186 research outputs found

    Public Safety Applications over WiMAX Ad-Hoc Networks

    Get PDF

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Evolution of 5G Network: A Precursor towards the Realtime Implementation of VANET for Safety Applications in Nigeria

    Get PDF
      A crucial requirement for the successful real-time design and deployment of Vehicular Adhoc Networks (VANET) is to ensure high speed data rates, low latency, information security, and a wide coverage area without sacrificing the required Quality of Service (QoS) in VANET. These requirements must be met for flawless communication on the VANET. This study examines the generational patterns in mobile wireless communication and looks into the possibilities of adopting fifth generation (5G) network technology for real-time communication of road abnormalities in VANET. The current paper addresses the second phase of a project that is now underway to develop real-time road anomaly detection, characterization, and communication systems for VANET. The major goal is to reduce the amount of traffic accidents on Nigerian roadways. It will also serve as a platform for the real-time deployment and testing of various road anomaly detection algorithms, as well as schemes for communicating such detected anomalies in the VANET.   &nbsp

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security

    Get PDF
    Named data networking (NDN) presents a huge opportunity to tackle some of the unsolved issues of IP-based vehicular ad hoc networks (VANET). The core characteristics of NDN such as the name-based routing, in-network caching, and built-in data security provide better management of VANET proprieties (e.g., the high mobility, link intermittency, and dynamic topology). This study aims at providing a clear view of the state-of-the-art on the developments in place, in order to leverage the characteristics of NDN in VANET. We resort to a systematic literature review (SLR) to perform a reproducible study, gathering the proposed solutions and summarizing the main open challenges on implementing NDN-based VANET. There exist several related studies, but they are more focused on other topics such as forwarding. This work specifically restricts the focus on VANET improvements by NDN-based routing (not forwarding), caching, and security. The surveyed solution herein presented is performed between 2010 and 2021. The results show that proposals on the selected topics for NDN-based VANET are recent (mainly from 2016 to 2021). Among them, caching is the most investigated topic. Finally, the main findings and the possible roadmaps for further development are highlighted

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks
    corecore