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Abstract
Consider a point-to-point message-passing network. We are interested in the asynchronous crash-
tolerant consensus problem in incomplete networks. We study the feasibility and efficiency of
approximate consensus under different restrictions on topology knowledge and the relay depth,
i.e., the maximum number of hops any message can be relayed. These two constraints are
common in large-scale networks, and are used to avoid memory overload and network congestion
respectively. Specifically, for positive integer values k and k′, we consider that each node knows
all its neighbors of at most k-hop distance (k-hop topology knowledge), and the relay depth is
k′. We consider both directed and undirected graphs. More concretely, we answer the following
question in asynchronous systems:

What is a tight condition on the underlying communication graphs for achieving approx-
imate consensus if each node has only a k-hop topology knowledge and relay depth k′?

To prove that the necessary conditions presented in the paper are also sufficient, we have de-
veloped algorithms that achieve consensus in graphs satisfying those conditions:

The first class of algorithms requires k-hop topology knowledge and relay depth k. Unlike
prior algorithms, these algorithms do not flood the network, and each node does not need the
full topology knowledge. We show how the convergence time and the message complexity of
those algorithms is affected by k, providing the respective upper bounds.
The second set of algorithms requires only one-hop neighborhood knowledge, i.e., immediate
incoming and outgoing neighbors, but needs to flood the network (i.e., relay depth is n,
where n is the number of nodes). One result that may be of independent interest is a topology
discovery mechanism to learn and “estimate” the topology in asynchronous directed networks
with crash faults.
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Figure 1 Effect of increased k-hop knowledge and relay depth k. In both figures, asynchronous
consensus with f = 1 is impossible for k = 1, but possible for k = 2.

1 Introduction

The fault-tolerant consensus problem proposed by Lamport et al. [20] has been studied
extensively under different point-to-point network models, including complete networks
(e.g., [20, 12]) and undirected networks (e.g., [13, 11]). Recently, many works are exploring
various consensus problems in directed networks, e.g., [7, 5, 16], including our own work
[23, 25, 22]. More precisely, these works address the problem in incomplete directed networks,
i.e., not every pair of nodes is connected by a channel, and the channels are not necessarily
bi-directional. We will often use the terms graph and network interchangeably. In this work,
we explore the crash-tolerant approximate consensus problem in asynchronous incomplete
networks under different restrictions on topology knowledge – where we assume that each
node knows all its neighbors of at most k-hop distance – and relay depth – the maximum
number of hops that information (or a message) can be propagated. These constraints are
common in large-scale networks to avoid memory overload and network congestion, e.g.,
neighbor table and Time-to-live (TTL) (or hop limit) in the Internet Protocol (IP). We
consider both undirected and directed graphs in this paper.

Motivation. Prior results [23] showed that exact crash-tolerant consensus is solvable in
synchronous networks with only one-hop knowledge and relay depth 1, i.e., each node only
needs to know its immediate incoming and outgoing neighbors, and no message needs to be
relayed (or forwarded). Such a local algorithm is of interest in practice due to low deployment
cost and low message complexity. In asynchronous undirected networks, there exists a simple
flooding-based algorithm adapted from [13, 11] that achieves approximate consensus with
up to f crash faults if the network satisfies (f + 1) node-connectivity2 and n > 2f , where
n is the number of nodes. However, these two conditions are not sufficient for an iterative
algorithm with one-hop knowledge and relay depth 1, in which each node maintains a state
and exchanges state values with only one-hop neighbors in each iteration.

Consider Figure 1a, which is a ring network of four nodes. There is no iterative algorithm
with one-hop knowledge and relay depth 1 under one crash fault. The adversary can divide
the nodes into disjoint sets {a, b} and {c, d} such that the communication delay across sets
is so large that a thinks d has crashed, and d thinks a has crashed, and similarly for the pair
b and c. As a result, no exchange of state values is possible across the sets in the execution;
hence, consensus is not possible (a more precise discussion in Section 3). On the other
hand, suppose each node has two-hop knowledge, i.e., a complete topology knowledge in this
network, and relay depth 2. Then a knows that it will be able to receive state values from at
least two of the other nodes since the node connectivity is 2, and up to one node may fail.

2 For brevity, we will simply use the term “connectivity” in the presentation below.
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Following this observation, it is easy to design a flooding-based algorithm in the ring network
based on [13, 11]. This example shows that both topology knowledge and relay depth affect
the feasibility of asynchronous approximate consensus.

Interestingly, increasing connectivity alone does not make iterative algorithm feasible.
In the full version [21], we show that no fault-tolerant approximate consensus algorithm
with one-hop topology and relay depth 1 exists in the network in Figure 1b, which has
two sparsely-connected cliques of size n/2 and connectivity n/2 − 1. Motivated by these
observations, this work addresses the following question in asynchronous systems:

What is a tight condition on the underlying communication graphs
for achieving approximate consensus if each node has only a k-hop
topology knowledge and relay depth k′?

The problem. We consider the asynchronous approximate consensus problem. The system
consists of n nodes, of which at most f nodes may crash. Each node is given an input, and
after a finite amount of time, each fault-free node should produce an output, which satisfies
validity and agreement conditions (formally defined later). Intuitively, the state at fault-free
nodes must be in the range of all the inputs, and are guaranteed to be within ε of each other
for some ε > 0 after a sufficiently large number of rounds.

In [23], we presented Condition CCA (Crash-Consensus-Asynchronous, see definition in
Section 2) and showed that it is necessary and sufficient on the underlying directed graphs for
achieving approximate consensus in asynchronous systems [23]. The approximate consensus
algorithms in prior work [23, 13, 11] are based on flooding (i.e., relay depth n) and assume
that each node has n-hop topology knowledge. However, such an algorithm is not practical
in a large-scale network, since, (i) nodes’ local memory may not be large enough to store
the entire network, (ii) flooding-based algorithms (e.g., [23, 13, 11]) incur prohibitively high
message overhead for each phase, and (iii) complete topology knowledge may require a high
deployment and configuration cost. Therefore, we explore algorithms that only require “local”
knowledge and limited message relay.

Contributions. We identify tight conditions on the graphs under different assumptions on
topology knowledge and relay depth. Particularly, we have the following results:

Limited Topology Knowledge and Relay Depth (Section 3): We consider the case with
k-hop topology knowledge and relay depth k. The family of algorithms that captures
these constrains are iterative k-hop algorithms – nodes only have topology knowledge of
their k-hop neighborhoods, and propagate state values to nodes that are at most k-hops
away. Note that no other information is relayed. For iterative k-hop algorithms, we
derive a family of tight conditions, namely Condition k-CCA for 1 ≤ k ≤ n, for solving
approximate consensus in directed networks. To prove the tightness of the conditions, we
propose a family of iterative algorithms called k-LocWA and show how the convergence
time and the message complexity of those algorithms is affected by k, providing the
respective upper bounds.
Topology Discovery and Unlimited Relay Depth (Section 4): We consider the case with
one-hop topology knowledge and relay depth n. In other words, nodes initially only
know their immediate incoming and outgoing neighbors, but nodes can flood the network,
learn (some part of) the topology, and eventually solve consensus based on the learned
topology. We show that Condition CCA from [23] is also sufficient in this case. Since
we assume only one-hop knowledge, our result implies that Condition CCA is tight for
any k-hop topology knowledge. One contribution that may be of independent interest is
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a topology discovery mechanism to learn and “estimate” the topology in asynchronous
directed networks with crash faults. Such a discovery mechanism will be useful for
self-stabilization and reconfiguration of a large-scale system.

In Section 5, we discuss fault-tolerance implications of the derived conditions and Condition
CCA. We also discuss how to speed up our algorithms in terms of real time delay.

Related Work. There is a large body of work on fault-tolerant consensus. Here, we discuss
related works exploring consensus in different assumptions on graphs. Fischer et al. [13] and
Dolev [11] characterized necessary and sufficient conditions under which Byzantine consensus
is solvable in undirected graphs. In synchronous systems, Charron-Bost et al. [7, 8] solved
approximate crash-tolerant consensus in dynamic directed networks using local averaging
algorithms, and in the asynchronous setting, Charron-Bost et al. [7, 8] addressed approximate
consensus with crash faults in complete graphs which are necessarily undirected. We solve
the problem in incomplete directed graphs in asynchronous systems. Moreover, in [7, 8],
nodes are constrained to only have the one-hop topology knowledge. We study different
types of algorithms, including the ones that allow nodes to learn the topology (i.e., we allow
topology discovery).

There were also works studying limited topology knowledge. Su and Vaidya [22] identi-
fied the condition for solving synchronous Byzantine consensus using a variation of k-hop
algorithms. Alchieri et al. [1] studied the synchronous Byzantine problem under unknown
participants. We consider asynchronous systems in this work. Nesterenko and Tixeuil [17]
studied the topology discovery problem in the presence of Byzantine faults in undirected
networks, whereas we present a solution that works in directed networks with crash faults.

Extensive prior works studied graph properties for other similar problems in the presence
of Byzantine failures, such as (i) Byzantine approximate consensus in directed graphs using
“local averaging” algorithms wherein nodes only have one-hop neighborhood knowledge
(e.g., [25, 24, 22, 26, 10]), (ii) Byzantine consensus with unknown participants [1], (iii)
Byzantine consensus with authentication in undirected networks [3]. These papers only
consider synchronous systems, and our algorithms and analysis are significantly different
from those developed for Byzantine algorithms, and (iv) consensus problems in synchronous
dynamic networks where the adversary can change the network topology. In this line of work,
impossibility results for consensus and k-set agreement are given in [4, 6] and sufficiency
is guaranteed by requiring a period of stability, during which certain nodes are strongly
connected; the first tight condition for the feasibility of consensus and broadcast is presented
in [9]. Additionally, in [2], Byzantine corruptions and a dynamic node set is assumed and
a O(log3 n)-round randomized algorithm is presented. Our work is different from all these
works because of the assumption of asynchronous systems and limited topology knowledge.

2 Preliminary

Before presenting the results, we introduce our system model, some terminology, and our
prior results from [23] to facilitate the discussion.

System Model. The point-to-point message-passing network is static, and it is represented
by a simple directed graph G(V, E), where V is the set of n nodes, and E is the set of directed
edges between the nodes in V . The communication links are reliable. We assume that n ≥ 2,
since the consensus problem for n = 1 is trivial. Node i can transmit messages to another
node j directly if directed edge (i, j) is in E . Each node can send messages to itself as well;
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however, for convenience, we exclude self-loops from set E . We will use the terms edge and
link interchangeably.

Up to f nodes may suffer crash failures in an execution. A node that suffers a crash failure
simply stops taking step (i.e., fail-stop model). We consider the asynchronous message-passing
communication, in which a message may be delayed arbitrarily but eventually delivered if the
receiver node is fault-free. We assume that the adversary has both the control of crashing
nodes and delaying messages at any point of time during the execution.

Terminology. Upper case letters are used to name sets. Lower case italic letters are used
to name nodes. All paths used in our discussion are directed paths.

Node j is said to be an incoming neighbor of node i if (j, i) ∈ E . Let N−i be the set of
incoming neighbors of node i, i.e., N−i = {j | (j, i) ∈ E}. Define N+

i as the set of outgoing
neighbors of node i, i.e., N+

i = {j | (i, j) ∈ E}.
For set B ⊆ V, node i is said to be an incoming neighbor of set B if i 6∈ B, and there

exists j ∈ B such that (i, j) ∈ E . Given subsets of nodes A and B, set B is said to have k
incoming neighbors in set A if A contains k distinct incoming neighbors of B.

I Definition 1. Given disjoint non-empty subsets of nodes A and B, A x⇒ B if B has at
least x distinct incoming neighbors in A. When it is not true that A x⇒ B, we will denote
that fact by A

x

6⇒ B.

Approximate Consensus. For the approximate consensus problem (e.g., [12, 15, 23]), it is
usually assumed that each node i maintains and regularly updates a state, with vi[p] denoting
the p-th update of the state of node i. In asynchronous systems, value vi[p] is also called
the state of node i at the end of phase (or iteration) p. The initial state of node i, vi[0], is
equal to the initial input provided to node i. At the start of phase p (p > 0), the state of
node i is vi[p− 1].

Let U [p] and µ[p] be the maximum and the minimum state at nodes that have not crashed
by the end of phase p. Then, a correct approximate consensus algorithm needs to satisfy the
following two conditions:

Validity: ∀p > 0, U [p] ≤ U [0] and µ[p] ≥ µ[0]; and
Convergence: limp→∞ U [p]− µ[p] = 0.

Equivalently the Convergence condition can be stated as:

∀ε > 0, there exists a phase pε such that for p > pε, U [p]− µ[p] < ε.

Towards facilitating the study of the number of phases needed for convergence and the
corresponding message complexity, observe that convergence with respect to a specific ε must
be considered. Therefore we will also use the following convergence notion.

ε-Convergence: ∃pε, ∀p ≥ pε, U [p]− µ[p] ≤ ε.

Remark on Termination. The variation of approximate consensus defined above, also ap-
pears in the literature under the name of asymptotic consensus (cf. [14]). The main difference
is that in the original approximate consensus problem defined in [12], termination for any ε
is also required. However, we stress that the algorithms we present can trivially be extended
to achieve termination using an approach similar to the ones presented in [12, 15]. In these
works and in most of the approximate consensus literature, the problem is solved by iterative
algorithms of similar structure and each node can locally compute an upper bound on the
number of iterations that are needed for ε-convergence. Thus termination is easily guaranteed.

OPODIS 2018
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Prior Result. In [23], we identified necessary and sufficient conditions on the underly-
ing communication graphs G(V, E) for achieving crash-tolerant consensus in directed net-
works. The theorem below, presented in [23], states that condition CCA (Crash-Consensus-
Asynchronous) is tight for approximate consensus under full topology knowledge and relay
depth. Observe that, naturally, the impossibility result holds regardless of those parameters.

I Theorem 2 (from [23]). Approximate crash-tolerant consensus in asynchronous systems,
under full topology knowledge and relay depth, is feasible iff for any partition L,C,R of V,
where L and R are both non-empty, either L∪C f+1⇒ R or R∪C f+1⇒ L. (Condition CCA)

3 Limited Topology Knowledge and Relay Depth

In this section, we study how topology knowledge and the relay depth affect the tight
conditions on the directed communication network. Particularly, we consider the case with
k-hop topology knowledge and relay depth k for 1 ≤ k ≤ n. Prior works (e.g., [23, 13, 11])
assumed that each node has n-hop topology knowledge and relay depth n. However, in
large-scale networks, such an assumption may not be realistic. Partial knowledge models have
been recently explored in [18, 19]. We are interested in algorithms that only require nodes to
exchange a small amount of information within their local neighborhoods. One other benefit
is that these algorithms do not require flooding [23] or all-to-all communication [13, 11] in
each asynchronous phase.

We are interested in iterative k-hop algorithms – nodes only have topology knowledge
in their k-hop neighborhoods, and propagate state values to nodes that are at most k-hops
away. We introduce a family of conditions, namely Condition k-CCA for 1 ≤ k ≤ n, which
we prove necessary and sufficient for achieving asynchronous approximate consensus, through
the use of iterative k-hop algorithms. The results presented in this section also imply how
the parameter k affects the tight conditions on the directed networks. To the best of our
knowledge, two prior papers [1, 22] examined a similar problem – synchronous Byzantine
consensus. In [22], Su and Vaidya identified the condition under different relay depths.
Alchieri et al. [1] studied the problem under unknown participants. The technique developed
for asynchronous consensus in this section is significantly different.

Observe that since the system is asynchronous, any algorithm has to be event-oriented.
For this reason, we define a locally verifiable condition WAIT, which dictates the end of
the reception step and the start of the state update step as seen below. Different WAIT
conditions need to be defined for each algorithm we consider.

Iterative k-hop Algorithms. The iterative algorithms considered here have relay depth k
and require each node i to perform the following three steps in asynchronous phase t:
1. Transmit: Transmit messages of the form (vi[t − 1], t − 1) to nodes that are reachable
from node i via at most k hops away, where vi[t − 1] is the current state value, which is
accompanied by the phase tag t− 1. If node i is an intermediate node on the route of some
message, then node i forwards that message as instructed by the source;
2. Receive: Until a condition WAIT is satisfied, receive messages from the nodes that can
reach node i via at most k hops. Denote by Ri[t] the set of messages that node i received at
phase t; and
3. Update: Once condition WAIT is satisfied, update state using a transition function Zi,
where Zi is a part of the specification of the algorithm, and takes as input the set Ri[t]. i.e.,

vi[t] := Zi(Ri[t], vi[t− 1]) at node i
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Note that (i) no exchange of topology information takes place in this class of algorithms,
and (ii) each node’s state only propagates within its k-hop neighborhood. For a node i, its
k-hop incoming neighbors are defined as the nodes j which are connected to i by a directed
path in G that has ≤ k hops. The notion of k-hop outgoing neighbors is defined similarly.

Technique. The algorithms presented in this section are motivated by prior work [12, 22]
including our own work [23]. The algorithms are iterative and simple; thus, the proof
structure shares some similarity with prior work [12, 23, 25].

Generally speaking, the proof proceeds as following: (i) nodes are divided into two disjoint
sets, say L and R so that nodes have “closer” state values in each set; (ii) because each node
receives an adequate set of messages, we show that under any delay and crash scenarios, at
least one non-crashed node in either L or R will receive one message from the other set of
nodes in each phase; and (iii) after enough phases, the value of all non-crashed nodes in either
L or R will move “closer” to the values in the other set. Two key novelties in this paper are:
identifying the “adequate set” of messages that needs to be received before updating local
state in each asynchronous phase, and showing that even with limited k-hop propagation,
some node is still able to receive messages from the other set (satisfying the above point (ii)).

3.1 k = 1 Case
To initiate the study, we first consider the one-hop case, where each node only knows its one-
hop incoming and outgoing neighbors. The following notion is crucial for the characterization
of graphs in which asynchronous approximate consensus is feasible with relay depth 1.

I Definition 3 (A→ B). Given disjoint non-empty subsets of nodes A and B, we will use
the notation A → B if there exists a node i in B such that i has at least f + 1 distinct
incoming neighbors in A. When it is not true that A → B, we will denote that fact by
A 6→ B.

Condition 1-CCA, presented below proves to be necessary and sufficient for achieving
asynchronous approximate consensus with relay depth 1. Note that 1-CCA requires the
existence of a single node that has at least f + 1 incoming neighbors, while CCA requires
the distinct incoming neighbors of the corresponding set to be at least f + 1.

I Definition 4 (Condition 1-CCA). For any partition L,C,R of V, where L and R are both
non-empty, either L ∪ C → R or R ∪ C → L.

The necessity of Condition 1-CCA for the specific class of iterative 1-hop algorithms, is
similar to the necessity proof of Condition CCA in [23] and is presented in the full version [21].

For sufficiency, we present Algorithm LocWA (Local-Wait-Average), which is inspired
by Algorithm WA [23] 3. Note that LocWA utilizes only one-hop information. Recall that
by definition, no message relay with depth greater than 1 is allowed. In Algorithm LocWA,
heardi[p] is the set of one-hop incoming neighbors of i from which i has received values
during phase p. Each node i performs the averaging operation to update its state value when
Condition 1-WAIT below holds for the first time in phase p.

3 The main difference lies in the WAIT condition and the fact that no relay of messages takes place in
LocWA. Also, the termination of LocWA can be dealt with as argued in the corresponding remark in
Section 2.
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Algorithm 1: LocWA for node i ∈ V.
vi[0] := input at node i
For phase p ≥ 1:
* On entering phase p:

Ri[p] := {vi[p− 1]}
heardi[p] := {i}
Send message (vi[p− 1], i, p) to all the outgoing neighbors

* When message (h, j, p) is received for the first time:
Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset
heardi[p] := heardi[p] ∪ {j}

* When Condition 1-WAIT holds for the first time in phase p:

vi[p] :=
∑
v∈Ri[p] v

|Ri[p]|
(1)

Enter phase p+ 1

Condition 1-WAIT. The condition is satisfied at node i, in phase p, when |heardi[p]| ≥
|N−i | − f , i.e., when i has not received values from a set of at most f incoming neighbors.

To prove the correctness of LocWA, we will use the supplementary definitions below.

I Definition 5. For disjoint sets A,B, in(A → B) denotes the set of all the nodes in B

that each have at least f + 1 incoming edges from nodes in A. When A 6→ B, define
in(A→ B) = ∅. Formally, in(A→ B) = { v | v ∈ B and f + 1 ≤ |N−v ∩A| }.

I Definition 6. For non-empty disjoint sets A and B, set A is said to propagate to set B in l
steps, where l > 0, if there exist sequences of sets A0, A1, A2, · · · , Al and B0, B1, B2, · · · , Bl
(propagating sequences) such that

A0 = A, B0 = B, Al = A ∪B, Bl = ∅, Bτ 6= ∅ for τ < l, and
for 0 ≤ τ ≤ l − 1, (i) Aτ → Bτ ; (ii) Aτ+1 = Aτ ∪ in(Aτ → Bτ ); and
(iii) Bτ+1 = Bτ − in(Aτ → Bτ ).

Observe that Aτ and Bτ form a partition of A∪B, and for τ < l, in(Aτ → Bτ ) 6= ∅. We say
that set A propagates to set B if there is a propagating sequence for some steps l as defined
above. Note that the number of steps l in the above definition is upper bounded by n− f − 1,
since set A must be of size at least f + 1 for it to propagate to B; otherwise, A 6→ B.

Now, we present two key lemmas whose proofs are presented in the full version [21]. In
the discussion below, we assume that G satisfies Condition 1-CCA.

I Lemma 7. For any partition A,B of V, where A,B are both non-empty, either A propagates
to B, or B propagates to A.

The lemma below states that the interval to which the states at all the fault-free nodes
are confined shrinks after a finite number of phases of Algorithm LocWA. Recall that U [p]
and µ[p] denote the maximum and minimum states at the fault-free nodes at the end of the
p-th phase and. We also denote with F [p], the nodes that have not computed value v[p] in
phase p, i.e., nodes in F [p] have crashed before computing v[p].

I Lemma 8. Suppose that at the end of the p-th phase of Algorithm LocWA, V can be
partitioned into non-empty sets R and L such that (i) R propagates to L in l steps, and (ii)



D. Sakavalas, L. Tseng, and N.H. Vaidya 14:9

the states of fault-free nodes in R − F [p] are confined to an interval of length ≤ U [p]−µ[p]
2 .

Then, with Algorithm LocWA,

U [p+ l]− µ[p+ l] ≤
(

1− αl

2

)
(U [p]− µ[p]), where α = min

i∈V

1
|N−i |

(2)

Using lemma 8 and simple algebra, we can prove the following Theorem. For the sake of
space, we present only a proof sketch. The complete proof is deferred to the full version [21].

I Theorem 9. If G(V, E) satisfies Condition 1-CCA, then Algorithm LocWA achieves both
Validity and Convergence.

Proof Sketch. To prove the Convergence of LocWA, we show that given any ε > 0, there
exists τ such that U [t] − µ[t] ≤ ε,∀t ≥ τ . Consider p-th phase, for some p ≥ 0. If
U [p]− µ[p] = 0, then the algorithm has already converged; thus, we consider only the case
where U [p] − µ[p] > 0. In this case, we can partition V into two subsets, A and B, such
that, for each fault-free node i ∈ A, vi[p] ∈

[
µ[p], U [p]+µ[p]

2

)
, and for each fault-free node

j ∈ B, vj [p] ∈
[
U [p]+µ[p]

2 , U [p]
]
. (Full proof in [21], identifies how to partition the nodes.)

By Lemma 7, we have that either A propagates to set B or B propagates to A. In both
cases above, we have found two non-empty sets L = A (or L = B) and R = B (or L = A)
partitioning V and satisfy the hypothesis of Lemma 8, since R propagates to L and the states
of all fault-free nodes in R are confined to an interval of length ≤ U [p]−µ[p]

2 . The theorem is
then proven by using simple algebra and the fact that the interval to which the states of all
the fault-free nodes are confined shrinks after a finite number of phases. J

3.2 General k Case
Now, consider the case when each node only knows its k-hop neighbors and the relay depth is
k. In the following, we generalize the notions presented above to the k-hop case. For node i,
denote by N−i (k) the set of i’s k-hop incoming neighbors, For a set of nodes A, let N−A be the
set of A’s one-hop incoming neighbors. Formally, N−A = {i | i ∈ V−A, and ∃j ∈ A, (i, j) ∈ E}.
Next we define the relation A→ B for the k-hop case.

I Definition 10 (A →k B). Given disjoint non-empty subsets of nodes A and B, we will
say that A →k B holds if there exists a node i in B for which there exist at least f + 1
node-disjoint paths of length at most k from distinct nodes in A to i. More formally, if PAi (k)
is the family of all sets of k-length node-disjoint paths (with i being their only common node)
initiating in A and ending in node i, A→k B means that ∃i ∈ B, max

P∈PA
i

(k)
|P | ≥ f + 1.

I Definition 11 (Condition k-CCA). For any partition L,C,R of V , where L and R are both
non-empty, either L ∪ C →k R or R ∪ C →k L.

The necessity of Condition k-CCA for achieving asynchronous approximate consensus
through an iterative k-hop algorithm holds analogously with the one-hop case, where a set of
x incoming neighbors of node i has to be replaced with a set of x distinct nodes that reach i
through disjoint paths. For sufficiency, we next present a generalization of Algorithm LocWA
for the k-hop case. There are two differences between Algorithms k-LocWA and LocWA: (i)
nodes transmit their state to all their k-hop outgoing neighbors, and (ii) Algorithm k-LocWA
relies on the generalized version of Condition 1-WAIT, presented below.
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Algorithm 2: k-LocWA for node i ∈ V.
vi[0] := input at node i
For phase p ≥ 1:
* On entering phase p:

di[p] := 1
Ri[p] := {vi[p− 1]}
heardi[p] := {i}
Send message (vi[p− 1], i, p) to nodes in N+

i (k), all k-hop outgoing neighborsa

* When message (h, j, p) is received for the first time:
Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset
heardi[p] := heardi[p] ∪ {j}

* When Condition k-WAIT holds for the first time in phase p:

vi[p] :=
∑

v∈Ri[p]
v

|Ri[p]|
Enter phase p+ 1

a For brevity, we do not specify how the network routes the messages within the k-hop neighborhood
– this can be achieved by using local flooding through tagging a hop counter in each message.

Condition k-WAIT. For Fi ⊆ N−i (k), we denote with reachki (Fi) the set of nodes that
have paths of length l ≤ k to node i in GV−Fi . That is, the set of k-hop incoming neighbors
of i that remain connected with i even when all nodes in set Fi crash. The condition
is satisfied at node i, in phase p if there exists Fi ⊆ N−i (k) with |Fi[p]| ≤ f such that
reachki (Fi[p]) ⊆ heardi[p].

Correctness of Algorithm k-LocWA. Proving the correctness of k-LocWA follows a similar
reasoning of the correctness of LocWA. The key here is to identify Condition k-CCA and
Condition k-WAIT so that the proof structure remains almost identical. To adapt the
arguments to the general case, one should define the analogous in(A→k B) definition based
on the general A→k B notion.

I Definition 12. For disjoint sets A,B, in(A→k B) denotes the set of all the nodes i in B
such that there exist at least f + 1 incoming disjoint paths of length at most k from distinct
nodes in N−i ∩A to i. When A 6→k B, define in(A→k B) = ∅. Formally, in the terminology
of Definition 10: in(A→ B) = {i ∈ B : max{|p| : p ∈ PAi (k)} ≥ f + 1}

The following proof sketch outlines necessary adaptations for general k case proof.

I Theorem 13. Approximate crash-tolerant consensus in an asynchronous system using
iterative k-hop algorithms is feasible iff G satisfies Condition k-CCA.

Proof Sketch. Having defined the basic notion in(A →k B), Definition 6 of the notion A
propagates to B is the same for the k-hop case. Intuitively, if A propagates to B, information
will be propagated gradually from A to B in l steps. Any faulty set of f nodes will not
be able to block propagation from A to a specific node i ∈ B because the definition of
in(A→k B) guarantees that i will receive information from at least f + 1 disjoint paths if
it has not crashed. A difference with the k = 1 case is that for every of the l steps needed
to propagate from A to B, k communication steps will be required in the worst case, since
information may be propagated through paths of length k. Lemma 8 is intuitively the same
since it is based on the general propagation notion but value α which is defined based on
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the number of incoming neighbors will now be defined on the number of k-hop incoming
neighbors, i.e., αk = min

i∈V

1
|N−i (k)|

. The main correctness proof remains essentially the same

since it repeatedly makes use of the abstract propagation notion between various sets, without
focusing on how the values are propagated. J

3.3 Condition Relation and Convergence Time Comparison
Next, we first compare the feasibility of approximate consensus for different values of k by
presenting a relation among the various k-CCA conditions as well as their relation with
Condition CCA from [23].

Condition Relation
Intuitively, achieving approximate consensus for a lower k requires the existence of more
paths in the graph; this can be observed by definition and is summarized in the following
theorem.

I Theorem 14. For values k, k′ ∈ N with k ≤ k′, Condition k-CCA implies Condition
k′-CCA.

Proof. Let Condition k-CCA hold and assume, without loss of generality that L ∪ C →k R

holds for a partition L,C,R. This means that there exists a node i in R that has at least
f + 1 incoming disjoint paths of length at most k initiating from distinct nodes in L ∪ C.
Consequently, the same f + 1 paths will consist of i’s incoming disjoint paths of length at
most k′, since k′ ≥ k, and thus, L ∪ C →k′ R which means that k′-CCA holds. J

We next show that Condition CCA is equivalent to Condition n-CCA. The proof illustrates
how the locally defined Condition k-CCA naturally coincides with the globally defined
condition CCA in the extreme case.

I Theorem 15. Condition CCA is equivalent to Condition n-CCA.

Proof. It is easy to see that Condition n-CCA implies Condition CCA. If Condition CCA is
violated in G, then Condition n-CCA does not hold either, since L and R have at most f
one-hop incoming neighbors.

Now, we show the other direction. Assume for the sake of contradiction that Condition
CCA holds but Condition n-CCA does not. Then, there exists a partition L,C,R with
L,R 6= ∅ such that L∪C 6→k R and R ∪C 6→k L. Since Condition CCA holds, we have that

either L∪C f+1⇒ R or R∪C f+1⇒ L. Now consider the case that L∪C f+1⇒ R and R∪C
f+1
6⇒ L.

This means that |N−R | ≥ f + 1 and |N−L | ≤ f . The case of L ∪ C
f+1
6⇒ R and R ∪ C f+1⇒ L is

symmetrical and the case of L ∪ C f+1⇒ R and R ∪ C f+1⇒ L can be proved by applying the
argument below once for set R and once for set L.

Let i be the node in R with the maximum number m of disjoint paths initiating from
distinct nodes in V − R (as implied by Definition 10). The fact L ∪ C 6→k R implies that
m ≤ f . Subsequently, |N−R | ≥ f + 1 implies that the set A = N−R − N

−
i (n) is non-empty

(the maximal subset of N−R which does not contain any n-hop incoming neighbors of i). Let
B = N+

A (n)∩R be the set of all the outgoing n-hop neighbors of all nodes j ∈ A confined in
the set R. By definition of B and A, it holds that N−i (n)∩B = ∅. We can now create a new
partition L′ = L,C ′ = C ∪B,R′ = R−B by moving B from R to C. For partition L′, C ′, R′
it holds that L′, R′ 6= ∅ since i ∈ R′ and L′ = L. Moreover, it holds that (i) |N−R′ | ≤ f , since
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|N−R′ | = |N
−
R −A| and A 6= ∅; and (ii) |N−L | ≤ f since L = L′. The latter points imply that

R ∪ C
f+1
6⇒ L and L ∪ C

f+1
6⇒ R, which yield a contradiction to the hypothesis that Condition

CCA holds. This completes the proof. J

Convergence Time Comparison
We derive upper bounds on the number of asynchronous phases needed for ε-convergence of
Algorithm k-LocWA and its message complexity up to this ε-convergence point pε. These
upper bounds are functions of values ε, k, f, n and δ = U [0] − µ[0] which are naturally
expected to affect the convergence time and message complexity. Moreover, since the bounds
depend on k, it provides a way to compare the convergence time and message complexity
of Algorithms k-LocWA for different values of k. Next, we present the upper bound on the
convergence time of k-LocWA, the proof of the theorem is deferred to the full version [21].

I Theorem 16 (Convergence-time complexity). The number of phases required by Algorithm

k-LocWA to ε-converge is O

 (n− f) log ε/δ

log
(

1− αn−f−1
k

2

)
.

Comparison of Algorithms k-LocWA Convergence. Observe that the above bound de-
creases, as the maximum number of k-hop incoming neighbors increases, since αk =
min
i∈V

1
|N−i (k)|

. Since the maximum number of k-hop incoming neighbors increases with

k we have that for k′ > k, Algorithm k′-LocWA ε-converges faster than k-LocWA by a factor
implied by the bound. Moreover, given the upper bound on phases for ε-convergence of
Theorem 16 we can easily derive an upper bound on the message complexity of k-LocWA as
is shown in [21].

4 Topology Discovery and Unlimited Relay Depth

In this section, we consider the case with one-hop topology knowledge and relay depth n. In
other words, nodes initially only know their immediate incoming and outgoing neighbors,
but nodes can flood the network and learn the topology. The study of this case is motivated
by the observation that full topology knowledge at each node (e.g., [23, 13, 11]) requires a
much higher deployment and configuration cost. We show that Condition CCA from [23]
is necessary and sufficient for solving approximate consensus with one-hop neighborhood
knowledge and relay depth n in asynchronous directed networks. Compared to the iterative
k-hop algorithms in Section 3, the algorithms in this section are not restricted in the sense
that nodes can propagate any messages to all the reachable nodes.

The necessity of Condition CCA is implied by our prior work [23]. The algorithms
presented below are again inspired by Algorithm WA from [23]. The main contribution is to
show how each node can learn “enough” topology information to solve approximate consensus
– this technique may be of interest in other contexts as well. In the discussion below, we
present an algorithm that works in any directed graph that satisfies Condition CCA.

Algorithm LWA. The idea of Algorithm LWA (Learn-Wait-Average) is to piggyback the
information of incoming neighbors when propagating state values. Then, each node i will
locally construct an estimated graph Gi[p] in every phase p, and check whether Condition
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Algorithm 3: LWA for node i ∈ V.
vi[0] := input at node i
Gi[0] := GN−

i
⇒i

For phase p ≥ 1:
* On entering phase p:

Ri[p] := {vi[p− 1]}
heardi[p] := {i}
Send message (vi[p− 1], N−i , i, p) to all the outgoing neighbors

* When message (h,N, j, p) is received for the first time:
Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset
heardi[p] := heardi[p] ∪ {j}
Gi[p] := Gi[p] ∪GN⇒j a

Send message (h,N, j, p) to all the outgoing neighbors
* When Condition n-WAIT holds on Gi[p] for the first time in phase p:

vi[p] :=
∑

v∈Ri[p]
v

|Ri[p]|
Gi[p+ 1] := GN−

i
⇒i // “Reset” the learned graph

Enter phase p+ 1
a G1(V1, E1) ∪G2(V2, E2) ≡ G3(V3, E3), where V3 = V1 ∪ V2 and E3 = E1 ∪ E2. Note that this is not

a multiset, there is only one copy of each node or edge.

n-WAIT holds in Gi[p] or not. Note that Gi[p] may not equal to G, as node i may not receive
messages from some other nodes due to asynchrony or failures. We say Condition n-WAIT
holds in the local estimated graph Gi[p](Vi[p], E i[p]) if there exists a set Fi[p] ⊆ Vi[p]−{i},
where |Fi[p]| ≤ f , such that reach′i(Fi[p]) ⊆ heardi[p]. Here, reach′i(Fi) is the set of
nodes that have paths to node i in the subgraph induced by the nodes in Vi[p]− Fi[p] for
Fi[p] ⊆ Vi[p]− {i} and |Fi[p]| ≤ f .

Recall that N−i denotes the set of i’s one-hop incoming neighbors. Given a set of nodes N
and node i, we also use the notation GN⇒i to describe a directed graph consisting of nodes
N ∪ {i} and set of directed edges from each node in N to i. Formally, GN⇒i = (N ∪ {i}, E′),
where E′ = {(j, i) | j ∈ N}.

Correctness of Algorithm LWA. The key lemma to prove the correctness of Algorithm WA
in [23] is to show that for any pair of nodes that have not crashed in phase p, they must
receive a state value from at least one common node. In the full version [21], we show that
Algorithm LWA achieves the same property. Intuitively, if Condition n-WAIT does not hold
in the local estimated graph Gi[p], then node i knows it can learn more states in phase p.
Also, when Condition n-WAIT is satisfied in Gi[p], there exists a scenario that node i cannot
receive any more information; hence, it should not wait for any more message. This is why
the Algorithm LWA allows each node to learn enough state values to achieve approximate
consensus. We rely on this observation to prove the correctness in [21]. Algorithm LWA
works on undirected graphs as well, as is shown in the full version [21].

5 Discussion

In asynchronous systems, the real time communication delay is arbitrary but finite. In a
formal framework, it is common to assume that execution proceeds in rounds representing
real time intervals, but the nodes do not have knowledge of the round index. To model the
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A
B

D

C

(a) Graph G, i-CCA holds for any i ∈
{1, . . . , 4} and f = 1.

B C
A

D

(b) Arbitrary delay in directed edges
(A, C), (C, A), (B, D), (D, B)

Figure 2 Real time delay example.

worst-case real time delay in the execution of a system we can use the notion of delay scenario
which is a description of the delays, incurring on the communication through all edges of
the network. The delivery delay of a message sent over a channel e will be described by the
number of rounds (amount of real time) that are needed for the delivery to be completed.

We first compare the real time performance of Algorithms k-LocWA for different values
of k with respect to the real time delay. Specifically we show that there is a case where
Algorithm LocWA terminates each phase in one round (one interval of real time), while it
may take arbitrary number of rounds for Algorithm 2-LocWA to terminate phase 1.

I Example 17. Consider the graph of Figure 2a. For f = 1, it is easy to verify that Condition
1-CCA holds, which implies that Conditions i-CCA, for i ∈ {1, . . . , n} hold. Assume that
the delivery of messages through directed edges (A,C), (C,A), (B,D), (D,B) is delayed by d
rounds while the communication in all the other edges is instant (one round). For ease of
presentation assume that no node crashes. Then, in an execution of Algorithm LocWA, it is
clear that every node i will finish phase t in time t. On the other hand, in an execution of
Algorithm 2-LocWA, node D will only receive a message from C in one round, since (C,B)
is a directed edge, and delay on edges (A,C) and (B,D) is d. in this case, D will not be
able to decide before round d, the first round where Condition 2-WAIT will be satisfied.
Specifically, for the first phase it will hold that reach2

D ⊆ heardD[1] only after round d since,
if D considers FD = {B} as a possible corruption set, it has to wait for a message from A

which will be propagated by C and setting FD = {C}, it has to wait for a message from B.
For similar reasons, the same holds for nodes A,C. Since d may be an arbitrary integer,
there is a delay scenario where the ε-convergence time for Algorithm 2-LocWA is arbitrarily
larger than the ε-convergence time of Algorithm LocWA.

Strong version of k-LocWA with respect to real time. As shown in the full version [21],
the k-WAIT condition of k-LocWA algorithm can be strengthened such that, for k′ ≥ k and
any ε, Algorithm k′-LocWA will ε-converge faster than Algorithm k-LocWA. This can be

achieved by condition strong k-WAIT: wait until
k∨
i=1

(i-WAIT) = true for the first time.
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