844 research outputs found

    Multi-domain service orchestration over networks and clouds: a unified approach

    Get PDF
    End-to-end service delivery often includes transparently inserted Network Functions (NFs) in the path. Flexible service chaining will require dynamic instantiation of both NFs and traffic forwarding overlays. Virtualization techniques in compute and networking, like cloud and Software Defined Networking (SDN), promise such flexibility for service providers. However, patching together existing cloud and network control mechanisms necessarily puts one over the above, e.g., OpenDaylight under an OpenStack controller. We designed and implemented a joint cloud and network resource virtualization and programming API. In this demonstration, we show that our abstraction is capable for flexible service chaining control over any technology domain

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era

    Wireless resource virtualization: opportunities, challenges, and solutions

    Get PDF
    Wireless resource virtualization (WRV) is currently emerging as a key technology to overcome the major challenges facing the mobile network operators (MNOs) such as reducing the capital, minimizing the operating expenses, improving the quality of service, and satisfying the growing demand for mobile services. Achieving such conflicting objectives simultaneously requires a highly efficient utilization of the available resources including the network infrastructure and the reserved spectrum. In this paper, the most dominant WRV frameworks are discussed where different levels of network infrastructure and spectrum resources are shared between multiple MNOs. Moreover, we summarize the major benefits and most pressing business challenges of deploying WRV. We further highlight the technical challenges and requirements for ion and sharing of spectrum resources in next generation networks. In addition, we provide guidelines for implementing comprehensive solutions that are able to and share the spectrum resources in next generation network. The paper also presents an efficient algorithm for base station virtualization in long‐term evolution (LTE) networks to share the wireless resources between MNOs who apply different scheduling polices. The proposed algorithm maintains a high‐level of isolation and offers throughput performance gain. Copyright © 2016 John Wiley & Sons, Ltd. Wireless resource virtualization (WRV) is emerging as a key technology to reduce cost and increase the total network capacity by sharing wireless resources between multiple mobile operators. In this paper, we present the concepts, highlight the benefits, and discuss the technical challenges and requirements for ion and sharing of WRV in next generation networks. Furthermore, an efficient WRV approach for long‐term evolution base stations is proposed and evaluated

    Service-Oriented Multigranular Optical Network Architecture for Clouds

    Get PDF
    This paper presents a novel service-oriented network architecture to bridge the informational gap between user applications and optical networks providing technology-agnostic multigranular optical network services for clouds. A mediation layer (service plane) between user applications and network control is proposed to facilitate a mapping process between user application requests and the network services. At the network level, a multigranular optical network (MGON) is proposed and implemented to support dynamic wavelength and subwavelength granularities with different transport formats [optical burst switched (OBS), optical burst transport (OBT)], reservation protocols (one-way, two-way), and different quality-of-service (QoS) levels per service type. The service-oriented multigranular optical network has been designed, implemented, and demonstrated on an experimental testbed. The testbed consists of service and network resource provisioning, service abstraction, and network resource virtualization. The service-to-network interoperation is provided by means of a gateway that maps service requests to technology-specific parameters and a common signaling channel for both service and network resource provisioning
    corecore