109 research outputs found

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    An overview of post-disaster emergency communication systems in the future networks

    Get PDF
    The emerging 5G communication network is gaining tremendous attention from mobile network operators, regulators, and academia due to the provisions of network densification, ultra-low latency and improved spectral and energy efficiencies. However, post-disaster EMS, which nowadays predominantly depends on the wireless communication infrastructure, is significantly lagging behind in terms of innovation, standards, and investments. Since the 5G vision is the revolution of the telecommunication industry, provisions of efficiently handling EMS is expected to be distributed, autonomous, and resilient to the network vulnerabilities due to both man-made and natural disasters. In this article, the 4G LTE approaches for typical post-disaster communication and their shortcomings will be discussed. We elaborate three typical post-disaster network scenarios when the network is congested, partly functional or completely isolated. The possible solution framework, for instance, Device-to-Device communication, drone-assisted communication, mobile ad hoc networks and Internet-of-Things, for post-disaster scenarios will be discussed. Given that spectrum allocation is critical for EMS, we assess the possible schemes for radio resource allocation specific for EMS in addition to the social responsibility of users in such critical situations

    Multicell Edge Coverage Enhancement Using Mobile UAV-Relay

    Get PDF
    Unmanned aerial vehicle (UAV)-assisted communication is a promising technology in future wireless communication networks. UAVs can not only help offload data traffic from ground base stations (GBSs) but also improve the Quality of Service (QoS) of cell-edge users (CEUs). In this article, we consider the enhancement of cell-edge communications through a mobile relay, i.e., UAV, in multicell networks. During each transmission period, GBSs first send data to the UAV, and then the UAV forwards its received data to CEUs according to a certain association strategy. In order to maximize the sum rate of all CEUs, we jointly optimize the UAV mobility management, including trajectory, velocity, and acceleration, and association strategy of CEUs to the UAV, subject to minimum rate requirements of CEUs, mobility constraints of the UAV, and causal buffer constraints in practice. To address the mixed-integer nonconvex problem, we transform it into two convex subproblems by applying tight bounds and relaxations. An iterative algorithm is proposed to solve the two subproblems in an alternating manner. Numerical results show that the proposed algorithm achieves higher rates of CEUs as compared with the existing benchmark schemes

    Deployment of drone-based small cells for public safety communication system

    Get PDF
    In the event of a natural disaster, communications infrastructure plays an important role in organizing effective rescue services. However, the infrastructure-based communications are often affected during severe disaster events such as earthquakes, landslides, floods, and storm surges. Addressing this issue, the article proposes a novel drone-based cellular infrastructure to revive necessary communications for out-of-coverage user equipment (UE) which is in the disaster area. In particular, a matching game algorithm is proposed using one-to-many approach wherein several drone small cells (DSCs) are deployed to match different UEs to reach a stable connection with optimal throughput. In addition, a medium access control framework is then developed to optimize emergency and high priority communications initiated from the rescue workers and vulnerable individuals. The simulation results show that the throughput for the out-of-coverage UEs are significantly improved when the DSCs are deployed in public safety network while the channel access delay is also notably reduced for emergency communications within the affected areas

    Spectrum on demand : a competitive open market model for spectrum sharing for UAV-assisted communications

    Get PDF
    Unmanned aerial vehicles (UAVs)-assisted communication has gathered significant interest of the industry, especially with regards to the vision of providing ubiquitous connectivity for beyond 5G (B5G) networks. In this article, we motivate the need for utilizing licensed spectrum for UAV-assisted communication and discuss its advantages such as reliability and security. Moreover, we explore a new dimension to spectrum sharing by proposing a decentralized competitive open market approach based model, where the different mobile network operators (MNOs) have the opportunity to lease the spectrum to UAV base stations (UAV-BSs), leading to new revenue generation opportunities. The proposed spectrum sharing mechanism is based on the logarithmic utility function and willingness to pay of each UAV-BS. We provide a tradeoff analysis between spectrum sharing and price offered by the MNOs, highlighting the impact of the willingness to pay on the spectrum sharing. The results also highlight the behaviour of price and spectrum shared w.r.t. time, thereby providing an insight into different performance regions until the algorithm converges to it’s optimal value. In addition, we also present future directions that could lead to interesting analyses, especially with regards to incentive-based spectrum sharing and security
    corecore