13,223 research outputs found

    Experimental Design in Constructing Low Temperature Sensor Based on Resistance Temperature Detector (RTD)

    Get PDF
    Thin film copper-based RTD still has a low TCR. Hence, plating a Cu-based RTD with nickel will develop a higher TCR. TCR is the sensitivity of RTD’s value in response to temperature change. The experimental design in constructing Cu/Ni thin film by using the electroplating method with a concentration of solution and electrode spacing’s variation has been done. Electroplating is performed with a concentration of solution and electrode spacing’s variations. Electroplating processed by limiting DC voltage to 6 volts. Electrolyte solutions composition were NiSO4, Ni2Cl2, H3BO3 and aquades. Concentrations of solutions can be varied by changing NiSO4 and Ni2Cl2 masses. Based on these concentrations of solutes and electrode’s spacing, this research used 15 samples. Thickness, thin-film resistance, and temperature sensor test are performed to each sample. The purpose of thickness test is to measure nickel plates which were formed from the electroplating process. Thin-film resistance test performed to measure sample resistance changing to the electroplating process, and the temperature sensor test was performed to measures the sample’s sensitivity in responding to temperature changes. This research’s result shows the greater the concentrations of solutes used for copper electroplating, the thicker nickel plates will form. This condition makes its resistance’s value decreasing.Keywords: thin layer resistance, concentration of the solution, electrode distance, electroplating, thin layers of Cu / Ni, RTD, module

    Seedless electroplating on patterned silicon

    Get PDF
    Nickel thin films have been electrodeposited without the use of an additional\ud seed layer, on highly doped silicon wafers. These substrates conduct\ud sufficiently well to allow deposition using a peripherical electrical contact on\ud the wafer. Films 2 ÎŒm thick have been deposited using a nickel sulfamate\ud bath on both n+- and p+-type silicon wafers, where a series of trenches with\ud different widths had been previously etched by plasma etching. A new,\ud reliable and simple procedure based on the removal of the native oxide layer\ud is presented which allows uniform plating of patterned substrates

    The structure of ion plated films in relation to coating properties

    Get PDF
    Ion plating is an ion assisted or glow discharge deposition technique, where ions or energetic atoms transfer energy, momentum and charge to the substrate and the growing film in a manner which can be controlled to favorably modify surface, subsurface chemistry, and microstructure. The glow discharge energizing effects from the initial nucleation stages to the final film growth are discussed. As a result, adherence, coherence, internal stresses, density and morphology of the coatings are significantly improved, over the conventional (nonion-assisted) techniques which in turn favorably affect the surface initiated failures caused by friction, wear, erosion, corrosion and fatigue. Ion plated films because of their graded coating/substrate interface, fine, uniform, densely packed film structure also induce a surface strengthening effect which improved the mechanical properties such as yield, tensile strength and fatigue life. Since a uniform, continuous film can be obtained at lower nominal film thickness, this effect is of great importance in solid film lubrication and in corrosion protection

    Electrochemical growth of three-dimensionally ordered macroporous metals as photonic crystals

    Get PDF
    Over the last two decades three dimensionally ordered macroporous (3-DOM) materials have turned out to be very promising in many applications ranging from optics, plasmonics, to catalyst scaffolds. The thesis presents a systematic study on formation and characterisation of 3-DOM metals as photonic crystals. Metals are nearly perfect reflectors with low adsorption at microwave or millimetre wavelengths. Meanwhile they generally absorb visible light because of their negative imaginary part of the dielectric constant that could destroy the band gap in the visible though they. Howevers, for noble metals such as gold, silver and copper, considering the Drude-like behaviour, the adsorption will be small enough to achieve a complete photonic band gap for optical or even shorter wavelengths, with silver performing the best. In order to fabricate the 3-DOM metallic nanostructures, template-directed electrochemical deposition has been employed in which, initially a highly ordered film of submircon sized colloidal spheres is deposited on to electronically conducting substrates, for instance, indium-tin oxide (ITO) coated glass substrate, through evaporation-induced self-assembly; and subsequently it is infiltrated with metallic elements electrochemically reduced from corresponding electrolytes; fiannly removal of the colloidal templating film reveals a metallic film comprised of periodically arranged spherical voids. Field Emission Gun Scanning Electron Microscopy (FEGSEM) was used to examine the surface morphology and periodicity of the 3-DOM metallic films. It revealed that highly ordered structures are homogenous and uniform over a large scale for both the original colloidal templates and metallic inverse structures. However for silver electroplated from either silver thiosulfate or silver chlorate bath, voids in the template are fully infiltrated, including both the interstitial spaces between the colloidal spheres and any cracks between film domains, forming a complete solid network over large length scales; for copper the filling factors are strongly dependent on the bath chemistry and in copper sulfate bath isolated macroporous domains can be formed due to those in the cracks will be dissolved back to the solution while those reduced from copper glycerol bath resulted in fully infiltrated structures. Moreover, angle-resolved reflectance spectroscopy has further confirmed the three-dimensional periodicity and indicated the inverse structures have stop band properties in the visible wavelength region, consistent with variation in the effective refractive index of the films. In addition, surface enhanced Raman scattering (SERS) spectroscopy has been used to evaluate applications of the inverse metals as SERS-active substrates. SERS has nearly exclusively been associated with three noble metals copper, silver (by far the most important) and gold. The 3-DOM metallic thin films possess excellent features for SERS detection arising from their long range periodical void geometry, which gives significant enhancement to Raman intensity. Preliminary measurements have demonstrated the 3-DOM metallic structures are well suited for SERS enhancement. Series spectra from different points of each specimen have given reproducible intensities. Variables associated with Raman intensity such as pore size, dye concentration, and film thickness, have been tuned to achieve maximal enhancement for visible and near-IR wavelengths

    Electrochemical Potential Monitoring of Corrosion and Coating protection of mild steel Reinforcement in Concrete.

    Get PDF
    The corrosion and protection behavior of a mild steel reinforcement in concrete, partially immersed in different test media, was investigated at ambient temperature by potential monitoring technique. The work was carried out using a digital voltmeter and a copper sulfate electrode (CSE) as the reference electrode. The obtained results showed that corrosion occurred on the embedded steel by the processes of anodic and cathodic reactions. The active corrosion of the steel occurred by the depassivation of the hydroxyl ions stabilized passive film on the steel's surface and the consequent anodic dissolution of the reinforcement bars. The corrosion of the embedded steel was enhanced by the diffusion of chloride, sulfate, and carbonate ions from the test media, in addition to the absorbed oxygen and water/moisture. The coating of the reinforcement steel with, paint before embedding in concrete block gave some measure of protection. Coating of the concrete blocks externally was a more protective method. However, a combination of the steel coating and external coating of the concrete block showed the most effective corrosion protection comparatively

    Analysis, design, and prototype development of squeeze-film bearings for AB-5 gyro Final report phase 2, design, fabrication and evaluation of prototypes

    Get PDF
    Squeeze-film bearing transducers with piezoceramic cylinders for AB-5 gyro - design, fabrication, and testing of cylindrical journal and annular bearing prototype

    Non-Cyanide Electrodeposited Ag–PTFE Composite Coating Using Direct or Pulsed Current Deposition

    Get PDF
    The effects of FC-4 cationic surfactant on electrodeposited Ag–PTFE composite coating using direct or pulsed currents were studied using scanning electron microscope (SEM), energy dispersive X-ray (EDS), optical microscope, and a linear tribometer. FC-4:PTFE in various ratios were added to a non-cyanide succinimide silver complex bath. Direct or pulsed current method was used at a constant current density to enable comparison between both methods. A high incorporation rate of PTFE was successfully achieved, with pulsed current being highly useful in increasing the amount of PTFE in the composite coating. The study of coating wear under sliding showed that a large majority of the electrodeposited coatings still managed to adhere to the substrate, even after 10 wear cycles of sliding tests. Performance improvements were achieved on all the samples with a coefficient of friction (CoF) between 0.06 and 0.12

    Friction and hardness of gold films deposited by ion plating and evaporation

    Get PDF
    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction
    • 

    corecore