'executen al núvol.Arquitectura de computador

    Towards Power- and Energy-Efficient Datacenters

    Full text link
    As the Internet evolves, cloud computing is now a dominant form of computation in modern lives. Warehouse-scale computers (WSCs), or datacenters, comprising the foundation of this cloud-centric web have been able to deliver satisfactory performance to both the Internet companies and the customers. With the increased focus and popularity of the cloud, however, datacenter loads rise and grow rapidly, and Internet companies are in need of boosted computing capacity to serve such demand. Unfortunately, power and energy are often the major limiting factors prohibiting datacenter growth: it is often the case that no more servers can be added to datacenters without surpassing the capacity of the existing power infrastructure. This dissertation aims to investigate the issues of power and energy usage in a modern datacenter environment. We identify the source of power and energy inefficiency at three levels in a modern datacenter environment and provides insights and solutions to address each of these problems, aiming to prepare datacenters for critical future growth. We start at the datacenter-level and find that the peak provisioning and improper service placement in multi-level power delivery infrastructures fragment the power budget inside production datacenters, degrading the compute capacity the existing infrastructure can support. We find that the heterogeneity among datacenter workloads is key to address this issue and design systematic methods to reduce the fragmentation and improve the utilization of the power budget. This dissertation then narrow the focus to examine the energy usage of individual servers running cloud workloads. Especially, we examine the power management mechanisms employed in these servers and find that the coarse time granularity of these mechanisms is one critical factor that leads to excessive energy consumption. We propose an intelligent and low overhead solution on top of the emerging finer granularity voltage/frequency boosting circuit to effectively pinpoints and boosts queries that are likely to increase the tail distribution and can reap more benefit from the voltage/frequency boost, improving energy efficiency without sacrificing the quality of services. The final focus of this dissertation takes a further step to investigate how using a fundamentally more efficient computing substrate, field programmable gate arrays (FPGAs), benefit datacenter power and energy efficiency. Different from other types of hardware accelerations, FPGAs can be reconfigured on-the-fly to provide fine-grain control over hardware resource allocation and presents a unique set of challenges for optimal workload scheduling and resource allocation. We aim to design a set coordinated algorithms to manage these two key factors simultaneously and fully explore the benefit of deploying FPGAs in the highly varying cloud environment.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144043/1/hsuch_1.pd
    corecore