1,130 research outputs found

    Defense-through-Deception Network Security Model: Securing University Campus Network from DOS/DDOS Attack

    Get PDF
    Denial of Service (DOS) and (DDOS) Distributed Denial of Service attacks have become a major security threat to university campus network security since most of the students and teachers prepare online services such as enrolment, grading system, library etc. Therefore, the issue of network security has become a priority to university campus network management. Using online services in university network can be easily compromised. However, traditional security mechanisms approach such as Defense-In-Depth (DID) Model is outdated in today’s complex network and DID Model has been used as a primary cybersecurity defense model in the university campus network today. However, university administration should realize that Defense-In-Depth (DID) are playing an increasingly limited role in DOS/DDoS protection and this paper brings this fact to light. This paper presents that the Defense-In-Depth (DID) is not capable of defending complex and volatile DOS/DDOS attacks effectively. The test results were presented in this study in order to support our claim. The researchers established a Defense-In-Depth (DID) Network model at the Central Luzon State University and penetrated the Network System using DOS/DDOS attack to simulate the real network scenario. This paper also presents the new approach Defense-through-Deception network security model that improves the traditional passive protection by applying deception techniques to them that give insights into the limitations posed by the Defense-In-Depth (DID) Model. Furthermore, this model is designed to prevent an attacker who has already entered the network from doing damage

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page

    Intelligent Detection and Recovery from Cyberattacks for Small and Medium-Sized Enterprises

    Get PDF
    Cyberattacks threaten continuously computer security in companies. These attacks evolve everyday, being more and more sophisticated and robust. In addition, they take advantage of security breaches in organizations and companies, both public and private. Small and Medium-sized Enterprises (SME), due to their structure and economic characteristics, are particularly damaged when a cyberattack takes place. Although organizations and companies put lots of efforts in implementing security solutions, they are not always effective. This is specially relevant for SMEs, which do not have enough economic resources to introduce such solutions. Thus, there is a need of providing SMEs with affordable, intelligent security systems with the ability of detecting and recovering from the most detrimental attacks. In this paper, we propose an intelligent cybersecurity platform, which has been designed with the objective of helping SMEs to make their systems and network more secure. The aim of this platform is to provide a solution optimizing detection and recovery from attacks. To do this, we propose the application of proactive security techniques in combination with both Machine Learning (ML) and blockchain. Our proposal is enclosed in the IASEC project, which allows providing security in each of the phases of an attack. Like this, we help SMEs in prevention, avoiding systems and network from being attacked; detection, identifying when there is something potentially harmful for the systems; containment, trying to stop the effects of an attack; and response, helping to recover the systems to a normal state

    DoS and DDoS Attacks: Defense, Detection and Traceback Mechanisms - A Survey

    Get PDF
    Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks are typically explicit attempts to exhaust victim2019;s bandwidth or disrupt legitimate users2019; access to services. Traditional architecture of internet is vulnerable to DDoS attacks and it provides an opportunity to an attacker to gain access to a large number of compromised computers by exploiting their vulnerabilities to set up attack networks or Botnets. Once attack network or Botnet has been set up, an attacker invokes a large-scale, coordinated attack against one or more targets. Asa result of the continuous evolution of new attacks and ever-increasing range of vulnerable hosts on the internet, many DDoS attack Detection, Prevention and Traceback mechanisms have been proposed, In this paper, we tend to surveyed different types of attacks and techniques of DDoS attacks and their countermeasures. The significance of this paper is that the coverage of many aspects of countering DDoS attacks including detection, defence and mitigation, traceback approaches, open issues and research challenges

    Threshold Verification Technique for Network Intrusion Detection System

    Get PDF
    Internet has played a vital role in this modern world, the possibilities and opportunities offered are limitless. Despite all the hype, Internet services are liable to intrusion attack that could tamper the confidentiality and integrity of important information. An attack started with gathering the information of the attack target, this gathering of information activity can be done as either fast or slow attack. The defensive measure network administrator can take to overcome this liability is by introducing Intrusion Detection Systems (IDSs) in their network. IDS have the capabilities to analyze the network traffic and recognize incoming and on-going intrusion. Unfortunately the combination of both modules in real time network traffic slowed down the detection process. In real time network, early detection of fast attack can prevent any further attack and reduce the unauthorized access on the targeted machine. The suitable set of feature selection and the correct threshold value, add an extra advantage for IDS to detect anomalies in the network. Therefore this paper discusses a new technique for selecting static threshold value from a minimum standard features in detecting fast attack from the victim perspective. In order to increase the confidence of the threshold value the result is verified using Statistical Process Control (SPC). The implementation of this approach shows that the threshold selected is suitable for identifying the fast attack in real time.Comment: 8 Pages, International Journal of Computer Science and Information Securit

    Flow-oriented anomaly-based detection of denial of service attacks with flow-control-assisted mitigation

    Get PDF
    Flooding-based distributed denial-of-service (DDoS) attacks present a serious and major threat to the targeted enterprises and hosts. Current protection technologies are still largely inadequate in mitigating such attacks, especially if they are large-scale. In this doctoral dissertation, the Computer Network Management and Control System (CNMCS) is proposed and investigated; it consists of the Flow-based Network Intrusion Detection System (FNIDS), the Flow-based Congestion Control (FCC) System, and the Server Bandwidth Management System (SBMS). These components form a composite defense system intended to protect against DDoS flooding attacks. The system as a whole adopts a flow-oriented and anomaly-based approach to the detection of these attacks, as well as a control-theoretic approach to adjust the flow rate of every link to sustain the high priority flow-rates at their desired level. The results showed that the misclassification rates of FNIDS are low, less than 0.1%, for the investigated DDOS attacks, while the fine-grained service differentiation and resource isolation provided within the FCC comprise a novel and powerful built-in protection mechanism that helps mitigate DDoS attacks
    • …
    corecore