2,658 research outputs found

    Generalized polyphase representation and application to coding gain enhancement

    Get PDF
    Generalized polyphase representations (GPP) have been mentioned in literature in the context of several applications. In this paper, we provide a characterization for what constitutes a valid GPP. Then, we study an application of GPP, namely in improving the coding gains of transform coding systems. We also prove several properties of the GPP

    Systematic redundant residue number system codes: analytical upper bound and iterative decoding performance over AWGN and Rayleigh channels

    No full text
    The novel family of redundant residue number system (RRNS) codes is studied. RRNS codes constitute maximum–minimum distance block codes, exhibiting identical distance properties to Reed–Solomon codes. Binary to RRNS symbol-mapping methods are proposed, in order to implement both systematic and nonsystematic RRNS codes. Furthermore, the upper-bound performance of systematic RRNS codes is investigated, when maximum-likelihood (ML) soft decoding is invoked. The classic Chase algorithm achieving near-ML soft decoding is introduced for the first time for RRNS codes, in order to decrease the complexity of the ML soft decoding. Furthermore, the modified Chase algorithm is employed to accept soft inputs, as well as to provide soft outputs, assisting in the turbo decoding of RRNS codes by using the soft-input/soft-output Chase algorithm. Index Terms—Redundant residue number system (RRNS), residue number system (RNS), turbo detection

    Multiuser Detection Assisted Time- and Frequency-Domain Spread Multicarrier Code-Division Multiple-Access

    No full text
    In this contribution, we study a reduced-complexity multiuser detection aided multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) scheme, which employs both time (T)-domain and frequency (F)-domain spreading. We investigate the achievable detection performance in the context of synchronous TF-domain spread MC DS-CDMA when communicating over an additive white Gaussian noise (AWGN) channel. Five detection schemes are investigated, which include the single-user correlation based detector, the joint TF-domain decorrelating multiuser detector (MUD), the joint TF-domain MMSEMUD, the separate TF-domain decorrelating/MMSE MUD, and the separate TF-domain MMSE/decorrelating MUD. Our simulation results show that the separate TF-domain MUD schemes are capable of achieving a similar bit error rate (BER) performance to that of the significantly more complex joint TF-domain MUD schemes. Index Terms—Code-division multiple-access (CDMA), decorrelating, frequency-domain spreading, joint detection, minimum mean square error (MMSE), multicarrier (MC), multiuser detection, separate detection, time-domain spreading

    Безопасность и качество пищевых продуктов = Practical Food Safety and Food Quality : практикум

    Full text link
    Даны описания практических и лабораторных работ, проводимых в рамках курсов «Международные стандарты и безопасность продуктов питания» и «Контроль качества биотехнологических продуктов». Задания сопровождаются подробными комментариями. Используются активные формы обучения, такие как работа в команде, игровые технологии и пр. Для иностранных и российских студентов, обучающихся на английском языке, изучающих пищевую биотехнологию, контроль качества и безопасность пищевых продуктов

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    PTools: an opensource molecular docking library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macromolecular docking is a challenging field of bioinformatics. Developing new algorithms is a slow process generally involving routine tasks that should be found in a robust library and not programmed from scratch for every new software application.</p> <p>Results</p> <p>We present an object-oriented Python/C++ library to help the development of new docking methods. This library contains low-level routines like PDB-format manipulation functions as well as high-level tools for docking and analyzing results. We also illustrate the ease of use of this library with the detailed implementation of a 3-body docking procedure.</p> <p>Conclusion</p> <p>The PTools library can handle molecules at coarse-grained or atomic resolution and allows users to rapidly develop new software. The library is already in use for protein-protein and protein-DNA docking with the ATTRACT program and for simulation analysis. This library is freely available under the GNU GPL license, together with detailed documentation.</p

    A Comparative Performance of Discrete Wavelet Transform Implementations Using Multiplierless

    Get PDF
    Using discrete wavelet transform (DWT) in high-speed signal-processing applications imposes a high degree of care to hardware resource availability, latency, and power consumption. In this chapter, the design aspects and performance of multiplierless DWT is analyzed. We presented the two key multiplierless approaches, namely the distributed arithmetic algorithm (DAA) and the residue number system (RNS). We aim to estimate the performance requirements and hardware resources for each approach, allowing for the selection of proper algorithm and implementation of multi-level DAA- and RNS-based DWT. The design has been implemented and synthesized in Xilinx Virtex 6 ML605, taking advantage of Virtex 6’s embedded block RAMs (BRAMs)
    corecore