294 research outputs found

    Dynamic Quantized Consensus of General Linear Multi-agent Systems under Denial-of-Service Attacks

    Get PDF
    In this paper, we study multi-agent consensus problems under Denial-of-Service (DoS) attacks with data rate constraints. We first consider the leaderless consensus problem and after that we briefly present the analysis of leader-follower consensus. The dynamics of the agents take general forms modeled as homogeneous linear time-invariant systems. In our analysis, we derive lower bounds on the data rate for the multi-agent systems to achieve leaderless and leader-follower consensus in the presence of DoS attacks, under which the issue of overflow of quantizer is prevented. The main contribution of the paper is the characterization of the trade-off between the tolerable DoS attack levels for leaderless and leader-follower consensus and the required data rates for the quantizers during the communication attempts among the agents. To mitigate the influence of DoS attacks, we employ dynamic quantization with zooming-in and zooming-out capabilities for avoiding quantizer saturation

    A Survey of Resilient Coordination for Cyber-Physical Systems Against Malicious Attacks

    Full text link
    Cyber-physical systems (CPSs) facilitate the integration of physical entities and cyber infrastructures through the utilization of pervasive computational resources and communication units, leading to improved efficiency, automation, and practical viability in both academia and industry. Due to its openness and distributed characteristics, a critical issue prevalent in CPSs is to guarantee resilience in presence of malicious attacks. This paper conducts a comprehensive survey of recent advances on resilient coordination for CPSs. Different from existing survey papers, we focus on the node injection attack and propose a novel taxonomy according to the multi-layered framework of CPS. Furthermore, miscellaneous resilient coordination problems are discussed in this survey. Specifically, some preliminaries and the fundamental problem settings are given at the beginning. Subsequently, based on a multi-layered framework of CPSs, promising results of resilient consensus are classified and reviewed from three perspectives: physical structure, communication mechanism, and network topology. Next, two typical application scenarios, i.e., multi-robot systems and smart grids are exemplified to extend resilient consensus to other coordination tasks. Particularly, we examine resilient containment and resilient distributed optimization problems, both of which demonstrate the applicability of resilient coordination approaches. Finally, potential avenues are highlighted for future research.Comment: 35 pages, 7 figures, 5 table
    • …
    corecore