21 research outputs found

    Dynamic Quantized Consensus of General Linear Multi-agent Systems under Denial-of-Service Attacks

    Get PDF
    In this paper, we study multi-agent consensus problems under Denial-of-Service (DoS) attacks with data rate constraints. We first consider the leaderless consensus problem and after that we briefly present the analysis of leader-follower consensus. The dynamics of the agents take general forms modeled as homogeneous linear time-invariant systems. In our analysis, we derive lower bounds on the data rate for the multi-agent systems to achieve leaderless and leader-follower consensus in the presence of DoS attacks, under which the issue of overflow of quantizer is prevented. The main contribution of the paper is the characterization of the trade-off between the tolerable DoS attack levels for leaderless and leader-follower consensus and the required data rates for the quantizers during the communication attempts among the agents. To mitigate the influence of DoS attacks, we employ dynamic quantization with zooming-in and zooming-out capabilities for avoiding quantizer saturation

    Effects of Topology Knowledge and Relay Depth on Asynchronous Appoximate Consensus

    Get PDF
    Consider a point-to-point message-passing network. We are interested in the asynchronous crash-tolerant consensus problem in incomplete networks. We study the feasibility and efficiency of approximate consensus under different restrictions on topology knowledge and the relay depth, i.e., the maximum number of hops any message can be relayed. These two constraints are common in large-scale networks, and are used to avoid memory overload and network congestion respectively. Specifically, for positive integer values k and k\u27, we consider that each node knows all its neighbors of at most k-hop distance (k-hop topology knowledge), and the relay depth is k\u27. We consider both directed and undirected graphs. More concretely, we answer the following question in asynchronous systems: "What is a tight condition on the underlying communication graphs for achieving approximate consensus if each node has only a k-hop topology knowledge and relay depth k\u27?" To prove that the necessary conditions presented in the paper are also sufficient, we have developed algorithms that achieve consensus in graphs satisfying those conditions: - The first class of algorithms requires k-hop topology knowledge and relay depth k. Unlike prior algorithms, these algorithms do not flood the network, and each node does not need the full topology knowledge. We show how the convergence time and the message complexity of those algorithms is affected by k, providing the respective upper bounds. - The second set of algorithms requires only one-hop neighborhood knowledge, i.e., immediate incoming and outgoing neighbors, but needs to flood the network (i.e., relay depth is n, where n is the number of nodes). One result that may be of independent interest is a topology discovery mechanism to learn and "estimate" the topology in asynchronous directed networks with crash faults
    corecore