828 research outputs found

    Resource allocation and management techniques for network slicing in WiFi networks

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Network slicing has recently been proposed as one of the main enablers for 5G networks; it is bound to cope with the increasing and heterogeneous performance requirements of these systems. To "slice" a network is to partition a shared physical network into several self-contained logical pieces (slices) that can be tailored to offer different functional or performance requirements. Moreover, a defining characteristic of the slicing paradigm is to provide resource isolation as well as efficient use of resources. In this context, the thesis described in this paper contributes to the problem of slicing WiFi networks by proposing a solution to the problem of enforcing and controlling slices in WiFi Access Points. The focus of the research is on a variant of network slicing called QoS Slicing, in which slices have specific performance requirements. In this document, we describe the two main contributions of our research, a resource allocation mechanism to assign resources to slices, and a solution to enforce and control slices with performance requirements in WiFi Access Points.This work has been supported by the European Commission and the Spanish Government (Fondo Europeo de Desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects.Peer ReviewedPostprint (author's final draft

    Slicing with guaranteed quality of service in wifi networks

    Get PDF
    Network slicing has recently been proposed as one of the main enablers for 5G networks. The slicing concept consists of the partition of a physical network into several self-contained logical networks (slices) that can be tailored to offer different functional or performance requirements. In the context of 5G networks, we argue that existing ubiquitous WiFi technology can be exploited to cope with new requirements. Therefore, in this paper, we propose a novel mechanism to implement network slicing in WiFi Access Points. We formulate the resource allocation problem to the different slices as a stochastic optimization problem, where each slice can have bit rate, delay, and capacity requirements. We devise a solution to the problem above using the Lyapunov drift optimization theory, and we develop a novel queuing and scheduling algorithm. We have used MATLAB and Simulink to build a prototype of the proposed solution, whose performance has been evaluated in a typical slicing scenario.This work has been supported in part by the European Commission and the Spanish Government (Fondo Europeo de Desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects, respectivel

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Slicing in WiFi networks through airtime-based resource allocation

    Get PDF
    Network slicing is one of the key enabling technologies for 5G networks. It allows infrastructure owners to assign resources to service providers (tenants), which will afterwards use them to satisfy their end-user demands. This paradigm, which changes the way networks have been traditionally managed, was initially proposed in the wired realm (core networks). More recently, the scientific community has paid attention to the integration of network slicing in wireless cellular technologies (LTE). However, there are not many works addressing the challenges that appear when trying to exploit slicing techniques over WiFi networks, in spite of their growing relevance. In this paper we propose a novel method of proportionally distributing resources in WiFi networks, by means of the airtime. We develop an analytical model, which shed light on how such resources could be split. The validity of the proposed model is assessed by means of simulation-based evaluation over the ns-3 framework.This work has been supported in part by the European Commission and the Spanish Government (Fondo Europeo de desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects, respectively

    Resource slicing in virtual wireless networks: a survey

    Get PDF
    New architectural and design approaches for radio access networks have appeared with the introduction of network virtualization in the wireless domain. One of these approaches splits the wireless network infrastructure into isolated virtual slices under their own management, requirements, and characteristics. Despite the advances in wireless virtualization, there are still many open issues regarding the resource allocation and isolation of wireless slices. Because of the dynamics and shared nature of the wireless medium, guaranteeing that the traffic on one slice will not affect the traffic on the others has proven to be difficult. In this paper, we focus on the detailed definition of the problem, discussing its challenges. We also provide a review of existing works that deal with the problem, analyzing how new trends such as software defined networking and network function virtualization can assist in the slicing. We will finally describe some research challenges on this topic.Peer ReviewedPostprint (author's final draft

    Guaranteed bit rate slicing in WiFi networks

    Get PDF
    In forthcoming 5G networks, slicing has been proposed as a means to partition a shared physical network infrastructure into different self-contained logical parts (slices), which are set up to satisfy certain requirements. Although the topic has been thoroughly investigated by the scientific community and the industry, there are not many works addressing the challenges that appear when trying to exploit slicing techniques over WiFi networks. In this paper, we propose a novel method of allocating resources for WiFi networks to satisfy minimum bit rate requirements. We formulate an optimization problem, and we propose a solution based on the theory of Lyapunov drift optimization. The validity of the proposed solution is assessed by means of a simulation-based evaluation in Matlab.This work has been supported in part by the European Commission and the Spanish Government (Fondo Europeo de Desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects, respectively

    Sl-EDGE: Network Slicing at the Edge

    Full text link
    Network slicing of multi-access edge computing (MEC) resources is expected to be a pivotal technology to the success of 5G networks and beyond. The key challenge that sets MEC slicing apart from traditional resource allocation problems is that edge nodes depend on tightly-intertwined and strictly-constrained networking, computation and storage resources. Therefore, instantiating MEC slices without incurring in resource over-provisioning is hardly addressable with existing slicing algorithms. The main innovation of this paper is Sl-EDGE, a unified MEC slicing framework that allows network operators to instantiate heterogeneous slice services (e.g., video streaming, caching, 5G network access) on edge devices. We first describe the architecture and operations of Sl-EDGE, and then show that the problem of optimally instantiating joint network-MEC slices is NP-hard. Thus, we propose near-optimal algorithms that leverage key similarities among edge nodes and resource virtualization to instantiate heterogeneous slices 7.5x faster and within 0.25 of the optimum. We first assess the performance of our algorithms through extensive numerical analysis, and show that Sl-EDGE instantiates slices 6x more efficiently then state-of-the-art MEC slicing algorithms. Furthermore, experimental results on a 24-radio testbed with 9 smartphones demonstrate that Sl-EDGE provides at once highly-efficient slicing of joint LTE connectivity, video streaming over WiFi, and ffmpeg video transcoding
    • …
    corecore