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Abstract—In forthcoming 5G networks, slicing has been pro-
posed as a means to partition a shared physical network infras-
tructure into different self-contained logical parts (slices), which
are set up to satisfy certain requirements. Although the topic
has been thoroughly investigated by the scientific community
and the industry, there are not many works addressing the
challenges that appear when trying to exploit slicing techniques
over WiFi networks. In this paper, we propose a novel method
of allocating resources for WiFi networks to satisfy minimum bit
rate requirements. We formulate an optimization problem, and
we propose a solution based on the theory of Lyapunov drift
optimization. The validity of the proposed solution is assessed by
means of a simulation-based evaluation in Matlab.

I. INTRODUCTION

Network slicing has recently been proposed as one of
the main enablers for 5G networks. Using this paradigm,
infrastructure owners are able to allocate resources to service
providers (tenants) creating dynamic and on-demand resource
slices. The tenants have complete control over those resources,
and they use them to satisfy their client demands. Most existing
works on slicing in wireless networks consider slicing mostly
for cellular networks and, in particular, for LTE technology.
In this paper we instead focus on the IEEE 802.11 (WiFi)
technology, for which slicing has not been thoroughly studied,
in spite of its doubtless relevance. We analyze the case of
Quality of Service Slicing, and we propose a mechanism to
achieve guaranteed bit rate slices in WiFi Access Points.
More precisely, we develop a mechanism for implementing
guaranteed bit rate slices in a WiFi Access Point (AP) by
considering the transmission time (airtime) as the resource to
share. We propose a traffic queuing and scheduling technique
to allocate the AP transmission time, satisfying the bit rate
requirements. The resource allocation is indeed efficient, as
each slice receives the exact resources that were guaranteed,
and free resources can be thus used by additional slices.

We formulate the guaranteed bit rate slicing problem as a
stochastic optimization problem, where the channel conditions
and the arrival rates are unknown stochastic processes. Our
solution is constructed following the Stochastic Network Op-
timization framework described in [1] and [2], which is based
on Lyapunov optimization theory. This framework permits to
obtain an equivalent deterministic problem, which provides an
approximate bounded solution to the original one.

Although network slicing is a rather new concept, the prob-
lem of providing Quality of Service in IEEE 802.11 networks
has been thoroughly studied in the last twenty years. However,
the vast majority of the research on this subject has focused

on providing QoS to the transmissions from the stations to
the AP, or between stations [3]. This is due to the fact that
WiFi networks have traditionally been seen as an extension
of the wired local area network, and not as an Internet access
alternative. Moreover, in many of those previous works, QoS
provisioning is based on service differentiation and prioritiza-
tion, but not on performance guarantees. Regarding bit rate (or
throughput) guarantees to stations, the works of Banchs et. al.
[4], [5] are worth mentioning. In those proposals throughput is
guaranteed through access management schemes, controlling
the Contention Window (CW) size. On the other hand, in
our proposal we only consider the traffic from the AP to the
stations, and our objective is to guarantee at the AP a minimum
bit rate to each downlink flow of a slice.

Regarding slicing, there are few works dealing with this
issue in WiFi devices. In [6], [7], [8], [9], [10] slicing is
achieved through the allocation of airtime ratios to each slice,
which does not guarantee any type of QoS. The authors of
[11] propose a scheduling mechanism with feedback control, to
guarantee throughput ratios among slices. The proposal splits
the total transmitted bytes of an AP into ratios, requested by
the different slices. However, it does not guarantee a minimum
bit rate to the slices. An extensive review on recent proposals
for slicing in WiFi can be found in our previous paper [12].
The main differences of the proposal discussed herewith from
those previous works are that it does not modify or control
low-level MAC parameters, neither it needs feedback from the
medium or the stations to achieve the required allocation. It
only needs information on the airtime consumed and from the
local rate manager, which can be obtained from the hardware
driver. In addition, we avoid traffic shaping, which can lead to
inefficiencies if not controlled adequately. Furthermore, we use
the queuing model proposed in our previous work [13], which
contemplates the particularities of the hardware behaviour so
as to avoid queue buildup at lower layers and to allow packet
aggregation.

The rest of the paper is organized as follows: in §II we
introduce our vision of network slicing, and we define the
concept of Quality of Service Slicing; in §III we present our
system model and problem formulation; in §IV and §V we
discuss the solution to the optimization problem and we depict
the proposed scheduling mechanism. In §VI we show some
experimental evaluation of our proposal and, finally, in §VII
we conclude the paper, identifying some aspects that will be
tackled in our future research.
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II. NETWORK SLICING

Although different definitions of network slicing have been
proposed, in this paper we use the definition introduced in our
previous work [12]. As already mentioned, a slice is a partition
of network resources that are allocated by a infrastructure
provider to a tenant for its particular use. On the other hand,
from a data level perspective, a slice can be considered as a
set of traffic flows with some common features, demanding
some performance requirements. A slice can support flows
from multiple clients (mobile clients of the network in our
case), but at the same time, a client can participate in multiple
slices. However, a flow belongs to a single slice, and slices
are always independent between each other. Hence, two main
variants of slicing can be considered: Quality of Service Slicing
(QoSS), and Infrastructure Sharing Slicing (ISS) [12]. In this
work we focus on QoSS.

A. QoS Slicing

In this slicing variant tenants require slices with some
Quality of Service performance objectives, which should be
provided by the network infrastructure. Those are diverse but
some common choices are: packet delay, jitter, packet loss
ratio, and bit rate.

Regardless of the QoS parameter considered, some common
design choices should be taken into account. The first decision
to make is whether the performance requirements specified for
a slice are individually applicable to every flow that belongs
to such slice or otherwise to the aggregated traffic of the
slice. While there are other approaches in the literature, where
performance guarantees are requested for the entire slice and
not for each flow [11], in this paper we consider the QoS
requirements of a slice as the QoS to be guaranteed to every
flow within the slice. Another important design aspect of the
QoS variant is the flexibility of the QoS guarantees. In wireless
communications, and particularly in WiFi, it is necessary to
allow a certain tolerance for the QoS requirements, and a
policy that defines the actions to take when it is not possible
to meet the requirements. There are two main reasons for
this: first, in wireless communications it may happen that the
capacity of an client’s channel is not enough to support a
particular requirement; second, in unlicensed spectrum tech-
nologies like WiFi, the wireless medium could be saturated by
other communications or by any type of interference, which
are out of the control of the network. A tolerance on the
required QoS guarantee would thus add flexibility, allowing
the system to adapt to environment changes. For example, a
guaranteed bit rate requirement may include a tolerance on the
percentage of time it is not accomplished. Moreover, a policy
is needed for when the guarantees, even with a tolerance, are
not fulfilled and some action should be taken. For example,
a policy may specify that when the guarantee is not met, the
corresponding client connection should be dropped, notifying
the service provider.

Finally, a key aspect of slicing is to ensure slices do not
disturb each other, avoiding performance degradation or ap-
propriation of resources allocated to other slices. This is called

isolation, and it must be considered in the implementation of
QoS Slicing, as clients with low channel capacity can indeed
jeopardize the performance of the whole network.

III. QOS SLICING MODEL AND PROBLEM FORMULATION

As already mentioned, our focus is on the network’s edge,
more precisely, on WiFi APs. The objective is to implement
QoS Slicing by allocating the necessary resources to the
different slices. In particular, we describe the problem of
guaranteeing a minimum bit rate to each client of a slice, in the
context of a WiFi AP. In the following, we define our model
and we formulate the resource allocation problem on an AP
as an optimization problem.

A. Slicing Model

In our approach we consider slotted time (in Section IV we
discuss how the time can be slotted for WiFi). Lets consider
the following parameters for a given AP:
• S is the number of slices defined in the AP, such that
s ∈ [1, S] identifies a slice.

• Ns is the number of clients in slice s where ns ∈ [1, Ns]
identifies a client.

• Each slice has the requirement Ks of a minimum bit rate,
which must be guaranteed to every client of the slice.

• Cns is the channel capacity between the AP and the
client ns. This capacity is variable and it depends on the
channel conditions. For our formulation we will consider
the capacity to be invariant within a time slot, hence, we
define Cns

(t) as the capacity between the AP and client
ns in time slot t.

The guaranteed bit rate slicing problem consists on how the
AP should schedule the transmissions to the different clients
to guarantee that each client receives the minimum bit rate
ensured by the corresponding slice.

Lets first observe that the bit rate obtained by a client
depends mostly on two factors, the channel capacity and the
amount of time the AP transmits to that client. Therefore, we
have that the bit rate to a client ns, in time slot t, is given by:

Rns(t) = Cns(t)× xns(t) (1)

where xns(t) is the proportion (or ratio) of time slot t assigned
for transmitting to client ns.

The problem is to find the ratios xns
which guarantee that

the slice requests are satisfied. However, we have not yet
exactly defined the requests and how they can be satisfied.
Note that there exist many ways of defining a minimum bit
rate request: for example, the requirement can be very strong
such as ensuring that the minimum bit rate is always satisfied
(at every time slot), or it can be more relaxed, for instance
requiring that the minimum bit rate is satisfied on average.

In this proposal, we consider the second option, where slice
requests consist on a minimum average bit rate to be assured to
each client of the slice. Therefore, the problem is to guarantee
that the average bit rate of each client (Rns ) to be above the
requested average bit rate Ks.

Another important aspect to note is that Rns(t) is a random
(or stochastic) process, because the channel capacity can vary



randomly depending on several factors. Hence, for our problem
formulation we will consider the expected time average of the
bit rate, defined as:

Rns
= lim

T→∞

1

T

∑
t∈T

E{Rns
(t)} (2)

= lim
T→∞

1

T

∑
t∈T

E{Cns(t) · xns(t)} (3)

In the following formulation, which just focuses on the al-
location problem, it is assumed that the slices’ requests can
be fulfilled with the available resources. We argue that this
is a valid assumption, as it is possible to have a previous
mechanism of slice access control and a procedure to migrate
slices when more resources than those available are needed.
Also, in our approach we only consider downlink traffic, i.e.
traffic from the AP to the clients.

B. Problem Formulation

Based on the above description, the problem is
to find, for every slot t, the assignment vector,
x(t) = {x11(t), x21(t), ..., xN1

(t), ..., x1S (t), ..., xNS
(t)},

which guarantees that all slices’ requests satisfy the
following:

Rns
≥ Ks, ∀s ∈ [1, S], ∀ns ∈ [1, Ns]. (4)

If we add to the above problem the objective of maximizing
the average bit rate of the entire AP, so as to use the resources
efficiently, we can formulate a stochastic optimization prob-
lem:

maximize
x

S∑
s=1

Ns∑
ns=1

Rns (5)

subject to Rns ≥ Ks, ∀s ∈ [1, S], ∀ns ∈ [1, Ns], (6)
S∑

s=1

Ns∑
ns=1

xns(t) ≤ 1, (7)

0 ≤ xns
(t) ≤ 1. (8)

In this optimization problem the objective is to find the trans-
mission ratios xns

(t) to maximize the total average bit rate.
Note that x = {x(1), ...,x(T )} is the vector of assignment
vectors for all the clients at all slots.

Constraint (6) considers the minimum average bit rate Ks of
each slice. Note that it represents in fact a set of constraints,
where there is a different one for each client of each slice.
Constraints (7) and (8) control that no more resources than
those available are assigned, by limiting the possible values of
the x variables.

The main complexity of the optimization problem (5)-
(8) resides in the variability of the channel capacity C(t).
As already mentioned, C(t) can be considered a stochastic
process, for which we do not know its distribution and so,
cannot be predicted.

C. Adding fairness

Any solution to the proposed previous problem can be
improved for cases when there are more resources available

than requested. Note that the problem formulation in (5)-(8)
is based on the objective of total throughput maximization,
which will lead to solutions where the client with the highest
capacity hoards all the unused resources. To prevent this we
propose to introduce fairness in the objective formulation.

A very common approach is to use proportional fairness
[14] for the allocation. We define U as the the set of all
achievable utilities and ui(x) an utility function, which returns
the profit of a given allocation vector. When U is convex, a
proportional fair allocation can be obtained as the solution to
the following problem [14]:

maximize
x

∑
i∈N

log ui(x)

subject to u ∈ U
(9)

As our objective is to achieve fairness on the allocations of
the remaining resources after guaranteeing the minimum bit
rates, and not fairness on the global allocations, we define the
utilities of each client as the difference between the allocated
bit rate Rns

(t) and the minimum bit rate required Ks:

uns(t) = Rns(t)−Ks, (10)

and the fair utility function as:

φ(u(t)) =

S∑
s=1

Ns∑
ns=1

log(uns
(t)). (11)

Hence, we can reformulate our stochastic optimization prob-
lem in (5)-(8) so as to consider proportional fairness:

maximize
x

φ(u) (12)

subject to uns
≥ 0 ∀s ∈ [1, S], ∀ns ∈ [1, Ns], (13)

S∑
s=1

Ns∑
ns=1

xns(t) ≤ 1, (14)

0 ≤ xns(t) ≤ 1. (15)

where

φ(u) =

S∑
s=1

Ns∑
ns=1

log(uns
) (16)

=

S∑
s=1

Ns∑
ns=1

log

(
lim

T→∞

1

T

∑
t∈T

E{uns
(t)}

)
. (17)

IV. PROPOSED SOLUTION

Our proposal consists on solving the previous stochastic
problem by applying the drift-plus-penalty method described
in [2]. This method allows us to build a new deterministic
problem, which provides an approximate solution to the origi-
nal one. Even more, the solution found can be made arbitrarily
close to the optimal, but with a trade-off on the fulfillment of
the constraints.

A. Problem Transformation

Because problem (12)-(15) consists on the optimization of
a concave non-linear function of time averages, we need to
transform it to apply the drift-plus-penalty method. For this



we follow the auxiliary variable technique of [2], to transform
it into a classical time average optimization problem.

With this technique, the stochastic network optimization
problem (12)-(15) can be transformed using a vector of auxil-
iary variables γ(t) = (γ1(t), ..., γNs

(t)) that are chosen every
slot according to the constraints 0 ≤ γns

(t) ≤ Cmax
ns

, where
Cmax

ns
is the maximum possible transmission rate at each client

and slice. The modified problem is:

maximize
x

φ(γ) (18)

subject to uns
≥ 0 ∀s ∈ [1, S], ∀ns ∈ [1, Ns], (19)

γns
≤ uns

∀s ∈ [1, S], ∀ns ∈ [1, Ns], (20)
0 ≤ γns(t) ≤ Cmax

ns

∀s ∈ [1, S], ∀ns ∈ [1, Ns], ∀t, (21)
S∑

s=1

Ns∑
ns=1

xns
(t) ≤ 1, (22)

0 ≤ xns
(t) ≤ 1

∀s ∈ [1, S], ∀ns ∈ [1, Ns], ∀t. (23)

where

φ(γ) = lim
T→∞

1

T

∑
t∈T

E{φ(γ(t))} (24)

= lim
T→∞

1

T

∑
t∈T

E

{
S∑

s=1

Ns∑
ns=1

log(γns(t))

}
(25)

Intuitively, we can explain the previous transformation as
follows. Note that the original constraints are a subset of the
new ones. Hence, any solution to the transformed problem will
also satisfy the original constraints. Suppose we have decisions
x∗(t), which are a solution to the original problem, augmented
with the constraint

0 ≤ uns
(t) ≤ Cmax

ns
∀t. (26)

Let u∗ be the expected utilities obtained by the clients un-
der those decisions, which shield a maximum utility value
φ(u∗) = φopt. Then, we can construct a solution to the
transformed problem with the same x∗(t) decisions, selecting
γ(t) = u∗ for all t. Note that this solution satisfies constraint
(20), as we enforce equality, and constraint (21) because of
the added constraint (26). As γ(t) = u∗ is enforced for all
t, we have that φ(γ) = φ(u∗) = φopt. Hence, we have a
solution to the transformed problem with optimal value φopt,
which is also a solution to the original problem. If the bounds
in (26) are chosen large enough to contain a solution of the
original problem, φopt equals the optimal value (note that this
is our case, as each client utility is limited by the transmission
rate). Therefore, a solution to the transformed problem ensures
that the constraints of the original problem are satisfied, and it
obtains an utility that approximates the original problem utility,
as constraint (20) is forced to equality.

B. The drift-plus-penalty algorithm

To solve the problem (18)-(23) using the drift-plus-penalty
method, we first transform the constraints into queue stability

problems. For constraints (19) and (20) we define virtual
queues, with update equation:

Zns
(t+ 1) = [Zns

(t)− uns
(t)]+

∀s ∈ [1, S], ∀ns ∈ [1, Ns] (27)

Gns
(t+ 1) = [Gns

(t) + γns
(t)− uns

(t)]+

∀s ∈ [1, S], ∀ns ∈ [1, Ns] (28)

where [·]+ = max{·, 0}.
These queues are virtual and do not represent real network

queues. Intuitively, they can be seen as queues which accu-
mulate the amount of bit rate and fairness not satisfied. By
ensuring strong stability on these virtual queues, we guarantee
that the constraints are met (for a complete demonstration see
[2]).

Hence, the drift-plus-penalty strategy consists on minimiz-
ing the queue backlogs, as well as on minimizing an utility
function called penalty. In our case the penalty is the opposite
of the utility function φ(γ(t)).

For the queue backlogs, the following Lyapunov function is
defined, as a measure of the length of both queues:

L(Θ(t)) =
1

2

S∑
s=1

Ns∑
ns=1

Zns(t) +
1

2

S∑
s=1

Ns∑
ns=1

Gns(t) (29)

From this definition, the one-slot conditional Lyapunov drift
∆(Θ(t)) is introduced as:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (30)

Therefore, the objective is to minimize:

∆(Θ(t))− V E{φ(γ(t)) | Θ(t)} (31)

where V is a non-negative constant that will affect the trade-off
between the drift and the penalty.

Finally, the strategy consists on minimizing the following
upper bound of the previous expression:

∆(Θ(t))− V E{φ(γ(t)) | Θ(t)} ≤ D

− V E{φ(γ(t)) | Θ(t)}+

S∑
s=1

Ns∑
ns=1

Gns
(t)E {γns

(t)}

+

S∑
s=1

Ns∑
ns=1

(Zns(t) +Gns(t))E {−uns(t) | Θ(t)} (32)

We can find an approximate solution to the problem by
minimizing, on each slot t, the right-hand side of (32). For
this, we separate the optimization in: (1) a minimization of
the γns

terms; and (2) a minimization of the xns
terms.

First, we find the optimal auxiliary variables, by considering
Gns

(t) fixed:

minimize
γ(t)

− V φ(γns
(t)) +

S∑
s=1

Ns∑
ns=1

Gns
(t)γns

(t)

subject to 0 ≤ γns
(t) ≤ Cmax

ns
∀s ∈ [1, S], ∀ns ∈ [1, Ns].

(33)
We can find a closed-form solution for problem (33). First,
we transform the single minimization problem into a multi-



ple problem by minimizing each sum term (remember that
φ(γns

(t)) =
∑S

s=1

∑Ns

ns=1 log(γns
(t))):

For each slice s ∈ [1, S] and for each client ns ∈ [1, Ns]:

minimize
γ(t)

− V log(γns
(t)) +Gns

(t)γns
(t)

subject to 0 ≤ γns
(t) ≤ Cmax

ns
.

(34)

Finding the derivative and making equal to zero we obtain:

γns(t) =
V

Gns(t)
. (35)

Then, also for each slot t, we observe the values of the
virtual queues Zns(t) and Gns(t), and the current channel
state Cns

(t), to find the x(t) that solves:

minimize
x(t)

S∑
s=1

Ns∑
ns=1

(Zns(t) +Gns(t))(−uns(t))

subject to
S∑

s=1

Ns∑
ns=1

xns
(t) ≤ 1,

0 ≤ xns
(t) ≤ 1 ∀s ∈ [1, S], ∀ns ∈ [1, Ns].

(36)

Using the fact that uns
(t) = Rns

(t) − Ks, removing con-
stants and changing the sign, the previous formulation can be
transformed into (remember that Rns(t) = Cns(t)xns(t)):

maximize
x(t)

S∑
s=1

Ns∑
ns=1

Cns
(t)(Zns

(t) +Gns
(t))xns

(t)

subject to
S∑

s=1

Ns∑
ns=1

xns(t) ≤ 1,

0 ≤ xns(t) ≤ 1 ∀s ∈ [1, S], ∀ns ∈ [1, Ns].

(37)

Finally, we get a deterministic optimization problem that, at
every slot t, observes the virtual queues Zns(t) and Gns(t),
the random channel capacities of each client Cns

(t), and finds
the control actions xns

(t) to satisfy (37). Note that the channel
capacities and the virtual queue backlogs on time slot t act as
constants in the maximization problem. After each iteration,
the virtual queues are updated, as defined in (27) and (28). It
can be proven that this solution satisfies all constraints in (18)-
(23), and that the obtained utility differs from the target utility
by no more than D/V , which can be made arbitrarily small
as V is increased. However, the time average queue backlog
bound increases linearly with V . This performance-backlog
trade-off of [O(1/V ), O(V )] has been analyzed in [2]. In our
case it translates into a trade-off between the optimal bit rate
achieved and the satisfaction of the bit rate guarantees.

C. Scheduling Algorithm

A simplification of the previous problem is to consider that
at each slot the AP is allowed to transmit to one client only.
This would make the scheduling easier, as it does not need
to calculate the ratios for each client at each slot, but only to
decide to which client to transmit. Hence, the new optimization
problem is:

maximize
x(t)

S∑
s=1

Ns∑
ns=1

Cns
(t)(Zns

(t) +Gns
(t))xns

(t)

subject to
S∑

s=1

Ns∑
ns=1

xns(t) ≤ 1,

xns(t) ∈ 0, 1.

(38)

It is easy to observe that the previous problem has the form of
the Knapsack Problem, where each object or item ns in time
slot t gives a reward of Cns(t)(Zns(t) + Gns(t)), where all
items weight 1 and where the maximum capacity is also 1. It
is simple to note that the solution of this problem is the item
with the highest reward. Then, from the previous analysis we
design the scheduling algorithm shown in Algorithm 1.

Algorithm 1 Scheduler with fairness
Input: V , Ks,Cns

(t), γns,max ∀s ∈ [1, S], ∀ns ∈ [1, Ns]
Output: Client to schedule on each slot t

1: Initialize Zns
(0) = 0, Gns

(0) = 0
2: for all time slot t do
3: For each slice and client calculate the auxiliary variables

values γ(t)ns
= min{ V

Gns (t)
, γns,max}

4: Observe the current capacity of every client Cns(t)
5: Calculate the vector of benefits U = [C11(t)(Z11(t) +

G11(t)), ..., Cns
(t)(Zns

(t) +Gns
(t))]

6: Find the client with the maximum benefit i =
argmaxU

7: Schedule the client i to transmit in slot t (xi(t) = 1).
8: Calculate Zns

(t+ 1) = max[Dns
(t)−Rns

(t) +Ks, 0]
and Gns

(t+1) = max[Gns
(t)−Rns

(t)+γns
(t)+Ks, 0]

∀s ∈ [1, S], ∀ns ∈ [1, Ns].
9: end for

D. Time Slots in WiFi

In WiFi, nodes transmit randomly depending on the state of
the channel (idle or busy), hence, the concept of time slots does
not explicitly exist. Therefore, to be able to implement our
proposal of scheduling on a WiFi node we need to simulate the
time slots. Our proposal is to use the idea of time quantums and
the Adaptive Time-Excess Round Robin (ATERR) algorithm,
which we proposed in our previous work [13]. The idea is
that each time the scheduling algorithm assigns a transmission
opportunity to a client, as much data as possible is transmitted
to that client for the duration of a time quantum. It is important
to note that in WiFi, the transmissions are made in frames, and
queues also store frames of data. Hence, it is very likely that
the size of a quantum does not exactly match a given number
of frames. The use of the ATERR algorithm thus becomes
relevant, since the additional time consumed in one assignment
is decremented from the next. By using ATERR with the same
fixed quantum size for every client it becomes possible to have
a slotted transmission, with the difference that slots are of
variable size, but having a mechanism that yields, in the long
run, the correct time assignment.



Even more, to implement the proposed scheduler, a queue
per client and per slice is needed. This has already been
proposed in our previous work [13] where we designed,
analyzed, and implemented the necessary queuing structure.

E. Channel Capacity Estimation

Until now, we have assumed that we can know the exact
value for the channel capacity C(t) at each time slot. How-
ever, this is a complex task, which would need continuous
monitoring at the AP and clients. Hence, our proposal is to
use an estimation of this value, which can be obtained from
the rate control mechanism of the AP. Nowadays, the most
widely used mechanism is called Minstrel [15], which uses
the frame loss rate to estimate the channel capacity. We will
use this estimation, although not being optimal, as it has the
advantage to be obtained from real data from the environment,
with almost non overhead.

V. GUARANTEEING ISOLATION

In the context of guaranteed bit rate, the isolation between
slices and between clients within a slice is an important
issue so as to keep the agreed guarantees regardless of the
clients’ behaviour. We consider two different types of isolation
violations in the context of guaranteed bit rate: Excess of
offered traffic, and Lack of resources.

The first case appears when the traffic of a client within a
guaranteed bit rate slice exceeds the agreed maximum bit rate,
and it thus consumes resources from other clients or slices. To
prevent this, the slicing architecture must control and limit
the traffic to conform the agreed characteristics in the corre-
sponding SLA. However, it is also desirable to use resources
efficiently, and to allow extra traffic if it does not affect other
clients and slices. Hence, the control mechanism must also
consider not to limit traffic if free resources are available. The
second case emerges when there is not enough resources to
provide the agreed guarantees to each client, thus affecting
the performance. Although admission control mechanisms may
prevent this from happening when instantiating new clients or
slices into the devices, the channel conditions of a client might
deteriorate after the initial connection, making the device to
assign more resources to provide the agreed bit rate.

We propose to integrate the isolation management to the
scheduler proposed in Algorithm 1. For the first case no
changes are needed to the scheduler, as it implicitly limits
the traffic through the scheduling, assigning to each client the
requested resources. Even more, if free resources are available
and there is excess traffic, it could use those resources.
This happens because, once the virtual queues are stable (all
guarantees are satisfied), the scheduler continues to schedule
the clients to maximize the utility, allowing them to transmit
the exceeded traffic. On the other hand, to attack the isolation
issue when the channel conditions of a client deteriorates and
more resources than available are necessary, an extension to
the scheduler is needed. We propose a solution in two steps:
monitoring and action.

We propose to monitor the evolution of the virtual queues.
Remember that the virtual queues Zi(t) model the bit rate

constraints, and they can be conceived as buffers of the amount
of bit rate not satisfied. Hence, if we continuously monitor the
virtual queue lengths to detect when they are not stable, we can
infer that the guarantees are not being satisfied. Then, when
we detect a situation of a constant increment on the size of
any of the virtual queues, we can take the appropriate action.

For the second step, our solution to solve the detected
isolation issue is to degrade the performance or even to
disconnect some clients on a controlled way. The choice of
which clients to disconnect may depend on several factors,
such as the amount of consumed resources, the slice to which
the client belongs, or the associated revenue. In this work,
we introduce a simple strategy for the actions to take. We
propose to select a client and to remove its bit rate guarantee,
downgrading it to a best-effort client. This solution must be
accompanied with a message to the service provider to take
appropriate action. With this solution we allow the scheduler
to assign resources to the client, but only if they are available.
To decide which client to downgrade we propose to select
the slice with the lowest bit rate requirement, and within this
slice, to choose the client with the highest use of resources.
If downgrading the selected client does not solve the isolation
issue, we continue downgrading clients until it is resolved. The
use of this policy is arbitrary, and other options are perfectly
suitable.

VI. NUMERICAL RESULTS

We used MATLAB to assess the performance of the pro-
posed solution, and we evaluated different scenarios to validate
its correct behaviour. The setup for all the evaluation scenarios
consists on one WiFi AP, where three slices are instantiated:
• Slice 1: Guaranteed bit rate of 5 Mbps to each client.
• Slice 2: Guaranteed bit rate of 3 Mbps to each client.
• Slice 3: Guaranteed bit rate of 2 Mbps to each client.
We tested the proposed scheduler with fairness in scenarios

with different resource usage, both with stable and variable
channel capacities

A. Scenario 1: Complete resource usage

In this first experiment the objective is to test a scenario
where all available resources are needed to satisfy the slice
requirements. We consider three clients with fixed positions,
with the following stable channel capacities between the clients
and the AP: Client 1: 20 Mbps; Client 2: 6 Mbps; Client 3: 8
Mbps.

Each slice has only one associated client: Client 1 belongs
to Slice 1, Client 2 belongs to Slice 2 and Client 3 belong to
Slice 3. In the simulation, the traffic is generated at a constant
bit rate, yielding full buffer/saturation conditions. It is easy
to observe that due to slice requirements, all the available
capacity must to be assigned to guarantee the requests. In
particular, Client 1 will use 1/4 of the airtime, Client 2 1/2,
and Client 3 1/4. In Figures 1 and 2 we show the instanta-
neous throughput observed at each client during the whole
experiment and the size of the virtual queue, respectively. The
results highlight that, after a small convergence period, virtual
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Fig. 1. Throughput in Scenario 1
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Fig. 2. Size of Virtual Queues Z(t) in Scenario 1. There is a virtual queue
per client, which accumulates the difference between the required minimum
bit rate and the achieved bit rate by such client.

queues are stabilized, and the solution provides the guaranteed
bit rate to each client, as required by the slices. The algorithm
is configured with the parameter V = 1 which guarantees a
fast convergence. In the following scenario we experiment with
different values of V .

B. Scenario 2: Extra resources available

This scenario is similar to the previous one, but the channel
capacity of Client 1 is increased to 30Mbps at second 10 of the
simulation. Then, at second 20 the capacity returns to 20Mbps.
This variation generates a surplus of resources that, if slices
have additional traffic, can be efficiently used so as to improve
performance. With the increased capacity, the transmission to
Client 1 consumes 1/6 of the total airtime. Client 2 consumes 1/2
of the total airtime and Client 3 consumes 1/4. Hence, there is
1/12 of the airtime unused. In the case of a perfect proportional
fair sharing, each client is allocated a third of this fraction.
Therefore, the obtained throughput of Clients 1, 2, and 3 would
be 5.83 Mbps, 3.16 Mbps and 2.22 Mbps respectively.

As we mentioned previously, by solving the problem with
the drift-plus-penalty method, there is a trade-off between
reaching the optimum and satisfying the constraints. This
trade-off is governed by the parameter V introduced in (31).
In this case, as V increases we are closer to a fair allocation,
but it becomes more difficult achieving the bit rate guarantees.

We show the results obtained with the fairness scheduler
with three different values of V . In Figures 3 and 4 we show
the throughput and virtual queue sizes if V = 50. When the
capacity of Client 1 gets higher, all three clients increase their
throughput. At t = 10, Client 1 gets a higher channel capacity
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Fig. 3. Throughput in Scenario 2 with V = 50.
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Fig. 4. Size of Virtual Queues Z(t) in Scenario 2 with V = 50.

and it can thus transmit its data faster, yielding more resources.
One can observe that the throughput values obtained are very
close to the optimum ones. However, from Figure 4 we can
observe that virtual queues for Clients 2 and 3 struggle to
converge when the resources are tight. We also evaluate the
algorithm with a value of V = 1 and V = 500 in Figures 5
and 6. As expected, with V = 1 the guarantees are reached
very fast, but there is no fairness in the assignment. On the
other hand, with V = 500 Client 2 and 3 never achieve the bit
rate guarantees, but the allocation is almost optimal in fairness.

C. Scenario 3: Lack of resources

In this scenario the channel capacity of Client 1 is set to 10
Mbps from second 15 until the end of the simulation.

Note that this scenario generates a case of isolation violation
as any possible resource allocation would accomplish the
required guarantees (there is no feasible solution to the opti-
mization problem). Hence, we can observe in Figures 7 and 8
that, when the channel of Client 1 deteriorates, the throughput
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Fig. 5. Throughput in Scenario 2 with V = 1.
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Fig. 6. Throughput in Scenario 2 with V = 500.
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Fig. 7. Throughput in Scenario 3.

of the three clients is affected and the virtual queues start
growing. However, since we implement the aforementioned
detection and isolation scheme, our solution is able to take the
necessary actions to continue providing the guarantees to some
of the slices. In this case (see Figure 7), Clients 1 and 2 still get
their guaranteed bit rate, while Client 3 is disconnected. Note
that, as we mentioned in Section V, the scheduler follows the
policy to disconnect the client with the highest use of resources
from the slice with the lowest bit rate requirement.

VII. CONCLUSIONS

We have proposed a resource allocation mechanism for
guaranteed bit rate slicing in WiFi Access Points. The mech-
anism controls the scheduling of the transmission time to
the different slices to satisfy minimum bit rate demands. We
have also included a simple approach to detect and control
guarantees violations. Moreover, we implemented a prototype
of our solution, and we validated its main functionality of
providing bit rate guarantees.
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Fig. 8. Size of Virtual Queues Z(t) in Scenario 3.

In the context of slicing, several existing works have in-
troduced frameworks or high-level management solutions, but
there is an absence of ideas on how to specifically implement
slicing at the WiFi APs. Our objective with this proposal is
to overcome this issue and allow WiFi to be integrated to the
slicing paradigm.

The initial results have shown to be promising, but ad-
ditional experimentation is still needed. We are currently
working on implementing our solution on a network simulator
to evaluate more complex scenarios. In future research we also
plan to extend the mechanism to provide delay guarantees.
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“Slicing in wifi networks through airtime-based resource allocation,”
Journal of Network and Systems Management, pp. 1–31, 2018.

[14] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, vol. 49, no. 3, pp. 237–
252, 1998.

[15] Minstrel rate control algorithm. [Online]. Available: https://wireless.wiki.
kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel


