621 research outputs found

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Workload-Aware Performance Tuning for Autonomous DBMSs

    Get PDF
    Optimal configuration is vital for a DataBase Management System (DBMS) to achieve high performance. There is no one-size-fits-all configuration that works for different workloads since each workload has varying patterns with different resource requirements. There is a relationship between configuration, workload, and system performance. If a configuration cannot adapt to the dynamic changes of a workload, there could be a significant degradation in the overall performance of DBMS unless a sophisticated administrator is continuously re-configuring the DBMS. In this tutorial, we focus on autonomous workload-aware performance tuning, which is expected to automatically and continuously tune the configuration as the workload changes. We survey three research directions, including 1) workload classification, 2) workload forecasting, and 3) workload-based tuning. While the first two topics address the issue of obtaining accurate workload information, the third one tackles the problem of how to properly use the workload information to optimize performance. We also identify research challenges and open problems, and give real-world examples about leveraging workload information for database tuning in commercial products (e.g., Amazon Redshift). We will demonstrate workload-aware performance tuning in Amazon Redshift in the presentation.Peer reviewe

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load

    Cloud Based IoT Architecture

    Get PDF
    The Internet of Things (IoT) and cloud computing have grown in popularity over the past decade as the internet becomes faster and more ubiquitous. Cloud platforms are well suited to handle IoT systems as they are accessible and resilient, and they provide a scalable solution to store and analyze large amounts of IoT data. IoT applications are complex software systems and software developers need to have a thorough understanding of the capabilities, limitations, architecture, and design patterns of cloud platforms and cloud-based IoT tools to build an efficient, maintainable, and customizable IoT application. As the IoT landscape is constantly changing, research into cloud-based IoT platforms is either lacking or out of date. The goal of this thesis is to describe the basic components and requirements for a cloud-based IoT platform, to provide useful insights and experiences in implementing a cloud-based IoT solution using Microsoft Azure, and to discuss some of the shortcomings when combining IoT with a cloud platform

    Bao: Learning to Steer Query Optimizers

    Full text link
    Query optimization remains one of the most challenging problems in data management systems. Recent efforts to apply machine learning techniques to query optimization challenges have been promising, but have shown few practical gains due to substantive training overhead, inability to adapt to changes, and poor tail performance. Motivated by these difficulties and drawing upon a long history of research in multi-armed bandits, we introduce Bao (the BAndit Optimizer). Bao takes advantage of the wisdom built into existing query optimizers by providing per-query optimization hints. Bao combines modern tree convolutional neural networks with Thompson sampling, a decades-old and well-studied reinforcement learning algorithm. As a result, Bao automatically learns from its mistakes and adapts to changes in query workloads, data, and schema. Experimentally, we demonstrate that Bao can quickly (an order of magnitude faster than previous approaches) learn strategies that improve end-to-end query execution performance, including tail latency. In cloud environments, we show that Bao can offer both reduced costs and better performance compared with a sophisticated commercial system
    • …
    corecore