181 research outputs found

    Securing routing protocols in mobile ad hoc networks

    Get PDF
    A Mobile Ad Hoc Network (MANET) is more prone to security threats than other wired and wireless networks because of the distributed nature of the network. Conventional MANET routing protocols assume that all nodes cooperate without maliciously disrupting the operation of the protocol and do not provide defence against attackers. Blackhole and flooding attacks have a dramatic negative impact while grayhole and selfish attacks have a little negative impact on the performance of MANET routing protocols. Malicious nodes or misbehaviour actions detection in the network is an important task to maintain the proper routing protocol operation. Current solutions cannot guarantee the true classification of nodes because the cooperative nature of the MANETs which leads to false exclusions of innocent nodes and/or good classification of malicious nodes. The thesis introduces a new concept of Self- Protocol Trustiness (SPT) to discover malicious nodes with a very high trustiness ratio of a node classification. Designing and implementing new mechanisms that can resist flooding and blackhole attacks which have high negative impacts on the performance of these reactive protocols is the main objective of the thesis. The design of these mechanisms is based on SPT concept to ensure the high trustiness ratio of node classification. In addition, they neither incorporate the use of cryptographic algorithms nor depend on routing packet formats which make these solutions robust and reliable, and simplify their implementations in different MANET reactive protocols. Anti-Flooding (AF) mechanism is designed to resist flooding attacks which relies on locally applied timers and thresholds to classify nodes as malicious. Although AF mechanism succeeded in discovering malicious nodes within a small time, it has a number of thresholds that enable attacker to subvert the algorithm and cannot guarantee that the excluded nodes are genuine malicious nodes which was the motivation to develop this algorithm. On the other hand, Flooding Attack Resisting Mechanism (FARM) is designed to close the security gaps and overcome the drawbacks of AF mechanism. It succeeded in detecting and excluding more than 80% of flooding nodes within the simulation time with a very high trustiness ratio. Anti-Blackhole (AB) mechanism is designed to resist blackhole attacks and relies on a single threshold. The algorithm guarantees 100% exclusion of blackhole nodes and does not exclude any innocent node that may forward a reply packet. Although AB mechanism succeeded in discovering malicious nodes within a small time, the only suggested threshold enables an attacker to subvert the algorithm which was the motivation to develop it. On the other hand, Blackhole Resisting Mechanism (BRM) has the main advantages of AB mechanism while it is designed to close the security gaps and overcome the drawbacks of AB mechanism. It succeeded in detecting and excluding the vast majority of blackhole nodes within the simulation time

    Vulnerabilities for Reactive Routing in Mobile Adhoc Networks

    Get PDF
    Mobile ad hoc network got outstanding success as well as tremendous attention due to its self -maintenance and self-configuration properties or behavior. This paper presents the area of wireless network i.e. work on ad-hoc network. This paper presents protocols of routing and their classification and their comparison. This paper also presents security issues of wireless network. This paper provides an overview of the security issues in MANETs. It classifies the attacks that are possible against the existing routing protocols. An understanding of these attacks and their impacts on the routing mechanism will help researchers in designing secure routing protocols. Keywords: MANET, AODV, DSR, FLOODING

    A novel secure routing scheme using probabilistic modelling for better resistivity against lethal attacks

    Get PDF
    Study towards Wireless Adhoc Network dates two decades back with various researchers evolving up with new solutions towards addressing its problems. Irrespective of various other problems, the issues related to the secure routing is yet unsolved owing to massively increasing fatal strategies of the adversary. Review of existing literature shows that the existing secure routing scheme can only govern over the stated attacks reducing the applicability in case of dynamic attacks. Therefore, this manuscript introduces a novel probabilistic model which offers the capability to wireless nodes to identify the malicious behavior and react accordingly. Different from existing intrusion prevention system, the proposed system allows the malicious node to participate in the data forwarding process and exhaust its resources with no chance of launching an attack. The simulated outcome of the study shows that the proposed secure routing scheme offers better data forwarding characteristic in contrast to the existing system in the aspect of intrusion detection and secure data transmission

    A Composite Trust Model for Secure Routing in Mobile Ad-Hoc Networks

    Get PDF
    It is imperative to address the issue of secure routing in mobile ad-hoc networks (MANETs) where the nodes seek for cooperative and trusted behaviour from the peer nodes in the absence of well-established infrastructure and centralized authority. Due to the inherent absence of security considerations in the traditional ad-hoc routing protocols, providing security and reliability in the routing of data packets is a major challenge. This work addresses this issue by proposing a composite trust metric based on the concept of social trust and quality-of-service (QoS) trust. Extended from the ad-hoc on-demand distance vector (AODV) routing protocol, we propose an enhanced trust-based model integrated with an attack-pattern discovery mechanism, which attempts to mitigate the adversaries craving to carry out distinct types of packet-forwarding misbehaviours. We present the detailed mode of operations of three distinct adversary models against which the proposed scheme is evaluated. Simulation results under different network conditions depict that the combination of social and QoS trust components provides significant improvement in packet delivery ratio, routing overhead, and energy consumption compared to an existing trust-based scheme

    Dynamic Source Routing under Attacks

    Get PDF
    • …
    corecore