5,094 research outputs found

    Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks

    Get PDF
    A main challenge in transporting cargo for United States Transportation Command (USTRANSCOM) is in mode selection or integration. Demand for cargo is time sensitive and must be fulfilled by an established due date. Since these due dates are often inflexible, commercial carriers are used at an enormous expense, in order to fill the gap in organic transportation asset capacity. This dissertation develops a new methodology for transportation capacity assignment to routes based on the Resource Constrained Shortest Path Problem (RCSP). Routes can be single or multimodal depending on the characteristics of the network, delivery timeline, modal capacities, and costs. The difficulty of the RCSP requires use of metaheuristics to produce solutions. An Ant Colony System to solve the RCSP is developed in this dissertation. Finally, a method for generating near Pareto optimal solutions with respect to the objectives of cost and time is developed

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    Optimising airline maintenance scheduling decisions

    Get PDF
    Airline maintenance scheduling (AMS) studies how plans or schedules are constructed to ensure that a fleet is efficiently maintained and that airline operational demands are met. Additionally, such schedules must take into consideration the different regulations airlines are subject to, while minimising maintenance costs. In this thesis, we study different formulations, solution methods, and modelling considerations, for the AMS and related problems to propose two main contributions. First, we present a new type of multi-objective mixed integer linear programming formulation which challenges traditional time discretisation. Employing the concept of time intervals, we efficiently model the airline maintenance scheduling problem with tail assignment considerations. With a focus on workshop resource allocation and individual aircraft flight operations, and the use of a custom iterative algorithm, we solve large and long-term real-world instances (16000 flights, 529 aircraft, 8 maintenance workshops) in reasonable computational time. Moreover, we provide evidence to suggest, that our framework provides near-optimal solutions, and that inter-airline cooperation is beneficial for workshops. Second, we propose a new hybrid solution procedure to solve the aircraft recovery problem. Here, we study how to re-schedule flights and re-assign aircraft to these, to resume airline operations after an unforeseen disruption. We do so while taking operational restrictions into account. Specifically, restrictions on aircraft, maintenance, crew duty, and passenger delay are accounted for. The flexibility of the approach allows for further operational restrictions to be easily introduced. The hybrid solution procedure involves the combination of column generation with learning-based hyperheuristics. The latter, adaptively selects exact or metaheuristic algorithms to generate columns. The five different algorithms implemented, two of which we developed, were collected and released as a Python package (Torres Sanchez, 2020). Findings suggest that the framework produces fast and insightful recovery solutions

    Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform

    Get PDF
    In this paper, we provide details of implementing a system for managing a fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse premise. While the robots are themselves autonomous in its motion and obstacle avoidance capability, the target destination for each robot is provided by a global planner. The global planner and the ground vehicles (robots) constitute a multi agent system (MAS) which communicate with each other over a wireless network. Three different approaches are explored for implementation. The first two approaches make use of the distributed computing based Networked Robotics architecture and communication framework of Robot Operating System (ROS) itself while the third approach uses Rapyuta Cloud Robotics framework for this implementation. The comparative performance of these approaches are analyzed through simulation as well as real world experiment with actual robots. These analyses provide an in-depth understanding of the inner working of the Cloud Robotics Platform in contrast to the usual ROS framework. The insight gained through this exercise will be valuable for students as well as practicing engineers interested in implementing similar systems else where. In the process, we also identify few critical limitations of the current Rapyuta platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape

    Column generation approaches to ship scheduling with flexible cargo sizes

    Get PDF
    We present a Dantzig-Wolfe procedure for the ship scheduling problem with flexible cargo sizes. This problem is similar to the well-known pickup and delivery problem with time windows, but the cargo sizes are defined by an interval instead of a fixed value. We show that the introduction of flexible cargo sizes to the column generation framework is not straightforward, and we handle the flexible cargo sizes heuristically when solving the subproblems. This leads to convergence issues in the branch-and-price search tree, and the optimal solution cannot be guaranteed. Hence we have introduced a method that generates an upper bound on the optimal objective. We have compared our method with an a priori column generation approach, and our computational experiments on real world cases show that the Dantzig-Wolfe approach is faster than the a priori generation of columns, and we are able to deal with larger or more loosely constrained instances. By using the techniques introduced in this paper, a more extensive set of real world cases can be solved either to optimality or within a small deviation from optimalityTransportation; integer programming; dynamic programming
    corecore