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ABSTRACT

FLOW-ORIENTED ANOMALY-BASED DETECTION OF DENIAL OF
SERVICE ATTACKS WITH FLOW-CONTROL-ASSISTED MITIGATION

by
Sui Song

Flooding-based distributed denial-of-service (DDoS) attacks present a serious and major

threat to the targeted enterprises and hosts. Current protection technologies are still

largely inadequate in mitigating such attacks, especially if they are large-scale. In this

doctoral dissertation, the Computer Network Management and Control System (CNMCS)

is proposed and investigated; it consists of the Flow-based Network Intrusion Detection

System (FNIDS), the Flow-based Congestion Control (FCC) System, and the Server

Bandwidth Management System (SBMS). These components form a composite defense

system intended to protect against DDoS flooding attacks. The system as a whole adopts

a flow-oriented and anomaly-based approach to the detection of these attacks, as well as a

control-theoretic approach to adjust the flow rate of every link to sustain the high priority

flow-rates at their desired level. The results showed that the misclassification rates of

FNIDS are low, less than 0.1%, for the investigated DDOS attacks, while the fine-grained

service differentiation and resource isolation provided within the FCC comprise a novel

and powerful built-in protection mechanism that helps mitigate DDoS attacks.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

Distributed Denial of Service (DDOS) attacks overwhelm a targeted host or network with

an immense volume of malicious traffics from distributed or spoofed sources. In Feb.

2000, a number of the world's largest —e-commerce site was brought offline for days by

DDOS attacks, even though they had high security prevention services.

According to the CIAC (Computer Incident Advisory Capability), the first DDoS

attacks occurred in the summer of 1999 [1]. In February 2000, one of the first major

DDoS attacks was waged against Yahoo.com . This attack kept Yahoo off the Internet for

about 2 hours and cost Yahoo a significant loss in advertising revenue [2]. Another

recent DDoS attack occurred on October 20, 2002 against the 13 root servers that provide

the Domain Name System (DNS) service to Internet users around the world. They

translate logical addresses such as www.yahoo.edu  into a corresponding physical IP

address, so that users can connect to websites through more easily remembered names

rather than numbers. If all 13 servers were to go down, there would be disastrous

problems accessing the World Wide Web. Although the attack only lasted for an hour

and the effects were hardly noticeable to the average Internet user, it caused 7 of the 13

root servers to shut down, demonstrating the vulnerability of the Internet to DDoS attacks

[3]. If unchecked, more powerful DDoS attacks could potentially cripple or disable

essential Internet services in minutes.

1
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There are various ways of launching a DDOS attacks. Flooding-based Distributed

DoS attack, or simply DDoS attack, is another form of DoS attack. They simply exploit

the huge resource asymmetry between the Internet and the victim in that a sufficient

number of compromised hosts are amassed to send useless packets toward a victim

around the same time. The magnitude of the combined traffic is significant enough to

jam, or even crash, the victim (system resource exhaustion), or its Internet connection

(bandwidth exhaustion), or both, therefore effectively taking the victim off the Internet.

Today, researchers are still struggling to devise an effective solution to the DDoS

problems. Although many commercial and research defenses have appeared, none of

them provide complete protection from the threat. Rather, they detect a small range of

attacks that either use malformed packets or create severe disturbances in the network;

and they handle those attacks by non-selectively dropping a portion of the traffic destined

for the victim. Clearly this strategy relieves the victim from the high-volume attack, but

also inflicts damage to legitimate traffic that is erroneously dropped.

There are two main features of DDoS attacks that severely challenge the design of

successful defenses:

(1) IP source address spoofing. Attackers frequently use source address spoofing during

the attack — they fake information in the IP source address field in attack packet headers.

One benefit attackers receive from IP spoofing is that it is extremely difficult to trace the

agent machines. The other advantage that IP spoofing offers to the attackers is the ability

to perform reflector attacks. To mitigate Spoofing DDoS attacks, much of the current

research focuses on anti-spoofing such as ingress filtering [4], route-based packet

filtering [5], and various IP traceback protocols [6], [7]. Their effectiveness often
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depends on a universal deployment on the Internet. With a partial deployment, source-

address spoofing remains feasible. Even if traceback could be successfully performed in

the face of IP spoofing, it is difficult to say what actions could be taken against hundreds

or thousands of agent machines. Such a large number prevents any but crude automated

responses aimed at stopping attack flows close to the sources. Victim cannot filter out

spoofed IP packets, wastes resources.

(2) Similarity of attack to legitimate traffic. Many network based attacks can trigger

numerous false positives because of normal traffic looking very close to malicious traffic.

Therefore, any type of traffic can be used to perform a successful denial-of-service

attack. Some traffic types require a higher attack volume for success than others, and

attack packets of different types and contents target different resources. However, if the

goal is simply to cripple the victim's operation, sending sufficiently large volumes of any

traffic and clogging the victim's network can meet it. Attackers tend to generate

legitimate-like packets to perform the attack, obscuring the malicious flow within

legitimate traffic. Since malicious packets do not stand out from legitimate ones, it is

impossible to sieve legitimate from attack traffic based purely on examination of

individual packets. A defense system must keep a volume of statistical data in order to

extract transaction semantics from packet flows and thus differentiate some legitimate

traffic (e.g. belonging to lengthy well-behaved transactions) from the attack traffic. To

perform traffic separation, we introduce the concept "flow" to statistic traffics. An IP

flow is a unidirectional series of IP packets of a given protocol, traveling between a

source and destination, within a certain period of time. Based on "flow" concept, we

developed a flow-based aggregation technique to handles high amounts of similar packet
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data and keep many statistics on the dynamics of those structures to detect high-volume

or anomalous communications.

These two features create contradictory requirements for DDoS defense. In order

to perform accurate traffic separation, the defense system requires a lot of resources for

record keeping. Therefore, it can only handle small to moderate traffic volumes. On the

other hand, the need to control a large portion of the attack traffic requires placement at

points that relay a high traffic volume. Those two requirements can hardly be satisfied at

a single deployment point. A majority of DDoS defense systems sacrifice the first goal —

traffic separation — to achieve the second goal — control of a large portion of the attack

traffic. Those systems are located at or near the victim site, which enables them to detect

and control the majority of DDoS attacks, but also places the defense system on the path

of high-volume traffic, which impairs its selectiveness.

In summary, Existing technologies are simply not up to the task of protecting

against today's DDoS attacks. Passive detection technologies working with static filtering

solutions won't work against today's complex, sophisticated attacks; they simply don't

offer the dynamic detection and mitigation capabilities required to identify and instantly

stop attack traffic to protect mission-critical operations. What's required today is a new

type of solution that not only detects the most sophisticated DDoS attacks, but also

delivers the ability to block increasingly complex and hard-to-detect attack traffic without

impacting legitimate business transactions. Such an approach demands more granular

inspection and analysis of attack traffic than today's solutions can provide.

This dissertation studies a Computer Network Management and Control System

(CNMCS), which consists of Flow-based Network Intrusion Detection System (FNIDS),
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Flow Congestion Control (FCC) System, and Firewall/Filtering Modulate and Server

Bandwidth Management System. The purpose of the FDPS is to construct a multi-layered

defense system to protect the private network from DDoS flooding.

CNMCS has been evaluated by the DARPA'98 data or Conex Testbed data. The

CNMCS has demonstrably achieved remarkable result, which will strongly support flow

control; the false positive, false negative and misclassification rates found are low, less

than 0.1%, for DDOS attacks.

1.2 The Proposed Approach

In this dissertation, a multi-layered defense infrastructure has been proposed to detect

attacks, control network traffic flow and protect the server system from DDoS attacks.

This multi-layered defense infrastructure integrates Flow-based Network Intrusion

detection system (FNIDS), Flow-based Congestion Controller, Firewall and DynaTraXTM

Physical link switch together; the figure 1.1 shows this architecture.

Figure 1.1 The management and control of computer network architecture
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The Flow-based Network Intrusion Detection System (FNIDS) is placed behind

the firewall to monitor the network status of the whole local area network. A

DynaTraX(TM) Physical Link Switch is placed between the LAN switch and the end

users to set up physical connections. A Server bandwidth Management System (SBMS)

is used to receive the alert information (such as: maliciousness of flow, flow rate etc.)

from the FNIDS to decide whether to inform the firewall to blocks malicious flows or

drop malicious packets, or to command the DynaTraXTM system to disconnect the

overload links to servers.

All of these parts construct a multi-layered defense system described as

following:

The first layer of prevention approach is an intelligent firewall, which consists of

two distinguishable phases: Flow-based Network Intrusion Detection System (FNIDS)

and Firewall/Packet Filtering. The detection part (FNIDS) is responsible for identifying

DDoS attacks or attack flow. The firewall is used to drop malicious packets or block

malicious clients. After receiving information on packets or flows, the filtering part is

responsible for classifying those packets/flows and then dropping them (rate-limiting is

another possible action). It is very important to first point out that effective attack

detection does not always translate into effective packet/flow filtering. Because of the

distributed nature of the attack (DDoS), the detection phase can only use the victim's

identities, such as IP address and port number, as the signatures of the attack flows. As a

result, packet filtering usually drops attack packets/flows as well as normal packets/flows

because both match the signatures (or flow key). As a result, packet filtering does not

always help restore the victim's service. Additionally, once faced by large flooding
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attacks, such as: spoofing attacks, amplifier attacks or reflector attacks etc., the flow

number of a flow-based analysis method rapidly increases, which could exhaust a lot of

memories and CPU resources and disable the flow-based analysis method. To address

these problems, an Adaptive Flow Aggregation Approach (AFAR) is presented, which

consists of flow-based aggregation module, Flow Population Density/Distributions

Detection Mechanism (FAP2D-DM) and Fuzzy Supervisory Controller. Flow-based

aggregation module is responsible for grouping packets based on flow keys, which

consist of source IP/Port, destination IP/port and protocol etc. A Flow Population

Density/Distributions Detection Mechanism (FAP2D-DM) is proposed to detect how

packets aggregate at different levels based on Multi-stage Packet Aggregation

Architecture (MPAA), such as: how addresses are aggregating at a given prefix length.

Fuzzy Supervisory Controller is to activate the most adaptive flow aggregation scheme

for packet aggregates. Therefore, APAA provides a more flexible fine-grained flow

aggregation approach and a more effective defense measurement against flooding attacks.

The Second layer of prevention approach is to use feedback control principle to

realize network flow control to prevent incoming traffic from exceeding a given

threshold, while allowing as much incoming, legitimate traffic as possible and dropping

as much malicious traffic as possible. Because current detection of the attack is unreliable

and may have high false-positives; rate limiting is a better-suited response than complete

filtering. Filtering out all the traffic to the victim would greatly damage misclassified

flows, whereas rate limiting still allows some packets to reach the destination and thus

keeps connection alive. Allowing some attack packets through is acceptable, since the

attack's overall impact depends on the volume of the attack packets. Moreover, if the
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flow-rate of low-priority is reduced, the high-priority flow will get more chances to

access the server they share, which eventually reduce the congestion and improve the

throughput of the high-priority flow. This architecture consists of a Fine-grained Quality-

of-Service (FQoS) regulator and PID controller. The whole system adopts a control-

theoretic approach to adjust the flow rate of every link so as to maintain the high priority

flow-rates at their desired level, thus guaranteeing QoS to high-priority flow. The flow-

based network intrusion detection is used to classify each flow in the network into

different priority classes and give different treatment to the flow-rates belonging to

different classes. The architecture is shown to be highly flexible service differentiation

and robust against different types of flooding attacks, and traditional network traffic

control can be implemented using one common framework. The fine-grained service

differentiation and resource isolation provided inside the Flow-based Congestion Control

(FCC) is a powerful built-in protection mechanism to mitigate DDoS attacks, reducing

the vulnerability of Internet to DDoS attacks.

The last layer is a Server Bandwidth Management System (SBMS), which

integrated DynaTraXTM, a high-speed digital matrix cross-connect switch, with Flow-

based IDS together to thwart the increasing threat posed by cyber terrorists. The

DynaTraXTM has the ability to create a critical and meaningful solution to stop hackers

from intruding into networks, thereby thwarting cyber terrorists. Especially once FNIDS

detects DDOS attacks and some links are overload, the Server Management System will

use the fuzzy inference engine to make decision if DynaTraXTM electronically

disconnects links and reconnects them to a simulated network port, called "honey pot",

within 60-90 nanoseconds that allows you to hold and trace them.
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1.3 Key Contributions

This thesis presents a novel multi-layered defense infrastructure, which includes Flow-

based Network Intrusion Detection (FNIDS), Flow Congestion Control (FCC) System,

Firewall, and Server Bandwidth Management System (SBMS). This thesis makes several

key contributions:

(1) It presents a flow-based statistic method in Network Intrusion detection. Efficiently

and accurately modeling network behavior is essential for defending attacks. The whole

system is based on "flow" concept, we developed a flow-based aggregation technique

that dramatically reduces the amount of monitoring data and handles high amounts of

statistics and packet data. FNIDS sets up flow-based statistical feature vectors and reports

to two parallel detectors: Network Behavior Analyzer and Neural Network Classifier.

Network Behavior Analyzer analyzes and visualizes network behavior change. Neural

Classifier uses Back-Propagation networks to classify score metric of each flow. Existing

Flow-based Network Intrusion Detection Systems (FNIDS) mainly analyze and detect

bandwidth type Denial of services attack. By applying up to 22 parameters for each flow,

our FNIDS can detect both bandwidth type DOS and protocol type DOS. Moreover, flow

here could be any set of packets sharing certain common property as "flow key". FNIDS

configures flow flexibly to provide security from network level to application level (IP,

TCP, UDP, HTTP, FTP...), and different aggregation schemes, such as server -based,

client-based flow.

(2) It presents an Adaptive Flow Aggregation Approach (AFAA). This approach consists

of flow-based aggregation module, Flow Population Density/Distributions Detection

Mechanism and Fuzzy Supervisory Controller. Flow-based aggregation module is
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responsible for grouping packets based on flow keys, which consist of source IP/Port,

destination IP/port and protocol etc. A Flow Population Density/Distributions Detection

Mechanism (FAP2D-DM) is proposed to detect how packets aggregate at different levels

based on Multi-stage Packet Aggregation Architecture (MPAA), such as: how addresses

are aggregating at a given prefix length. Expansion and contraction of flow aggregation

enable adaptive flow aggregation approach (APAA) to exploit the hierarchical structure

of the 5-tuples. Deeper stage or level of the Multi-stage Packet Aggregation Architecture

(MPAA) has more fine-grained flow aggregations. The adaptive fine-grained flow

aggregations mechanism enables the flow-based defense systems to defense against

spoofed flooding attack or amplification attacks. Fuzzy Supervisory Controller is to

activate the most adaptive flow aggregation scheme for packet aggregates. Therefore,

APAA provides a more flexible fine-grained flow aggregation approach and a more

effective defense measurement against flooding attacks.

(3) It presents a control theoretical analysis for flow-based congestion control to mitigate

DoS/DDoS attacks. In this thesis, a Flow-rate Congestion Control (FCC) architecture was

presented that uses the Flow-based Network Intrusion Detection System (FNIDS) to

classify the traffic flows into different priority classes and give different treatment to the

flow-rates belonging to different classes, and FCC adopted a control-theoretic approach

adaptively to control the low-priority flows so as to maintain the high priority flow-rates

at their desired level, thus guaranteeing QoS to high-priority flow. At the same time, It

adaptively maximizes low priority flows while maintaining high priority flows at a

desired level so that full utilization of network medium can be achieved through adaptive

rate control. In this thesis, dynamic network flow model was established, which was
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integrated with Fine-grained Quality-of-Service (FQoS) regulator and a PID controller to

form a Flow-based Congestion Control (FCC) System. The architecture was shown to be

highly flexible and robust against different types of attack patterns, and traditional

network traffic control can be implemented using one common framework.

1.4 Roadmap of the Dissertation

This dissertation is organized in the following manner. Chapter 2 presents the philosophy

and design of the flow-based Intrusion detection system. It discusses our motivation for

the current design and also presents in great detail key components of the system;

Chapter 3 provides a highly detailed overview of Adaptive Flow Aggregation Approach

(AFAA) for defense system; Chapter 4 presents a control theoretical analysis for flow-

based congestion control to mitigate DDoS attacks; Chapter 5 present the server

bandwidth management system; We conclude the thesis in Chapter 6.



CHAPTER 2

A FLOW-BASED NETWORK INTRUSION DETECTION
FOR DENIAL OF SERVICES

In this chapter, a novel Flow-based Network Intrusion Detection System (FNIDS) is

presented. An IP flow is a unidirectional series of IP packets of a given protocol,

traveling between a source and destination, within a certain period of time. Based on

"flow" concept, a flow-based packet aggregation architecture is developed, which

dramatically reduces the amount of monitoring data and handles high amounts of

statistics and packet data. FNIDS sets up flow-based statistical feature vectors and reports

to two parallel detectors: Network Behavior Analyzer (NBA) and Neural Network

Classifier (NNC). Network behavior analyzer analyzes and visualizes network behavior

change. Neural network classifier uses back-propagation networks to classify score

metric of each flow. Existing flow-based network intrusion detection systems mainly

analyze and detect bandwidth type Denial of services attack. By applying up to 22

parameters for each flow, our FNIDS can detect both bandwidth type DOS and protocol

type DOS. Moreover, flow here could be any set of packets sharing certain common

property as "flow key". FNIDS configures flow flexibly to provide security from network

level to application level (IP, TCP, UDP, HTTP, FTP...), and different aggregation

schemes, such as server -based, client-based flow. This novel IDS has been evaluated by

using DARPA 98 data and CONEX test-bed data. Results show the success in terms of

different aggregation schemes for both datasets.

12
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2.1 Introduction

2.1.1 Background

Distributed Denial-of-Service (DDoS) attack presents a very serious threat to the stability

of the Internet. In a typical DDoS attack, a large number of compromised hosts are

amassed to send useless packets to jam a victim, or its Internet connection, or both. In the

last two years, it is discovered that DDoS attack methods and tools are becoming more

sophisticated, effective, and also more difficult to trace to the real attackers. Identifying,

diagnosing and treating anomalies in a timely fashion are a fundamental part of day-to-

day network operations. However, modeling the traffic at the packet level has proven to

be very difficult since traffic on a high-speed link is the result of a high level of

aggregation of numerous flows. Recently, a new trend has emerged for modeling high-

speed Internet traffic at the flow level. Flow aggregation techniques are used to aggregate

flows (packets) into one flow with a larger granularity of classification (e.g., from port

number to IP address). Aggregated flows have a larger number of packets and longer

flow duration that dramatically reduces the amount of monitoring data and handles high

amounts of statistics and packet data. Therefore, Internet traffic flow profiling has

become a useful technique in the passive measurement and analysis field. The

prerequisites for flow-based measurements are now available within the network

infrastructure — particularly, in popular Cisco network devices. The integration of this

feature has enabled the 'flow' concept to become a valuable method.

Despite a large literature on traffic characterization, traffic anomalies remain

poorly understood. There are a number of reasons for this. First, identifying anomalies
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requires a sophisticated monitoring infrastructure. Unfortunately, most ISPs only collect

simple traffic measures, e.g., average traffic volumes (using SNMP). More adventurous

ISPs do collect flow counts on edge links, but processing the collected data is a

demanding task. A second reason for the lack of understanding of traffic anomalies is that

ISPs do not have tools for processing measurements that are fast enough to detect

anomalies in real time. Thus, ISPs are typically aware of major events (worms or

flooding DoS attacks) after the fact, but are generally not able to detect them while they

are in progress.

2.1.2 Motivation

In this chapter, a novel flow-based anomaly network intrusion detection system (FINDS)

is presented. An IP flow is a unidirectional series of IP packets of a given protocol,

traveling between a source and destination, within a certain period of time. FNIDS sets

up flow-based statistical feature vectors and reports to two parallel detectors: Network

Behavior Analyzer (NBA) and Neural Network Classifier (NNC). Network Behavior

Analyzer analyzes and visualizes network behavior change. Neural network classifier

uses back-propagation networks to classify score metric of each flow. Existing flow-

based network intrusion detection systems mainly analyze and detect bandwidth type

Denial of Services (DoS) attack. By applying up to 22 parameters for each flow, our

FNIDS can detect both bandwidth depletion DOS and resource depletion DOS.

Moreover, flow here could be any set of packets sharing certain common property as

`flow key". FNIDS configures flow flexibly to provide security from network level to
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application level (IP, TCP, UDP, HTTP, FTP...), and different aggregation schemes, such

as server -based, client-based flow.

The rest of the Chapter is organized as follows: section 2.2 introduces the basic

concept of flow and flow aggregation schemes; Section 2.3 describes the system

architecture: feature generator, Network Behavior analyzer and neural network classifier.

Section 2.4 described the detail of flow-based detector: Network Behavior Analyzer

(NBA) and Neural Network Classifier (NNC). Section 2.5 introduces the CONEX Test

bed and the attack schemes we simulated. Some experimental results are also reported in

that section. Section 2.6 draws some conclusions and outlines future work.

2.2 Flow Management Module

2.2.1 What is Flow?

Strictly speaking, flow is a genetic concept. An IP flow is a set of packets, that are

observed in the network within some time period, and that share some common property

known as its key, which can be a TCP connection or a UDP stream described by source

and destination IP addresses, source and destination port numbers, or the protocol number

etc. If we collect and statistic packets from network based on pre-defined flow identifier

(or key), there are countless aggregation schemes. The flexible data collection and

analysis implementation based on flow make the NIDS have the advantage of greatly

reducing the amount of data collected and the features formed by this aggregation

schemes can provide detailed network performance information.
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For flow-based monitoring, a flow is identified by source-destination addresses,

source-destination port numbers and protocol. Thus, the combination of following five

fields is used for flow Key:

• Source IP address
• Destination IP address
• Source port number
• Destination port number
• Layer 3 protocol type

2.2.2 Formation of Flow Statistics

The object of flow aggregation is to categorize packets by applying the header fields of a

packet. The information relevant for classifying a packet is contained inside the packet in

N distinct header fields, denoted H[1],H[2],....,H[N]. For simplify, the fields in our

system typically used to classify IP packets are the destination IP address, source IP

address, destination port number, source port number, protocol number and protocol

flags. The flow key (FK) is denoted by FK=[Destination IP, Source IP, Destination Port,

Source IP, Protocol]. Using these fields for classifying IP packets, a flow aggregation

scheme specifies a flow key, for example, FK = (192.168.10.120, *, 23, *, TCP),

matching traffic addressed to subnet 192.168.10.1 using TCP protocol and destination

port 23, which is used for incoming Telnet A firewall may disallow Telnet into its

network using a filter to block the flow with this flow key.

The flow key (FK) is an array of N values in program, where H [i] is a

specification on i-th header field. The value H [i] specifies what i-th header field of a

packet must contain in order for the packet to match the flow key. These specifications

often have the following forms: exact match, for example "source address must equal
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192.168.10.16"; prefix match, like "destination address must match prefix 192.68.10. * ";

Or range match, e.g. "destination port must be in the range 0 to 1023". If specifying

Server's port (destination IP is home net) and protocol, FNIDS can monitor the specific

services, such as: using TCP protocol and server's port 23, which is used for incoming

Telnet. Therefore, FNIDS configures flow flexibly to provide security from network level

to application level (IP, TCP, UDP, HTTP, FTP, Telnet...).

In conclusion, a packet is said to match a flow Key (FK) if each field of the

packet matches the corresponding field of FK. For instance, let FK = (192.168.10.* , *, *,

23,TCP) be a flow key, then, a packet with header(192.168.10.120, 10.10.10.1, TCP, 23,

1025) matches FK, and is therefore aggregated. The packet (192.168.10.120, 10.10.10.1,

21, 1024, TCP), on the other hand, doesn't match.

2.2.3 Flow Key Lifetimes

FNIDS operates by creating Flow-Keys that contain the information for all active flows.

The Flow Key is built by processing the first packet of a flow through the standard

switching path. A Flow record is maintained within the flow buffers for all active flows.

Each flow record in the flow buffers contains key fields that can be later used for

exporting data to a collection device. Identifying packets with similar flow characteristics

and counting or tracking the packets and bytes per flow create each flow record. Probes

collect the flow details or buffer information periodically.

The key to flow buffer is highly intelligent flow buffer management, especially

for densely populated flow features in a time window. The flow management module
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contains a highly sophisticated set of algorithms for efficiently determining if a packet is

part of an existing flow or should generate a new flow key. The algorithms are also

capable of dynamically updating per-flow accounting measurements rules for expiring

Flow keys include:

• Flows that have been idle for a specified time are expired and removed from the
buffer.

• Long-lived flows are expired and removed from the buffer.

2.2.4 Flow Aggregation Schemes

Flow aggregation schemes are a series of flow-aggregated methods in that it segregates

the network traffic into a series of non-overlapping consecutive time windows and

aggregate all features based on their flow Keys. Flow keys are a set of values that

determine how a flow is identified. The flow key determines the formation of flow

statistic.

Typically in our system the flow keys are a fixed 5 fields of packet header, which

are defined as <Source IP Address, Destination IP Address, Source Port, Destination

Port, Protocol>. The Flow aggregation schemes have the capability to define Flow Mask

including Field Mask and Prefix Mask. They are a predefined set of flow key values.

2.2.4.1 Field Aggregation Schemes

Field aggregation schemes segregates aggregate all features based on their flow Key's

fields. In order to form various field aggregation schemes, Field Mask (FM) is defined in

this system to mask the filed of flow key, such as Source IP or Port etc. The field mask

format is defined in the following table 2.1.



Table 2.1 The Field Mask Format

Field Source IP Dest. IP Source Port Dest. Port Protocol

Field Mask 1/0 1/0 1/0 1/0 1/0

Where: '1' means valid and '0' means disable.

To coordinate flow aggregation with different field mask, Field aggregation

schemes determine the fields from which you want to collect data. Four typical flow

aggregation schemes are showed in Figure 2.1, which also shows which fields are valid

for the different aggregation schemes and which fields are parts of the keys. Key fields

define a unique flow.

Session-based aggregation scheme

Field Source IP Des. IP Source
Port Dest. Port Protocol

Field Mask 1 1 1 1 1

Source-based aaareaation scheme
Field Source IP Des. IP Source

Port Dest. Port Protocol

Field Mask 1 0 0 0 0

Destination-based aaareaation scheme
Field Source IP Des. IP Source

Port Dest. Port Protocol

Field Mask 0 1 0 0 0

Protocol-Port aaareaation scheme
Field Source IP Des. IP Source

Port Dest. Port Protocol

Field Mask 0 0 1 1 1

Figure 2.1 The examples of typical flow field aggregation

19
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In figure 2.1, the session-based aggregation scheme has the features aggregated

based on the 5 fields of {source IP, destination IP, and source port, and destination port,

protocol}. The destination-based aggregation scheme uses a simple scenario way to

aggregate flows according to their Destination IP. This algorithm can reduce the number

of keeping the flow information in system buffer. The source-based aggregation scheme

is similar to Destination-Based aggregation scheme. The source-based aggregation

scheme has the flow-based features aggregated by their source IP.

In order to specify some certain field aggregations, we can use some rules in this

system. For example: In order to specially monitor and analyze network traffics to

protected servers, we can use client-based aggregation scheme as follows:

Input:
S: Sequence of monitored network traffic
SIP:Homenet IPs

Output: Flow-based aggregation scheme
Begin For each s in S do

Find IP of s from SIP
If IP is not found then

source-based traffic aggregates
Else

destination-based traffic aggregates
Endif

EndFor
End

Figure 2.2 Client-base aggregation scheme

Similarly, we can use the same way to form server-based NIDS in order to

monitor traffics to servers.
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2.2.4.2 Prefix Aggregation Scheme

We use ClDR notation for prefixes and aggregates. Given an IP address 'a' and prefix

length 13', with 0_ p.__ 32, "alp" refers to the p-bit prefix of 'a' or, equivalently, the

aggregate containing all addresses sharing that prefix. An aggregate with prefix length p

is called a p-aggregate, or, sometimes, a "/p". A p-aggregate contains 2 32-P addresses, so

aggregates with short prefix lengths contain more addresses; the single 0-aggregate

contains all addresses and a 32-aggregate is equivalent to a single address.

In Prefix Aggregation scheme, prefix lengths are separately defined as five

values, which are 0,8,16,24 and 36. The'0' represent all bits are valid and the '32' means

all bits are masked. Thus there are only five prefix mask forms defined in Prefix

Aggregation Scheme, which are corresponding to the five prefix mask levels. Shown

below are examples of used Prefix Aggregation Scheme notation of IPv4 addresses.

0-aggregate: 192.168.10.2/0	 192.168.10.2
8-aggregate: 192.168.10.2/8 	 192.168.10.*

16-aggregate: 192 .168.10.2/16192.168.*.*
24-aggregate: 192.168.10.2/24192.*.*.*
32-aggregate: 192.168.10.2/32*.*.**

Therefore, there are the following two kinds of prefix aggregation schemes:

• Destination-prefix aggregation
• Source-prefix aggregation

2.2.4.3 Flow Aggregation Schemes

Flow aggregation scheme is to joint field aggregation scheme and prefix aggregation

scheme together and group data flows with the same field, source prefix, destination

prefix, source prefix mask, and destination prefix.
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For example, FK = (192.168.10.*, * , 23, * , TCP), matching traffic addressed to

source IP prefix 192.168.10.*.and using TCP protocol and destination port 23, which is

used for incoming Telnet A firewall may disallow Telnet into its network using a filter to

block the flow with this flow key.

For example: In Unix system, we use "iptables" to drop all packets which match

the FK = (192.168.10. *, *, 23, *, TCP) as follows:

iptables - A FORWARD —i eth0 —o ethl -s 192.168.10.* -sport 23 —p TCP —j drop

This command line means drop all packets matching the FK from network card

eth0 to network card ethl .

2.2.4.4 Packet Count Distribution of Flow Aggregations

Previous traffic studies [11][21][22] have demonstrated the self-similarity of network

traffic, which show noticeable bursts at a wide range of time scales, the lengths of bursts

in network traffic and the sizes of files in some systems.

Aggregation population distribution in address domain [21] provides a more fine-

grained measurement of how packets are aggregated at a prefix length. Besides prefix

aggregation schemes can be used to aggregate traffic at a given prefix length, we

presented field aggregation schemes for traffic aggregation .In this section, we further

demonstrate that Field Aggregation Population Distribution also has self-similarity in

some cases, which provides a more fine-grained measurement of how packets are

aggregated at a given field mask.

The packet count of an aggregate is the number of active packet of flows

contained in that aggregate. Two or more aggregation schemes have similar population
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distribution, meaning they can express the same or similar characteristic of network

traffic. It is very important. Especially under DDoS flooding attack, FNIDS using

session-based aggregation scheme would form a lot of flow records, which take an

amount of memories and CPU processing time. If using grass-grained aggregation

scheme, which has the similar characteristic with session-based aggregation, such as

Client-based aggregation scheme, the requirement of memories and CPU process time

will drop greatly, and at the same time, it can detect attacks with the similar

misclassification rate.

Log-log complementary CDF graphs form a well-known test for heavy-tailed or

power-law tail, distribution. In order to demonstrate that flow aggregation population

distribution has self-similarity, we obtained 24-hour long trace from New Jersey Bergen

community college, and sampling ratio is 1/24.

Figure 2.3 Log-log complementary CDF of packet counts



24

Figure 2.3 presents a log-log complementary CDF of the packet counts of flows.

All four distributions appear to have power law tails. Here, a is approximately 0.9179 for

session-based, 0.3226 for server-based, 0.9869 for client-based and 0.9711 for IP-base

aggregation. These values were calculated by polynomial curve fitting of MATLAB.

2.3 Flow-based Network Intrusion Detection System Architecture

Flow-based Network Intrusion Detection System (FNIDS) is a layered architecture,

which include two main parts: feature generator and flow-based detector, shown in

Figure 2.4.

The feature generator is similar to Cisco's NetFlow. But FNIDS can provide rich

features (more than 22) to be selected. These features represent network states. Thus,

they can be used in anomaly analysis or in signature analysis. And the traffic rate of

flows can be used for traffic control.

The flow-based detector has two kinds of detection methods: anomaly and

signature. In this paper, we will introduce anomaly method. In anomaly method, we will

present two methods to detect DDoS: Neural Network Classifier and Network Behavior

Analyzer. Network behavior analyzer analyses and visualizes network behavior change.

Neural network classifier uses back-propagation networks to classify score metric of each

flow. Existing Flow-based Network Intrusion Detection Systems (FNIDS) mainly

analyze and detect bandwidth depletion Denial of services attack. By applying up to 22

parameters for each flow, our FNIDS can detect both bandwidth depletion DOS and

resource depletion DOS. Moreover, flow here could be any set of packets sharing certain
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common property as "flow key". FNIDS configures flow flexibly to provide security

from network level to application level (IP, TCP, UDP, HTTP, FTP...), and different

aggregation schemes, such as server -based, client-based flow.

Figure 2.4 The flow-based network intrusion detection system architecture
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Event Preprocessor: Collects the network traffic of a host or a network, Event handlers

generate reports to Flow management module;

Event Time: Periodically calls Feature Extraction Module to converts the statistic

information of flows into the format required by the statistical model.

Flow Management Module: efficiently determines if a packet is part of an existing flow

or should generate a new flow key; According to different flow key, this module

aggregates flows together based on their flow keys, and dynamically updates per-flow

accounting measurements;

Probe: Collects the network traffic, abstracts the traffic into a set of statistical parameters

to reflect the network status.

Feature Extraction: Periodically extracts the features, which describe the behaviors of

flows.

Feature Scoring Metric: Calculates the probability scores of these features by

comparing the features with the reference model generated by past normal and attack

users. The probability scores are measurements indicating how likely for a feature to take

the observed value.

Neural Network classifier: Classifies the score vectors to prioritize flows with

maliciousness. The higher maliciousness of a flow means the flow has the higher

possibility of attacker.

Feature Analyzer: Identify the attack by detecting abrupt network behavior changes.
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2.4 Flow-based Detector

As described in section 2.3, FNIDS includes two classifiers to detect anomaly attacks:

Network Behavior Analyzer (NBA) and Neural Network Classifier (NNC). NBA is a

simple and fast response to behavior change of total network traffic, which uses similar

principle as in [13] [16] [17]. NBA helps administrator to monitor traffic state of whole

network. Moreover, by providing an efficient and effective feature set, our NBA can

analyze non-flooding attacks as well as flooding attacks. NNC is an advanced anomaly

intrusion detection system, which scores each flow according to reference model, uses

neural network to classify each flow. All alerts sent by NND contain IP addresses, which

firewalls can use to block malicious flows.

In this section, we first discuss feature set, which is using by both NBA and NND,

and then discuss these two detectors in detail.

2.4.1 Statistical Features for Flow-based NIDS

Detecting intrusions involves the multi-variants classifications based on the monitored

features. Generally, intrusion detection systems are designed to use as many features as

the designers could think they might be useful. For example, JAM [18], an intrusion

detection system prototyped by Columbia University, monitors 41 different parameters

for each session. In our system, FNIDS provided 31 features, which are relevant in DoS

attack detection [15]. The table 2.2 lists 22 selected features.



Table 2.2 The Features in Set22

Index Name Index Name

1 in.ip-pkt-rate 12 in.tcp-con-new-aborted

2 in.ip-byt-rate 13 in.tcp-con-half-opened-ratio

3 in.ip-frag-rate 14 in.tcp-con-duration

4 in.ip-defrag-error-rate 15 in.tcp-con-diff-src

5 in.ip-csum-error-rate 16 in.tcp-con-diff-dst

6 in.tcp-pkt-len 17 in.tcp-con-anomalous-entropy

7 in.tcp-pkt-rate 18 in.icmp-pkt-rate

8	 n.tcp-syn-pkt-rate 19 in.icmp-byt-rate

9 in.tcp-rst-pkt-rate 20 in.icmp-diff-src

10 in.tcp-con-new-opened 21 in.icmp-diff-dst

11 in.tcp-con-new-closed 22 io.icmp-anomalous-echo-reply

2.4.2 Network Behavior Analyzer (NBA)

FNIDS produces a variety of graphs providing a different view of network behaviors. For

example, flow-per-second graphs, packet-per-second and byte-per-second bandwidth

utilization graphs. Also, configuration of FNIDS can aggregate counters into larger

granularities over longer times. For instance, samples are combined into 30 seconds, 3

minute samples, three hour samples, and finally into 24 hour samples, facilitating both

short-term and long-term analysis. These graphs will help administrators fast to

understand the whole network states.

Moreover, flow-based aggregation schemes deal with not only the variation of the

number of flows, but also with the changes in the distribution of flows. An analysis of the

flow-based features could be effective for revealing flood types of attacks. For example:

28
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when a flow is defined as the triple of source address, destination address and destination

port, the flood-based attacks spread flows over the destination IP addresses (or ports) in

random or dictionary mode style attacks.

In our statistical approach, the abnormality in feature vectors is determined by

detecting abrupt changes in their statistics. Our approach is based on the following:

Sudden changes in packet counts, especially when based on flow aggregation

scheme, are usually indications of a flood as well.

Figure 2.5 Traffic change due to ICMP and SYN flooding using time window

Figure 2.5 is an example graph based on flow counts representing a flood of

traffic. Its time-window was set at 30 seconds. The experience showed that a discrepancy

between the number of incoming and outgoing flows or packets is a possible indicator of

abusive traffic. Specially, in our experience with Flow-based NIDS, we have learned that
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a discrepancy between the number of inbound and outbound flows or traffics is an

indication of DOS flood attacks, such as: Neptune or Smurf.

Figure 2.6 Traffic change due to ICMP and SYN flooding using protocol aggregation

Figure 2.7 Packet size change due to POD attacks using protocol aggregation
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Figure 2.8 Fragment rate change due to teardrop attacks using protocol aggregation

Figure 2.6 is an example based on IP traffic rate representing two kinds of floods.

The x-axis of the figure is time window, in this experiment, it was set as 30seconds/time

window; the y-axis of the figure is traffic change, which shows the discrepancy between

the number of inbound and outbound flows or traffics. The figure 2.6 clearly shows when

the flooding attacks (Smurf and Neptune) happened. Figure 2.7 is an example graph

based on flow counts representing Pod attacks. Figure 2.8 is an example graph based on

IP fragment rate representing 'Teardrop' Attacks.

In summary, Network Behavior Analyzer (NBA) identifies and classifies DDOS

attacks, viruses and worms in real-time. Changes in network behavior indicate anomalies

that were clearly demonstrated in FNIDS data. Although network behavior analyzer can

provide network state abnormal changes and detect attacks accordingly, it couldn't show

provide details of attacks such as source IP, destination IP. That's why we need a more

advanced detector as followed.
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2.5 Neural Network Classifier

Neural network classifier extracts flow information from network sniffer, and attempts to

detect the presence of anomalies in each flow. Statistics have been used in anomaly

intrusion detection systems [16] [17], however most of these systems simply measure the

means and the variances of some variables and detect whether certain thresholds are

exceeded. SRI's NIDES [18][16] developed a more sophisticated statistical algorithm by

using x 2 -like test to measure the similarity between short-term and long-term profiles.

Here, neural network classifier maintains reference model of flow statistics features (22

features are using as in section 2.4.1) during training stage, calculates similarity metrics

for scoring distance of current flow from reference model, uses back-propagation neural

network for classifying each flow as normal or abnormal.

2.5.1 Reference Models

The extracted flow features are then scored based on the information of the reference

models. The reference models are in fact probability density functions (PDF) of the

feature values. Figure 2.9 showed the measured normal-type and attack-type PDF

samples of different features, which were based on Darpa 98 data of the 5 th and 6th

Thursday, including DoS/DDoS, like 'POD', 'Teardrop',' Neptune' and `Smurf' . Since

the actual legitimate flow distribution during attack is unknown, the approach needs to

establish a reference profile of normal users and the reference model of attackers from the

past traffic. Just only off-line reference model is not enough. We ensured that the

reference model would be updated actively in each time window. While attack packets
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arrive continuously and the true flow profile changes as new packets arrive, the reference

profile is updated and flow is scored at the same time.

Figure 2.9 The PDF of various packet rates based on Darpa 98 data set

Evidently, as seen from the graphs, there is some overlap between the normal-

type PDFs and the abnormal-type PDFs. This means that single parameter threshold

classification is error prone. However, it is most significant that, in general, the normal-

type and the abnormal-type PDFs are very different from each other at some features.

This means that statistical methods that capitalize on these differences can be very

effective, especially, if many or all of the features were utilized in unison in arriving at
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the classification decision. This is exactly how the technique used here and the resulting

tool, termed Flow-based Network IDS Intrusion Detection System (FNIDS), achieves its

high rate of success.

2.5.2 Score Metrics

There are many statistic metrics used in NIDS. Our current statistical model uses Single

Number Statistics (SNS). Let x be the feature value, Pn (x) be the probability of x in the

normal reference model, Pa(x) be the probability of x in the attack reference model, Pn , max

be the maximum probability of the normal reference model, and Pa ,max be the maximum

probability of the attack reference model. The distance of the SNS is defined as the

following metrics:

Single Number Statistics version 1(SNS1):

Single Number Statistics version 2(SNS2):

Single Number Statistics version 3(SNS3):

Where: S is between [-1,1]. S =1 means `normal'; and S= -1 means 'abnormal'

From the above equations, it can be seen that metric 1 is an anomaly detection

approach by comparing feature values with normal reference model. The metric 3 is a

normal detection approach by comparing feature value with abnormal reference model.

(2.1)

(2.2)

(2.3)



35

The metric 2 is a hybrid signature-anomaly detection approach by utilizing both known

normal and known attack knowledge. Apparently, the Metric 1 will be more robust to

detect new attacks; especially it can identify the low-rate attack without retraining neural

network, because the reference model of this way is only based on normal packets.

There are evidently, two kinds of feature vectors here, the normal N-type, labeled

as +1, and the malicious M-type, labeled as —1. These labeled N and M vectors can be

used for training (2/3 of the total number) and validating (1/3 of the total number) the

classifier. In this work, a neural network classifier was employed.

Table 2.3 The Performance of Difference Metrics on CONEX Testbed Data using
Session-based Aggregation Scheme

SNS 1 SNS2 SNS3
I umber of samples 100701 100701 100701
I umber of normal samples 99429 99429 99429
I umber of attack samples 1272 1272 1272
I umber of False Positives 12 100 363
I umber of False Negatives 0 0 0
I 	 isclassification Rate 0.000119165 0.000993039 0.00360473
I alse Positive Rate 0.000120689 0.00100574 0.00365085
I alse Negative Rate 0 0 0

In our experiments, we compared these metrics. Form Table 2.3, the results

showed that all these metrics can detect Dos. But the Table 2.3 shows that SNS2 and

SNS3 have high false positive. Since SNS 1 has a good performance, and it is only based

on normal behaviors, it will be used in our following discussion.

2.5.3 Neural Network Architecture

Neural network classifiers have been widely considered as an efficient approach to

classify challenging patterns. However, here, statistical preprocessing has generated
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easily discernible and distinguishable normal and abnormal patterns. A 2-layered neural

network was built with 22 inputs and one output unit.

The back-propagation neural network classifier [23] (see Figure 2.10) was used to

train feature-scoring vectors by modifying the weights of inputs. Each network utilized

sigmoid neurons and used on all 22 predictor variables. Again, this was done 1000 times

for each random split of the data set .The Back-Propagation Neural Networks was used to

evaluate each flow with maliciousness.

Figure 2.10 Back-propagation classifier

2.6 Evaluation and Experimental Results

Flow-based Network Intrusion Detection System was evaluated by using both 1998

DARPA intrusion detection evaluation data [19] and to CONEX Testbed data. The
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DARPA'98 data contains both training data and test data. The training data consists of 7

weeks of labeled network-based attacks inserted in the normal background data. The test

data contained 2 weeks of network-based attacks and normal background data. The data

contains two main categories of DoS/DDoS attacks: bandwidth depletion, such as: smurf,

and resource depletion attacks, such as: Neptune, Ping of Death and Teardrop. A

bandwidth depletion attack is designed to flood the victim network with unwanted traffic

that prevents legitimate traffic from reaching the (primary) victim system. A resource

depletion attack is an attack that is designed to tie up the resources of a victim system.

This type of attack targets a server or process on the victim system making it unable to

process legitimate requests for service.

DARPA'98 evaluation represents a significant contribution to the field of

intrusion detection, there are many unresolved issues associated with its design and

execution. In his critique, McHugh [20] questioned a number of results of DARPA'98

evaluation, starting from usage of synthetic simulated data for the background (normal

data) and using attacks implemented via scripts and programs collected from a variety of

sources. In addition, it is known that the background data contains none of the

background noise (packet storms, strange fragments, etc.) that characterizes real data.

DARPA'98 data are used here as benchmark of comparison performance with other

Intrusion Detection System. Moreover, in order to assess the performance of our anomaly

detection algorithms in a live network, we also implement FNIDS in CONEX test-bed.

The CONEX TESTBED network is a test-bed network setup in the CONEX lab of NJIT
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as a platform to launch network-based attacks and real background traffic (HTTP, FTP,

SMTP...), for evaluation of intrusion detection prototypes.

The performance of any network intrusion detection system must account for both

the detection ability and the false positive rate. Here, we used receiver operating

characteristic (ROC) curves to compare intrusion detection ability to false positive. The

ROC curve allows us to assess the trade-off between detection ability and false alarm rate

in order to properly tune the system for acceptable tolerances. For each curve, the point at

the upper left corner represents the optimal detection with high detection rate and low

false alarm rate. The x-axis of the figure is the false alarm rate, which is the rate of the

typical traffic events being classified as faults or anomalies; the y-axis of the figure is the

detection rate, which is calculated as the ratio between the numbers of correctly detected

faults/anomalies to their total number.

2.6.1 Anomaly Detection Results on DARPA'98 Data

In order to perform our evaluation of the systems, we applied the above typical

aggregation schemes to the data set constructed from DARPA'98 data [19]. According to

DoS attack types (Bandwidth and resource depletion attacks) and spoofing situation, the

system was evaluated by the following four cases: case 1 is to detect resource depletion

attacks; case 2 is to detect bandwidth attacks without spoofing flooding attacks; case 3 is

to detect both resource depletion attacks and bandwidth attacks without spoofing flooding

attacks; case 4 is to detect both resource depletion attacks and bandwidth attacks with

spoofing flooding attacks.
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Since the amount of available DARPA'98 data is huge (e.g. some days have

several millions of flow records), FNIDS sampled sequences of normal flow records in

order to create the normal data set that had the same distribution as the original data set of

normal flow. The first 5 weeks of training data was used for training Neural Network

Detector. When using session-based aggregation scheme, there were a lot of normal flow

records (347747 flow records), 100000 normal flow records were randomly sampled for

the training phase. In other flow-based aggregation schemes, all flow records were used

for the training phase. The flow records associated with all the attacks from the last two

weeks of data were used for testing in order to determine detection rate.

CASE 1: Resource Depletion Attacks

Our purpose here is detecting resource depletion attacks. In Darpa 98's data, there

are pod, teardrop and back, which can be used for this experiment.

Figure 2.11 ROC curves for resource depletion attacks
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Figure 2.11 displays four ROC curves —the first one for session-based NIDS, the

second one for server-based NIDS, the third one for client-based NIDS and the fourth one

is for IP-based NIDS. From the figure 6, we can observe that all of the ROC curves have

very high detection rate. The detection rate is above 80% when false alarm rate is about

0.2%.

CASE 2: Bandwidth Attacks

Figure 2.12 ROC curves for bandwidth attacks

Figure 2.12 displays four ROC curves —the first one for session-based NIDS, the

second one for server-based NIDS, the third one for client-based NIDS and the fourth one

is for IP-based NIDS, which were based on the first five weeks' data for training and

used the last week's data for testing. For each curve, the point at the upper left corner

represents the optimal detection with high detection rate and low false alarm rate. The x-

axis of the figure is the false alarm rate, which is the rate of the typical traffic events

being classified as faults or anomalies; the y-axis of the figure is the detection rate, which
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is calculated as the ratio between the numbers of correctly detected faults/anomalies to

their total number. From the figure 2.12, we can observe that all of the ROC curves have

very high detection rate. The detection rate is above from 78% when false alarm rate is

about 0.2%. This observation also proves our conclusion in the above subsection once

again.

CASE 3: Resource Depletion + Bandwidth Attacks

Figure 2.13 ROC curves for resource depletion and bandwidth attacks

From the figure 2.13, Attacks contain both Resource Depletion attacks and

Bandwidth attacks, the IDS still have very high detection rate. The detection rate is above

88% when false alarm rate is about 0.2%.

CASE 4: Spoofed Flooding Attacks

A session-based aggregation scheme defense system tries to keep a volume of

statistical data in order to extract transaction semantics from packet flows and thus

differentiate some legitimate traffic from the attack traffic. However, Attackers

frequently use source address and port spoofing during the attack — they fake
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information in the IP source address or port field in attack packet headers. Attackers tend

to generate legitimate-like packets to perform the attack, obscuring the malicious flow

within legitimate traffic.

From the figure 2.14, Attacks contain spoofing bandwidth attacks, the

performance of IDS apparently drop. If the detection rate is kept at above 80%, then the

false alarm rate is about 1.6%.

Figure 2.14 ROC curves for spoofed flooding attacks

From Case 1 to case 4, we can see that session-based aggregation schemes

performed very well when it was used to detect resource depletion attacks; all

aggregation schemes have good performance when detecting non-spoofing flooding

attacks. However, the performance of session-based aggregation scheme will drop

dramatically when detecting spoofing flooding attacks. The reason is that DDoS attacks

have two main features that severely challenge the design of defenses: one is IP source

address spoofing; another is similarity of attack to legitimate traffic. These two features
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create contradictory requirements for DDoS defense. In order to perform accurate traffic

separation, the defense system requires a lot of resources for record keeping. Therefore, it

can only handle small to moderate traffic volumes. On the other hand, the need to control

a large portion of the attack traffic requires placement at points that relay a high traffic

volume. Those two requirements can hardly be satisfied at the same time using a fixed

aggregation scheme. In the future, we will intend to apply fuzzy logic method adaptively

to select flow aggregation scheme to increase the detection rate. Depending on the

spoofing level, the fuzzy logic module will automatically activate the most appropriate

flow aggregation scheme for FNIDS.

2.6.2 Anomaly Detection Results on CONEX Testbed Data

Due to various limitations of DARPA'98 intrusion detection evaluation data discussed

above [20], we have repeated our experiments on live network traffic at the CONEX lab

of NJIT. When reporting results on real network data, we report the detection rate, false

alarm rate and other evaluation metrics reported for CONEX Test-bed intrusion data. The

CONEX TESTBED network, see Figure 2-15, is a test-bed network setup in the CONEX

lab of NJIT as a platform to emulate network-based attacks in order to test the

performance of intrusion detection prototypes. The network includes three subnets:

victim subnet, background subnet and the attack subnet. A more detailed description

about the network topology, the attack emulations and the related tools can be found in

[8]. We used the data collected on 11/28/2004 for training; and used the data collected on
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both 11/13/2004 and 11/27/2004 for testing. There are not spoofing flooding attacks in

the data.

Figure 2.15 Topology of the CONEX testbed network.

The table 2.4 presents the false/true positive ratio of four aggregation schemes

that detect various attacks. From this table, it can be seen that session-based aggregation

schemes performed very well in detecting DDOS attacks with false positive ratio rates

0%. This indicates that session-based aggregation scheme has the best performance when

there are no spoofing flooding attacks.

Table 2.4 False/True Positive Ratio based on CONEX Testbed

Attack
Name

Session-based IP-based Client-based Server-based

False/True
Positive Rate

False/True
Positive Rate

False/True
Positive Rate

False/True
Positive Rate

bloop 0 0.037 0 0.037
fawx 0 0.36 0 0.36
fraggle 0 0 0 0
smurf 0 0.027 0.0106 0.027
teardrop 0 0 0 0



Table 2.5 The Performances of Four Aggregation Schemes

Session-Base IP-Base Client-Base Server-Base
Number of
samples

84943 25262 8397 22555

Number of
normal samples

83898 24228 7786 22089

Number of
attack samples

1045 1034 611 466

Misclassification
Rate

0.00401 0.00134 0.00107 0.0047

False Positive
Rate

0.00398 0.00103 0.000771 0.0048

False Negative
Rate

0.0096 0.0088 0.0049 0.1148

From table 2.5, it can be seen that the misclassification rate is 0.401% for session-

based aggregation, 0.102% for IP-based aggregation, 0.107% for client-based

aggregation, 0.47% for server-based aggregation. The performances in table 2-5 proved

that the more detailed flow-key is, the performance is better when flooding attacks are

not spoofed.

45

Figure 2.16 ROC curves for CONEX testbed data
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Figure 2.16 shows the ROC (Receiver Operating Characteristic) curves of some

selected flow-based aggregation schemes. we can observe that all of the ROC curves

have very high detection rate. The detection rate is above 94% when false alarm rate is

about 0.2%.

2.7 Related Work

NetFlow [10], first implemented in Cisco routers, is the most widely used flow

measurement solution today. Exported NetFlow data can be used for a variety of

purposes, including in- and out-bound Internet traffic analyses, network management,

combating Denial of Service (DoS) attacks, and data mining etc. Based on NetFlow, there

are a variety of tools for flow-based measurement arisen. Cflowd is a flow analysis tool

created by CAIDA [9]. It is currently used for analyzing Cisco's NetFlow [10] enabled

switching method. This analysis package permits data collection and analysis by ISPs and

network engineers in support of capacity planning, trends analysis, and characterization

of workloads in a network service provider environment. FlowScan [8] is one such freely

available tool. It analyzes and reports on NetFlow format data collected using Cflowd

tool. In [8], flow profiling was introduced, which analyzes and reports on flow data

exported by Internet Protocol routers. The information presented by FlowScan assists in

understanding the nature of the traffic that your network is carrying. It can be useful in

the identification and investigation of anomalies such as poor performance and attacks on

hosts. Kohler [21] investigates the structure of addresses contained in IP traffic and used
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the changing ratios (i.e., the rate of decrease) between the flow numbers of neighboring

specific bit-prefix aggregate flows for detecting peculiarities.

Flow level measurements are also widely used in security detection or to provide

insight into the traffic crossing a network. Many Flow-based NIDS have the ability to

detect anomaly attacks. The main difference between Flow-based NIDS and traditional

IDS is that recording does not contain the high level information, like payload, which

make NetFlow process packets in high-speed network like hardware way. Although

NetFlow cannot make the in-depth analysis to the data packet, but already had the enough

information to discover the suspicious flows. On the other side, aggregation has the

advantage of greatly reducing the amount of data collected. From a security standpoint,

the aggregated data provides primarily baseline and gross change information. Abrupt or

unexpected changes, like traffic behavior, could be used in NIDS to identify the anomaly

actions. Bro [16] is a Unix-based Network Intrusion Detection System (IDS). Bro

monitors network traffic and detects intrusion attempts by comparing network traffic

against rules describing events that are deemed troublesome. Marina [17] described a

statistical anomaly detection based on abrupt traffic change and correlated information

from SNMP-MIB variables. Androulidakis [13] presented an anomaly detection solution

that relies on network flow data exported from CISCO NetFlow-enabled devices. The

proposed detection algorithm in [13] monitors flow data from all interfaces of border

routing equipment and calculates specific metrics that are compared against adaptive

thresholds that characterize the "normal" network utilization. Almost all of them are to

detect bandwidth depletion attacks or some certain attacks [14]. There are some other
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flow-based NIDSs, which made the in-depth analysis, for example: Murai [12] proposed

Session Based NIDS which used signature method to monitor the response against the

detected attack in order to cuts down the operational costs of NID.

Actually, these flow-based detection technologies are still unable to withstand

large-scale distributed attacks. One reason is because filtering the malicious attack traffic

requires identifying the (potentially thousands of) attackers, which is complicated,

especially if the source addresses are spoofed. A lot of flow will overload router or IDS.

2.8 Summary

A novel flow-based anomaly network intrusion detection system (FNIDS) for detecting

network intrusion is proposed in this paper. FNIDS sets up flow-based statistical feature

vectors and reports to two parallel detectors: Network Behavior Analyzer and Neural

Network Classifier. Network Behavior Analyzer analyzes and visualizes network

behavior change. Neural network classifier uses Back-Propagation networks to classify

score metric of each flow. FNIDS configures flow flexibly to provide security from

network level to application level (IP, TCP, UDP, HTTP, FTP...), and different

aggregation schemes, such as server -based, client-based flow. Experimental results

evaluated by DARPA 98 and CONEX test-bed data indicate that FNIDS detects both

bandwidth and resource depletion DOS attacks successfully for different flow

aggregation algorithms. For DARPA data, detection rates are above 80% for all

aggregation schemes when false alarm is 0.2% and there are no spoofing flooding

attacks.
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For CONEX data, the performance is even better .Its misclassification rate is

0.401% for session-based aggregation, 0.102% for IP-based aggregation, 0.107% for

client-based aggregation, 0.47% for server-based aggregation.

However, the flow-based analysis still has certain vulnerabilities in terms of

processing speed and memory requirement when facing large spoofed sources during

DOS attack. In such an attack, the attacker directs a huge amount of malicious spoofed

flow, which could exhaust FNIDS memories and CPU resources, disable FNIDS for

tracking and detecting all flows. In the future, our work will concentrate on developing an

overall framework, which automatically build flow aggregation schemes, recognizes and

blocks spoofed flows as soon as possible, maximizes the effectiveness and efficiency of

FNIDS.

In the next chapter, Multi-stage Packet Aggregation Architecture (MPAA) is

introduced to provide an adaptive flow aggregation approach to defense spoofed flooding

or amplification attacks.



CHAPTER 3

ADAPTIVE FLOW AGGREGATES APPROACH
FOR FLOW-BASED DEFENSE SYSTEM

Abstract— Flooding-based Distributed Denial-of-Service (DDoS) attack presents a very

serious threat to the stability of the Internet. It attempts to disrupt an online service by

generating a lot of useless packets to clog links or cause defense system overloaded to

crash.

In this chapter, an Adaptive Flow Aggregation Approach (AFAA) is presented,

which consists of Flow Aggregation Schemes, Multi-stage Packet Aggregation

Architecture, Flow Aggregate Population Density/Distributions Detection Mechanism

and Fuzzy Supervisory Controller. Flow aggregation Schemes are responsible for

grouping packets based on flow keys, which consist of source IP/Port, destination IP/port

and protocol etc. A Flow Aggregate Population Density/Distributions Detection is

proposed to detect how packets aggregate at different levels based on Multi-stage Packet

Aggregation Architecture (MPAA), such as: how addresses are aggregating at a given

prefix length. Fuzzy Supervisory Controller is to activate the most adaptive flow

aggregation scheme for packet aggregates. Therefore, APAA provides a more flexible

fine-grained flow aggregation approach and a more effective defense measurement

against flooding attacks. Finally, the performance of applying AFAA in FNIDS against

flooding DDOS attacks is evaluated by using DARPA 98 data Results show that the

adaptive flow-based NIDS made a significant improvement due to the application of the

embedded AFAA.

50
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3.1 Introduction

3.1.1 Background

Flooding-based distributed denial-of-service (DDoS) attack presents a very serious threat

to the stability of the Internet. In a typical DDoS attack, a large number of compromised

hosts are amassed to send useless packets to jam a victim, or its Internet connection, or

defense system including IDS, firewall and traffic control system etc.

Spoofing the source IP address/port of packets on the Internet is one of the major

tools used by hackers to mount Denial of Service (DoS) attacks. In such attacks the

attackers forge the source IP/port of packets that are used in the attack. Instead of

carrying the source IP of the machine the packet came from, it contains an arbitrary IP

address, which is selected either randomly or intentionally. Once faced by large flooding

attacks, such as spoofing attacks, amplification attacks or reflection attacks etc., the flow

number of a flow-based analysis method rapidly increases, which could exhaust a lot of

memories and CPU resources and disable the flow-based analysis method.

There are very few and not very effective mechanisms that network operators may

use today to detect and filter out spoofed packets. The most prominent of them is the

ingress and egress filtering. In ingress filtering an ISP prohibits receiving from its stub-

connected networks, packets whose source address does not belong to the corresponding

stub network address space [34]. In egress filtering a router or a firewall, which is the

gateway of a stub network, filters out any packet leaving the network whose source

addresses do not belong to the network address space. Thus, both mechanisms ensure that

the traffic leaving out of a stub network may only spoof addresses that belong to the same
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stub network. The former does it at the ISP router while the latter at the stub edge

equipment. However, all filters proposed in the literature so far fall short to detect IP

address spoofing from the domain in which the attacker resides. For example, in Figure

3.1, if Al uses the IP addresses of domain D2 as its source IP, the filters R7 will stop

such forged packets to reach the victim V1, but if Al uses some unused IP addresses of

domain Dl, the filters R7 will not be able to stop such forged packets to reach the victim

V 1 . For another example: if Al uses hosts in Domain D2 to reflect a lot of packets to the

victim V1, The filter R3 will not be able to stop such packets. Ingress filtering can

drastically reduce the DoS attack by IP spoofing if all domains use it. If there are some

unchecked points, it is possible to launch DoS attacks from those points. Unlike ingress

filters, egress filters reside at the exit points of network domain and checks whether the

source addresses of existing packets belong to this domain. Actually, it is hard to deploy

ingress/egress filters in all Internet domains.

Figure 3.1 Different scenarios for DDoS
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3.1.2 Related work

We are not aware of similar previous work on characteristics of Multi-level Packet

Classification Architecture to defense flooding attacks. More broadly, much effort has

gone into modeling the structures of IP address structure in the Internet for the self-

similarity of packet aggregation [22].

MULTOPS [53] proposed a tree of nodes, which contained packet rate statistics

for subnet prefixes at different aggregation levels, to monitors certain traffic

characteristics to detect (and eliminate) bandwidth attacks.

The properties of client addresses aggregated according to BGP routing prefixes

have previously investigated in [78]. The results indicate that client cluster size has a

heavy-tailed distribution. Source IP address Monitoring (SIM) was studied in [52] to

detect the Highly Distributed Denial of Service (HDDoS). This detection scheme uses an

intrinsic feature of HDDoS attacks, namely the huge number of new IP addresses in the

attack traffic to the victim, i.e., and the presence of a large number of spoofed IP

addresses to identify a distributed denial of service attack by detecting an abnormal

increase in the new IP addresses. However, this approach is too gross-grained. Recently,

researchers have started to investigate IP address prefix based aggregate properties for

aggregate congestion control [39]. A novel flow-based congestion control will be

presented in chapter 5.

To mitigate spoofing DDoS attacks, much of the current research focuses on anti-

spoofing such as ingress filtering [4], route-based packet filtering [5], and various IP
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traceback protocols [6], [7]. Their effectiveness often depends on a universal deployment

on the Internet.

3.1.3 Motivation

Our work was initially motivated by addressing the poor performance of the statistic

flow-based NIDS under high-stress spoofed flooding. Although the static flow

aggregation schemes are proved to detect attacks with good performance

[10][17][26][27], the performance of the system with a static flow aggregation scheme

will drop rapidly under "stress"(i.e., large volume of flooding packets with spoofed

IPs)[25][37]. Two main features of DDoS attacks severely challenge the design of

defenses: one is a lot of IP source addresses; another is similarity of attack to legitimate

traffic. These two features create contradictory requirements for DDoS defense. In order

to perform accurate traffic separation, the defense system requires a lot of resources (such

as: buffers) for record keeping. Therefore, it can only handle small to moderate traffic

volumes. On the other hand, the need to control a large portion of the attack traffic

requires placement at points that relay a high traffic volume. Those two requirements can

hardly be satisfied at the same time using a fixed aggregation scheme. Once faced by

large flooding attacks, such as spoofing attacks, amplification attacks or reflection attacks

etc., the flow number of a flow-based analysis method rapidly increases, which could

exhaust a lot of memories and CPU resources and disable the flow-based analysis

method.

In Figure 3.2, the performances of session-based NIDS are presented in two cases:

a lot of spoofed flooding DDoS and non-flooding DDoS, which were based on Darpa 98
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data of 5 weeks for training and two weeks for testing. The figure 3.2 shows that

performance of FNIDS drops dramatically once it is attacked by a lot of flooding packets

including ICMP flooding and Neptune flooding.

Figure 3.2 ROC of session-based NIDS under: spoofed/no spoofed flooding attacks

In this chapter, an Adaptive Flow Aggregation Approach (AFAA) is presented,

which consists of flow-based aggregation module, Aggregate Population Distributions

Analyzer and Fuzzy Supervisory Controller. Flow-based aggregation module is

responsible for grouping packets based on flow keys, which consist of source IP/Port,

destination IP/port and protocol etc. Aggregate Population Distributions Analyzer is to

find how packets aggregate at different levels based on Multi-stage Flow Aggregation

Architecture (MFAA), such as: how addresses are aggregating at a given prefix length. .

Therefore, AFAA provides a more flexible fine-grained flow aggregation approach and a

more effective defense measurement against flooding attacks by detecting the abnormal
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changes of flow population density and distribution. Fuzzy Supervisory Controller is to

activate the most adaptive flow aggregation scheme for packet aggregates

Finally, the performance of applying AFAA in FNIDS against flooding DDOS

attacks is evaluated by using DARPA 98 data. Results showed that adaptive flow-based

NIDS made a significant improvement due to the application of the embedded AFAA.

3.2 Adaptive Flow Aggregates Approach Design

In chapter 2, "flow" concept was introduced. Theatrically, flows with all fields (source

IP, destination IP, source port, destination port, and protocol) can completely express a

stream of packets. But attackers commonly use randomly generated spoofed source

address and port numbers to launch attacks to a victim. Therefore, more information of

flow records, using high dimensional flow key, like session-based aggregation scheme, is

easy to overload buffer or take longer time processing once the system is attacked by

flooding.

In this section, Multi-stage Flow Aggregation Architecture (MFAA) and Flow

Aggregation Population Density/Distribution Detection Mechanism are proposed to

detect and defense spoofed flooding attacks.

3.2.1 Multi-stage Flow Aggregation Architecture (MFAA)

As the key component of the APDA, the proposed MFAA uses 5-tuples (Source IP,

Source Port, destination IP, destination Port, Protocol) in the IP header to classify

packets. Certainly, transport-layer information can also be extracted to further divide a

protocol-based aggregates into a UDP aggregate, a TCP aggregate, and an ICMP
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aggregate and, then, to distinguish IP Flags in the TCP aggregate etc. For simplification,

MPAA in this chapter will be based on 5-tuples.

In section 2.2.2, two kinds of flow aggregation schemes were proposed: field

aggregation schemes and IP prefix aggregation schemes. Based on these flow aggregation

schemes, a Multi-staged Flow Aggregation Architecture (MFAA) is shown in Figure 3.3.

MFAA contains two multi-level structures: 4-stage Field Aggregation Architecture and

Source IP Aggregation Level Structure shown in Figure 3.3.

Figure 3.3 Multi-stage flow aggregates architecture
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In Figure 3.3, it is seen that Source IP Aggregation Level Structure is a sub-tree

structure of stage 4 detailed in Figure 3.4. Nodes represent flow keys and lines represent

flows, which means how many flows are based on each flow key. They are used to

realize an adaptive flow-based aggregation approach to detect and defense spoofed

flooding attacks.

Upon the multi-stage flow aggregation architecture, expansion and contraction of

flow aggregation enable adaptive flow aggregation approach (APAA) to exploit the

hierarchical structure of the 5-tuples. Deeper stage or level of the architecture has more

fine-grained flow aggregations. APAA detects the attack on a high stage in the structure

(where fields are few) and expands toward the most possible fields including source IP

addresses. According to this described architecture, using different-stage flow

aggregation algorithm can effectively to defense flooding attacks and realize various fine-

grained traffic aggregates. For example: Suppose that there is a spoofed flooding attack

with forged source ports, if 4-stage packet classification architecture is chosen to

aggregate packets, which means that the flow key is composed of destination IP/port,

protocol and client IP, then the flow key doesn't contain port field. So the spoofed ports

of flooding attacks do not influence the flow number.

Not only can AFAA be used to defense spoofed flooding, but also it can defense

other flooding attacks from some subnets, such as reflection flooding attack or

amplification flooding attack. For example: in Figure 3.1, if hosts in the domain D2 are

used to reflect a lot of packets with the same subnet prefix (172.16.*.*). The simply way

to defense this flooding attack is to adopt a 2-level IP prefix of 4-stage field aggregation
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to group packets. The flow key doesn't contain last two octets of client IP and ports, so

the reflected flooding does not affect the flow number.

AFAA detects the attack on a low stage in the structure (where fields are more)

and contract toward the fewer fields, in order to real-timely monitor general network

state. Some stages or levels are not included in flow keys to realize flow aggregation. For

example, In Figure 2.6, we only used protocol-based aggregation scheme to aggregate

packet and monitor traffic change. This Figure shows that there are two kinds of flooding

attacks happening: one is Smurf and another is Neptune. Smurf is ICMP flooding and the

Neptune is SYN flooding. Apparently, protocol-based aggregation scheme can defense

flooding attacks, but is not the most effective defense method. Because NIDS would

inform a filtering engine to block all ICMP packets or SYN packets once there is

flooding happening. However, this way also drops normal packets. That is why a more

fine-grained traffic aggregation model is needed.

There are many methods can be used to detect network flooding. In section 2.42,

we described a Network Behavior Analyzer (NBA), which can efficiently detect various

flooding attacks by observing abrupt changes of statistics features, detailed in section

2.42.

Upon the Multi-stage Flow Aggregates Architecture, Flow Population Density

/Distribution Detection Mechanism (FP2D-DM) is proposed here to realize detection and

defense of spoofed flooding attacks.
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3.2.2 Flow Population Density /Distribution Detection Mechanism (FP2D-DM)

The purpose of FP2D-Dm is to find which stage/level spoofed flooding is at and which

flow contains flooding. Based on the multi-stage flow aggregates architecture, we

propose two detection mechanisms: Flow population Density Detection Mechanism

(FPD-DM-1) and Flow Population Distribution Detection Mechanism (FPD-DM-2). It is

analogous to population survey that FPD-DM-1 is to survey how many flows belong to a

node (flow key) and how nodes (flow keys) are distributed.

In order to survey flow population, we adopt two detection directions in MFAA

tree: horizontal direction and vertical direction. Horizontal direction is to calculate

relative density among contiguous nodes and Vertical direction is to calculate how nodes

distribute in different stages or levels. FPD-DM-1 uses the horizontal direction to detect

flow population density and FPD-DM-2 uses the vertical direction to detect how many

leaves a parent node has, which is useful in expansion and contraction of flow

aggregation to defense spoofed flooding.

3.2.2.1 Flow Population Density Detection Mechanism (FPD-DM-1)

To detect which flow contains flooding is simply the measurement of how densely

packets are packed in each flow. Based on the multi-stage packet aggregates architecture,

FPD-DM works on the same stages to find flow aggregation population density at each

stage, which will tell which flow contains the most quantity of packets.

Given a flooding attack, let ni,i be the leaf counts (or sub-flows) of the ith node(or

flow) at stage j and NJ be the total leaf counts at the stage j , then the Flow Population

Density (FPD) of this node i at this stage j is denoted by:



Where: i < the maximum node (or flow) number at the stage j; and j is from 1 to 5.

Formula (3.1) expresses a flow population relative density at the jth stage. The

flow population is the number of active leaves (sub-flows) contained in the node (flow).

If there are flooding happening and the FPD of a flow is over threshold, then this flow

contains flooding attacks. Except Flow Population Density (FPD), Packet Population

Density (PPD) is used to score the packet density in a flow (or node), which gives the

possibility of flooding that a flow contains.

Given a flooding attack, let ri,j be a packet rate of the ith flow at stage j and Ri be

the total packet rate at the stage j .The Flow Population Density (FPD) of this flow i at

this stage j is denoted by:

Where: i < the maximum flow number at the stage j; and j is from 1 to 5.

Actually, formula (3.2) expresses a flow population relative density at the jth

stage. The population of a flow is the number of active packets contained in that flow. If

there are flooding happening and the FPD of a flow is over threshold, then this flow

contains flooding attacks. For example, Figure 2.6 used a protocol-based aggregation

scheme. Thus it shows a more fine-grained packet aggregation than one in figure 2.5. All

flows in figure 2.6 are differentiated by protocol, like TCP, UDP and ICMP. In Figure

2.6, The FPD of the "TCP" flow during 400480 is over 0.8, but the FPD of "UDP" or
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"ICMP" flow is below 0.1. Apparently, the attacker used TCP protocol to launch attack.

This example shows that FPD-DM can find which flow contains flooding at the same

stage.

Although FPD-DM-1 is successful to find flooding flow from the flows at the

same stage, it is still not enough to defense spoofed flooding. For example: in Example

3.2, when the server-based (1-stage) detection method detects an abruptly abnormal

traffic increase, it only controls a filtering engine to block all packets to this server while

normal client can not access this server too. If there are some ways to identify domain

(D2) that flooding attacks come from, the filtering engine only drops the packets from

this domain (D2) while keeping the server alive. Expansion and contraction of flow key

based on the Multi-stage Packet Aggregates Architecture (MPAA) provide an approach

to realize more fine-grained detection mechanism while keeping maximum valid flow

keys for packet aggregation.

3.2.2.2 Flow Population Distribution Detection Mechanism (FPD-DM-2)

Although FP-DDM-1 is successful to find flooding flows from the flows at the same

stage, it is still not enough to defense spoofed flooding, since many attacks directly

disable a victim by sending a lot of spoofed flooding and causing it to keep a lot of flow

records in a short time.

In this section, we will present FPD-DM-2, which detects flow population

distribution along vertical direction in Multi-stage Flow Aggregates Architecture

(MFAA). For example: if there is flooding attack happening, the FPD-DM-2 compares

the flow numbers at the stage 3 and stage 4; If the flow number of stage 4 is much more
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than the number of stage 3; apparently, the source IP/Ports are spoofed. Thus choosing 3-

stage aggregation will defense the port-spoofed flooding attacks.

In section 2.2.4, we described two kinds of flow aggregation schemes: field

aggregation schemes and prefix aggregation schemes, which separately work in flow

aggregates architecture, we further propose two kinds of flow population distribution

detections: Field Aggregation Population Distribution Detection (FA-PDD) and Source

IP Aggregation Population Distribution Detection (SIPA-PDD). FA-PDD mainly detects

the flow aggregation distribution based on filed aggregation schemes. Because Source

IP/Port is often utilized by attack to launch a lot of packets, SIPA-PDD is proposed to

take more fine-grained flow aggregation distribution analysis based on source IP/Port,

which is a sub-tree of a note at stage 4. Because FA-PDD and SIPA-PDD have the

similar tree structures, both FA-PDD and SIPA-PDD have the same form of flow

population distribution detection algorithms.

(1) Field Aggregation Population Distribution Detection Algorithms (FA-PDD)

In order to detect the flow aggregation distribution between two stages or levels in the

Multi-stage Flow Aggregation Architecture, suppose there is a flooding attack happening,

which can be detected by the above method.

Let there are Ni flows at the ith stage (or level) and there are Ni+i flows at the

i+lth stage (or level). If we aggregate flows separately based on the stage (or level) i and

stage (or level) i+1, then Single-stage (or level) Flow Aggregation Likelihood Ratio

(SFALR) from stage (or level) i to i+1 can be defined as followed.
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Where: l< i< 4 for FA-PDD or 0< i< 4 for SIPA-PDD.

In multi-stage structure, there are Ni flows at stage (or level) i and NJ flows at

stage (or level) j. then the Multi-stage (or level) Field Aggregation Likelihood Ratio

(MFALR) from i to j (i<j) is the multiplication of all SFALRi,i+1 from level i to j.

Here is:

Where: l< i< j< 4 for FA-PDD or 0< i< j< 4 for SIPA-PDD.

These formulas (3.3) and (3.4) represent a relative ratio of flow number between

two stages (or levels), which represent the flow aggregation degrees between two stages

(or levels). Especially at stage 3 and stage 4 of FA-PDD, once there are spoofed flooding

attacks, the flow aggregation likelihood ratio becomes great. Thus 3 stage flow

aggregation schemes can be activated to group packets for defending against spoofed

flooding.

(2) Source IP Aggregation Level Structures for SIPA-PDD

In order to exploit the hierarchical structure of source IP address/port space, more fine-

grained flow aggregations based on source IP is proposed.
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In the section 3.1, we introduced three approaches to prevent Spoofed DDoS:

Ingress Filtering, Router-based and victim-based (Server-based). However, all these

filters proposed in the literature so far fall short to detect IP address spoofing from the

domain in which the attacker resides. In other words, attackers often use the devices in

some subnets to reflect or amplify a lot of packets to a victim or spoof a limited set of IP

addresses—with a common prefix. And also there are very few and not very effective

mechanisms that network operators may use today to detect and filter out spoofed

packets. Thus, network administrator has to uses two ways to protect server from a lot of

spoofed flooding: one is to stop all packets to victim and another way is to limit total

traffic volume. The former can stop DDoS while normal clients also cannot access the

server which attacker wants. The later only protect servers from flooding, but it cannot

block malicious clients.

Expansion and contraction enable SIPA-PDD to exploit the hierarchical structure

of the IP address space and the fact that a bandwidth attack is usually directed at (or

coming from) a limited set of IP addresses—with a common prefix—only. SIPA-PDD

detects the attack on a high level in the IP structure (where prefixes are short) and

expands toward the largest possible common prefix of the victim's IP address, potentially

establishing single IP address that are under flooding attack.

There are two steps in the SIPA-PDD to detect and defense flooding attacks. First,

the SIP-ADD sorts the incoming IP flows according to source IP addresses, and identifies

whether there is an IP flow with an unusually large number of packets. If there is, the

SIPA-PDD activates the filtering engine to block this abnormal IP flow. This step is very
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effective for defending against some naive DoS attacks launched from a single or small

number of sources. The second step is the core technology of our SIPA-PDD scheme,

which is designed to defend against sophisticated DDoS attacks and is described in detail

in the following.

Source IP Aggregation Level Structures

In section 2.2, we presented various flow aggregation schemes based on the five fields,

which include two kinds of IP/port: destination IP/Port and Source IP/Port. Principally,

all of them can be spoofed. But in the real world, attack is usually directed at (or coming

from) a limited set of IP addresses—with a common prefix or attack spoofs the source

IPs with a common prefix.

As described in section 2.2.4.2, an aggregate with prefix length p is called a p-

aggregate with 05_ pS 32. "alp" refers to the p-bit prefix of IP address "a" or,

equivalently, the aggregate containing all addresses sharing that prefix. The'0' represent

all bits are valid and the '32' means all bits are masked. IP address is usually expressed as

four octets, each representing eight bits. The purpose of Spoofing is to forge some or all

of the four octets. Thus, the prefix lengths are defined separately by five values, which

are 0,8,16,24 and 36. Dietrich and David [35] described the spoofing levels of IP address

as network boundary, partial, first octet and Full. For example: spoofing the last octet

(192.168.2. *) is typical network boundary level; Spoofing the last two octet (192.168. *.

*) is partial level. If all octets are spoofed, it is call full level of spoofing.

Similarly, the Source IP Aggregation Levels are divided into six levels (from 0 to

5), which include a source port. Higher level has more fine-grained aggregation. Level 5
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is the finest-grained aggregation, which is often used to aggregate packets without

spoofed flooding or reflection flooding or amplification flooding. Figure 3.4 shows the

Source IP Aggregation Level of IP+Port. As a victim defense system, both spoofed

packets and packets from some subnets have the same effect that flow number will

increase rapidly when attacked. Therefore, spoofed flooding is used as a template

flooding.

Figure 3.4 The source IP aggregation level structure

The Source IP Aggregation Levels correspond to spoofing levels of IP address

[35] if the IP addresses are spoofed. Therefore, this architecture is sometime called as IP

spoofing level architecture.
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Source IP Aggregate Likelihood Ratio (SIALR)

Formulas (3.3) and (3.4) can be used in the Source IP Aggregation Level Structure to

calculate Source IP Aggregate Likelihood Ratio.

For example: when aggregating flows from spoofing level 2 to 3 in Figure 3.4, N2=4 and

N1=2. Therefore, the SIALR between level 1 and level 2 is 2.

For example: In Figure 3.4, N4=9 and N0=1, the Likelihood ratio from level 0 to 4 is 9.

Logarithm function is used here to express 10-time aggregation degree or simply

called aggregation degree for flow Aggregation Likelihood Ratio.

The formula (3.3) can be denoted by

SFAD i,i+1 =log(SFALR i,i+i ) ;	 (3.5)

The formula (3.4) can be denoted by

In fact, there are no other differences between (3.3) and (3.5) or between (3.4) and

(3.6) except that the formulas (3.5) and (3.6) express the distribution situation by

aggregation degree. In the left of chapter, we used (3.5) and (3.6) in all experiments.

Six examples of aggregation degrees corresponding to different aggregation

population levels or stages are shown in Figures 3.5(a) —(0. In figure 3.5(a), flows are

aggregated at level 5; this figure shows abrupt changes of aggregation degree happening

during two periods (about 400500 and 700800 time windows). These changes were

caused by a lot of "Neptune" attacks with spoofed source ports. In Figure 3.5(b), flows
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were aggregated at level 4; the abrupt changes of aggregation degrees were caused by

"smurf' attacks. Apparently, Figure 3.5(a) and figure (b) show when traffics contain

attacks and how to choose flow aggregate level to defense flooding. For example: based

on the result of figure 3.5(a), there were "smurf' happening between 400 and 500.

Apparently, the source ports were spoofed during this period, so the system could ignore

the spoofed ports and used 4 tuples (destination IP/port and Source IP,protocol) as flow

keys to aggregate packets. Figure 3.5(f) shows the total aggregation degree.

(c) 16-aggregation	 (d) 24-aggregation



70

(e) Server-based aggregation	 (f) Total aggregation degree

Figure 3.5 Six aggregation levels in client side under spoofed flooding attacks

In order to compare the spoofed flooding degree and non-spoofing degrees, it is

necessary to set up a reference model of non-spoofed flooding degrees.

(3) Statistical Modeling for Aggregation Degree

The calculated aggregation degrees are scored based on the information of the reference

models. The reference models are in fact probability density functions (PDF) of the

values of aggregation degrees. Figure 3.6 shows the measured non-spoofed-flooding-

type and spoofed-flooding-type PDF samples of aggregation degrees at different levels,

which were based on Darpa 98 data of the 6 th Thursday, including spoofed 'Neptune' and

`Smurf . Since the actual legitimate aggregation degree distribution is unknown, the

approach needs to establish a reference profile of non-spoofed traffic. The reference

model would be updated actively in each time window. While packets arrive

continuously and the normal-type profile changes as new packets arrive, the reference

profile is updated.
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Six examples of PDFs of aggregation degrees between non-spoofed-flooding-

type and spoofed-flooding-type flows are shown in Figure 3.6 (a)—(f). In each figure,

both kinds of PDFs were plotted for easy comparison.
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Figure 3.6 PDFs of aggregation degree between non-spoofed-flooding-type and
flooding-type at different aggregation levels.

There are differences of aggregation degree's PDFs between non-spoofed

flooding and spoofed flooding in Figure 3.6(a), (b), (e) and (f). Figure 3.6(f) shows the

difference between both type PDFs. These figures further show that there is self-

similarity among different grained aggregations. Evidently, as seen from the graphs, there

is some overlap between the non-spoofed-flooding-type PDFs and the spoofed-flooding-

type PDFs. This means that single aggregation level threshold classification is error

prone. However, it is most significant that, in general, the non-spoofed-flooding-type and

the spoofed-flooding-type PDFs are very different from each other at some aggregation

levels. This means that statistical methods that capitalize on these differences can be very

effective. Such as: IP-protocol aggregation scheme is better for case (a) and (b); server-

based aggregation scheme is the best for case (f). According to different cases, Fuzzy

supervisor controller (described later) can make decision which scheme will be activated

dynamically in real system, which will be described later.
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(4) Score metrics

There are many statistic metrics to score a single value. Our current statistical model uses

Single Number Statistics (SNS).

Let x be the feature value, Pn(x) be the probability of X in the non-spoofed-

flooding reference model, Pn,max be the maximum probability of the non-spoofing

reference model. The distance of the SNS is defined as the following metrics:

Where: S is between [0,1]. S =1 means `non-spoofed-flooding'; and S= 0 means

`spoofed-flooding'. From the above equations, it can be seen that metric (3.7) is a

spoofing degree change detection approach by comparing spoofing degree with the

reference model.

In order adaptively to select flow aggregation scheme to increase the detection

rate, we used Fuzzy Supervisory Switch to identify the spoofing level according to the

difference of spoofing degree.

3.3 Fuzzy Supervisory Controller (FSC)

As described above, Multi-stage Flow Aggregates Architecture (MFAA) provides a

multi-layered flow aggregation structure for flow-based defense system and Flow

Population Density/Distribution Detection Mechanism (FP2D-DM) provides a way to

detect flooding distribution and provide a aggregation degrees for a defense system to
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choose the adaptive flow aggregation schemes to defense spoofed flooding attacks or

other bandwidth flooding, like reflection flooding attacks.

In this section, we use fuzzy control theory and Multi-level Spoofing Levels

Structure to realize an automatic selection of flow aggregation scheme.

3.3.1 The Relationship between Aggregation Levels and Flow Aggregation Schemes

In section 3.2, Multi-stage Flow Aggregates Architecture (MFAA) was proposed, which

constructed a multi-layered flow aggregation structure. Furthermore, The MFAA

contains 4-stage Field Aggregation Architecture and Source IP Aggregation Level

Structure. In 4-stage Field Aggregation Architecture, only Client IP/Port is unreliable due

to spoofing attack. Other fields, like Server IP/Port and Protocol, must be true. Source IP

Aggregation Level Structure is a more fine-grained flow aggregation based on the 4th

stage in 4-stage Field Aggregation Architecture, detailed in 3.2.2.2(2). Therefore, it is

necessary to establish a relationship between Source IP Aggregation Levels and Flow

Aggregation Schemes in order to realize adaptive expansion and contraction of source

IP/Port or provide more fine-grained flow aggregation schemes..

As discussed in the above section 3.2.2.2(2), there are 5 aggregation levels in

Source IP/Port. In order to emphasize the spoofed flooding, the "spoofing level" is used

for "aggregation level". Thus, 6 flow aggregation schemes were separately used in 5

spoofing levels and 1 normal state, shown in figure 3.7.



Figure 3.7 The relationship between spoofing levels and flow aggregation schemes

Based on the spoofing levels, the system separately uses one of 6 aggregation

schemes to group packets.

Each spoofing degree change between spoofing degree and reference model in

this system is considered as an input of fuzzy supervisory controller. The FSC is

considered as a multi-input Single-output (MISO) control system.

3.3.2 Fuzzy Supervisory Controller (FSC) Design

Fuzzy control theory has been successfully used in various fields, especially in make

decision based on multi factors. The Fuzzy Supervisory Controller (FSC) developed here

contains five Multi-Input Single-Output engines (MISO). Depending on Spoofing levels,

the fuzzy Supervisory controller will automatically activate the most appropriate flow

75
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aggregation scheme. To get this through, the controller uses Fuzzy Inference Engine

(FIE) and Knowledge Base (KB).

(1) Fuzzification / Defuzzification

Fuzzification and Defuzzification involve mapping the fuzzy variables of interest to

"crisp" numbers. Fuzzification translates spoofing degree changes into linguistic values.

In order to activate the most appropriate flow aggregation scheme, the FSC uses five

kinds of variables as the control inputs and one parameter for the output. These variables

represent the criteria or objectives to be optimized in this system, which are as follows:

Spoofing Level 0: detect the aggregation degree change of 32-aggregation
Spoofing Level 1: detect the aggregation degree change of 24-aggregation
Spoofing Level 2: detect the aggregation degree change of 16-aggregation
Spoofing Level 3: detect the aggregation degree change of 8-aggregation
Spoofing Level 4: detect the aggregation degree change of 0-aggregation

Six Aggregation Schemes (AS 0-5) of supervision and scheduling have been

defined as follows:

ASO: 3-stage flow aggregation.
AS1: 24-aggregates.
AS2: 16-aggregates.
AS3: 8-aggregates.
AS4: 0-aggregates.
AS5: port-aggregates, or full-4-stage aggregates.

The output of the fuzzy controller is used to activate the aggregation scheme with

highest priority value.

Figure 3.8 shows the input member functions. Figure 3.9 shows the output

member function. All input/output values are divided into three ranges corresponding to

HIGH, MEDIUM and LOW.



Figure 3.8 The input membership function
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Figure 3.9 The output membership function

The input variables are fuzzified and run through the fuzzy rule base, which is

discussed below. In a crisp system, the intersection of two sets contains the element that

is common to both sets. This is equivalent to the common logical AND operation. In
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conventional fuzzy logic, the AND operator is supported by taking the minimum of the

truth membership grades.

There are many methods that can be used to defuzzy the outputs. One of the most

commonly used methods for defuzzification is the Centroid method also known as Center

of Area (COA) method. The model well coincides with the human images of fuzzy

inference rules in cases when the system has many input and many outputs. In the present

simulator, the Centroid method has been used, in which the centroid of the consequent

fuzzy set is found and it corresponding priority value on the x-axis is the final crisp

output.

(2) Inference

The fuzzification process finds the degree of membership of each input to their

corresponding fuzzy sets. In the main working part of fuzzy logic, there are sets of rules

provided by an expert, which relate various fuzzy sets to a desired fuzzy output. Fuzzy

sets in this case are, high, medium and low. Fuzzy output sets are high-priority, medium-

priority and low-priority. Priority indicates the suitability of a particular flow aggregation

scheme to a particular request. Depending on the fuzzy inputs and the rule bases, the

output fuzzy set, 'priority' is computed using an inference scheme. Several inference

schemes are available like Mamdani etc. For the present simulator, the Mamdani scheme

has been adopted (through MATLAB). Figure 3.10 shows the pictorial representation of

the inference scheme for several rules and its combined fuzzy output.
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(3) Rule Development

Our rule development strategy is to select different flow aggregation schemes to make the

FSC active the most adaptive flow aggregation scheme. The output of the FSC is based

on the current input. The main idea is that if and only if the system is under a lot of

spoofed flooding attacks, the FSC will select different flow mask to activate different

flow aggregation scheme for the applications (such as: Flow-based NIDS, flow control or

firewall) in next time window. Otherwise, the applications will use default aggregation

scheme (in our system, session-based aggregation scheme was set as default scheme).

There are many ways to realize inference rules. Here we presented a set of rules

as an example. All of these inference rules are described below table 3.1.

Table 3.1 FSC inference rules

IF (SL4,SL3,SL2,SL1,SLO)= THEN (AS5,AS4,AS3,AS2,AS1,ASO)=

Rule 1 (L,L,L,L,L) (H,L,L,L,L,L)
Rule 2 (H/M,L,L,L,L) (L,H,L,L,L,L)
Rule 3 (L/M,H/M,L,L,L) (L,L,H,L,L,L)
Rule 4 (L/M,L/M,H/M,L,L) (L,L,L,H,L,L)
Rule 5 (L/M,L/M,L/M,H/M,L) (L,L,L,L,H,L)
Rule 6 (L/M,L/M,L/M,L/M,H/M) (L,L,L,L,L,H)
Rule 7 (H,M,L,L,L) (L,M,H,L,L,L)
Rule 8 (N,H,M,L,L) (L,M,M,H,L,L)
Rule 9 (N,N,H,M,L) (L,M,M,M,H,L)
Rule 10 (N,N,N,H,M) (L,M,M,M,M,H)

Keywords like IF THEN represent operations on the fuzzy inputs, which gives the

output of that particular rule. For example, (SLO, SL1, SL2, SL3, SL4) is a minimum

operator, which selects the minimum of the five values that it operates on. At the end of

the inference a resultant fuzzy set is obtained, which needs to be defuzzified to get a

meaningful crisp output.
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Figure 3.10 The pictorial representation of inference schemes

In figure 3.10, when the SLO=0.5 and SL1=0.583, the AS2 has the highest

priority, which is 0.826.The FSC will activate the 16-aggregation scheme to group

packets.

3.4 Adaptive Flow-based Aggregation Architecture Implementation

Adaptive flow-based aggregation architecture (AFAA) includes two main parts: Flow-

based Aggregation Engine (FAE) and Fuzzy Supervisory Controller (FSC). The sample

architecture of AFAA is shown in the figure 3.11.
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Figure 3.11 The adaptive flow aggregation architecture

Flow-based Aggregation Engine sniffs packets from network, decodes packets,

groups all packets based on flow-based aggregation schemes, sets up flow-based

statistical feature vectors. Moreover, flow here could be any set of packets sharing certain

common property as "flow key". The aggregation engine configures flow flexibly to

provide security from network level to application level (IP, TCP, UDP, HTTP, FTP...),

and different aggregation schemes, such as server -based, client-based flow. The fuzzy

Supervisory controller will automatically activate the most appropriate flow aggregation

scheme depending on spoofing level analysis.
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Event Preprocessor: Collects the network traffic of a host or a network, Event handlers

generate reports to Flow management module;

Event Time: Periodically calls Feature Extraction Module to converts the statistic

information of flows into the format required by the statistical model.

Flow Management Module: efficiently determines if a packet is part of an existing flow

or should generate a new flow key; According to different flow key, this module

aggregates flows together based on their flow keys, and dynamically updates per-flow

accounting measurements;

Spoofing Probe: Statistic flow numbers based on various aggregation schemes;

Spoofing detection: Periodically extracts the statistic flow number and calculate

Aggregate Likelihood Ratio (ALR) or Spoofing Degree..

Scoring Metric: Calculates the probability scores of these spoofing degree by comparing

the values with the reference model generated by past normal and flooding attack users.

The probability scores are measurements indicating how likely for a spoofing degree to

take the observed value.

Adaptive flow-based aggregation module can be plug in the flow-based Network

Intrusion detection or lonely used for firewall to block spoofing DDoS.

3.5 Applications and Evaluations

In this section, the application of Adaptive Flow Aggregation Architecture (AFAR) in

Flow-based Network Intrusion Detection (FNIDS) was presented, which is called

adaptive flow-based NIDS. The evaluations of the application show that source IP
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aggregation level structure and flow population density/distribution detection mechanism

improve the performance of NIDS under spoofed flooding packets.

In these experiments, 1998 DARPA Intrusion Detection Evaluation Data [19] was

used, which contained both training data and test data. The training data consisted of 7

weeks of labeled network-based attacks inserted in the normal background data. The test

data contained 2 weeks of network-based attacks and normal background data. The data

contained spoofed bandwidth depletion attack, such as: smurf, SYN flood, and other low

stress attacks, such as: ping of death and teardrop. These flooding attacks had spoofed

source IP addresses. Since the amount of available DARPA'98 data was huge (e.g. some

days have several millions of flow records), we sampled sequences of normal flow

records in order to create the normal data set that had the same distribution as the original

data set of normal flow. The normal data set was used for training a neural network. The

flow records were collected from the first 5 weeks of training data (1491010 flow

records), where 618677 data records were sampled that corresponded to normal

connections, and used for the training phase. For testing purposes, the flow records

associated with all the attacks from the first 5 weeks of data were used in order to

determine detection rate. Also a random sample of 200000 flow records was considered

that correspond to normal data in order to determine the false alarm rate. It is important to

note that the sample used for testing purposes had the same distribution as the original set

of normal connections. After the features are constructed and normalized, anomaly

detection schemes were tested separately for the DoS attacks.
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The performance of any intrusion detection system must account for both the

detection ability and the false positive rate. Here, we used receiver operating

characteristic (ROC) curves to compare intrusion detection ability to false positive. The

ROC curve allows us to assess the trade-off between detection ability and false alarm rate

in order to properly tune the system for acceptable tolerances. For each curve, the point at

the upper left corner in a graph represents the optimal detection with high detection rate

and low false alarm rate. The x-axis of the figure is the false alarm rate, which is the rate

of the typical traffic events being classified as faults or anomalies; the y-axis of the figure

is the detection rate, which is calculated as the ratio between the numbers of correctly

detected faults/anomalies to their total number. Different aggregation schemes produce

different ROC curves.

In order to compare the performance of adaptive flow-based NIDS with other

aggregation scheme, we choose the session-based aggregation scheme as comparison.

The system was evaluated on the following five cases: case 1 is only to detect attacks

with spoofing level 5; case 2 is only to detect attacks with spoofing level 4; case 3 is only

to detect all spoofed flooding attacks; case 4 is to detect all of both spoofed flooding and

non-spoofed flooding attacks.

Case 1: detect attacks with spoofing level 5

Our purpose here is to show that the performance of FNIDS under flooding

attacks with spoofed ports has been improved greatly after using spoofing detection

algorithms. In Darpa 98's data, a Neptune attack sent 20 SYN packets to every port from

1 to 1024 of the Solaris server once every ten minutes and sending twenty SYN packets
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to a port on a Solaris 2.6 system will cause that port to drop incoming requests for

approximately ten minutes. Each time it sent a lot of SYN packets to block multi ports of

a server at the same time. For example, In Darpa data 98 on 6/18/1998, Neptune attack

launched about 2840 SYN packets each time windows (30 seconds) to 140 ports at a

server and In the next time window, Neptune attack will launched another 280 SYN

packets with new spoofed source ports. Thus, the session-based NIDS must keep a lot of

flow records (at least 2840) in each time window, but adaptive flow-based NIDS only

keeps 140 flow records because the forged information has been removed so that the flow

number does not be affected by spoofed ports.

Figure 3.12 ROC curves under attacks with spoofing level 5

Figure 3.12 displays two ROC curves —the first one for session-based NIDS and

the second one for adaptive flow-based NIDS, which were based on the first five weeks'

data for training and used the last week's data for testing. From the figure 3.12, we can

observe that under a lot of Neptune flooding attacks, the session-based NIDS apparently
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drop (about 78% detection rat when false alarm rate is 0.02.), but the adaptive flow-based

NIDS still has very high detection rate (above 99%) when the false alarm is between 0.02

and 0.1.

Case 2: detect attacks with spoofing level 4

In this experiment, we will use ICMP flooding with spoofed level to evaluate the

performance of FNIDS under flooding attacks with spoofed level 4 and to show that its

performance has been improved after using spoofing detection algorithms.

In Darpa 98's data, a smurf attack sends ICMP "echo request" packets to the

broadcast address (xxx.xxx.xxx.255) of many subnets with the source address spoofed to

be that of the intended victim. Any machines that are listening on these subnets will

respond by sending ICMP "echo reply" packets to the victim. In adaptive NIDs, IP

spoofing detection agent can detect which subnet ICMP "echo reply" packets are from

and scenarios them based on subnet address as well as server IP/port and protocol. For

example: in Darpa 98 data on 6/17/1998, a smurf attack sent ICMP "echo request"

packets to 8 subnets. More than 1040 machines send "echo reply" to the victim in each

time window, and in next window. In Session-based NIDS, all flow records (over 1040)

would be kept in machine storage, but in Adaptive NIDS, only 8 flow records will be

kept in each time window, which greatly reduce the memory requirement.

The figure 3.13 shows that the performance of the adaptive flow-based NIDS is

much better than the performance of session-based NIDS. The detection rate of adaptive

flow-based NIDS is closed to 1 when false alarm rate is about 0.01.



Figure 3.13 ROC curves under attacks with spoofing level 4

Case 3: Detect all spoofed flooding attacks
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Figure 3.14 ROC curves under spoofed flooding attacks

This experiment was based on case 1 and case 2 to show that the performance of

FNIDS under two kinds of spoofed flooding attacks (spoofing level 5 and spoofing level
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4) has been improved after using spoofing detection algorithms. As described in case 1

and case 2, in Darpa 98 data, the "smurf' attack belongs to spoofing level 4 and the

"Neptune" attack belongs to spoofing level 5. Figure 3.14 shows the performance of both

session-based NIDS and adaptive flow-based NIDS.

From the figure 3.14, we can observe that the performance of FNIDS with SLDS

is much better than the performance of session-based NIDS. The detection rate of

adaptive flow-based NIDS is closed to 1.

Case 4: Overall detection of both spoofing attacks and non-spoofing attacks

In Darpa 98's data, except the spoofing attacks, like "Smurf' and "Neptune",

there were other DDoSs, like pod, teardrop and back etc. In this experiment, we tried to

show an overall performance comparison between adaptive flow-based NIDS and

session-based NIDS.

Figure 3.15 ROC curves under attacks with both spoofed and non-spoofed flooding
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The figure 3.15 shows that the performance of FNIDS with SLDS is much better

than the performance of session-based NIDS. The detection rate of adaptive flow-based

NIDS is closed to 1.

Table 3.2 The Classification Results of Typical Flow Scheme on DARPA 98 Data

Number\ scheme Session-Based scheme Adaptive scheme
Samples Number 1423182 383010

Normal samples 449610 378630
Attack samples 973572 4380
Misc. Rate 0.18 0.00886
False Positive Rate 0.21 0.0089
False Negative Rate 0.26 0.00829

Table 3.2 shows that there were 973572 different attack flow records in the

session-based Aggregation scheme, but there were 4380 attack flow records in adaptive

flow-bas NIDS, which greatly reduced the memory requirements and processing time

caused by spoofed flooding attacks. Apparently, session-based aggregation scheme took

more then 222 times (973572/4380 ,--,222.27) buffer units than the adaptive aggregation

scheme needed for spoofed flooding attacks.

3.6 Summary

Adaptive Flow Aggregation Approach for Flow-based Defense System was presented in

this paper, which only address the poor performance of the statistic flow-based NIDS

under high-stress spoofed flooding, but also provide a fine-grained traffic classification

model to recognizes and blocks spoofed flows for other flow-based defense system, like

firewall or traffic control.. Moreover, we presented fuzzy logic method adaptively to

select flow aggregation scheme to increase the detection rate depending on the spoofing



CHAPTER 4

A CONTROL THEORETICAL ANALYSIS FOR FLOW-BASED CONGESTION
CONTROL TO MITIGATE DOS ATTACKS

Abstract— flooding-based distributed denial-of-service (DoS) attack presents a very

serious threat to the stability of the Internet. However, current detection of the attack is

unreliable and may have high false-positives. Rate-limiting is a better-suited response

than complete filtering. Filtering out all the traffic to the victim would greatly damage

misclassified flows, whereas rate-limiting still allows some packets to reach the

destination and thus keeps connection alive. Allowing some attack packets through is

acceptable, since the attack's overall impact depends on the volume of the attack packets.

Moreover, if the flow-rate of low-priority is reduced, the high-priority flow will get more

chances to access the server they share, which eventually reduce the congestion and

improve the throughput of the high-priority flow. Guaranteeing Quality of Service (QoS)

has been proposed using two different models-the integrated services (Intserv) and the

differentiated services (Diffserv) model. Intserv uses the per-flow approach to provide

guarantees to individual stream, but its scalability is double since per flow state

information has to be kept in every router on the path from sender to receiver(s). DiffServ

provides aggregate assurances for a group of application. But the lack of fine-grained

service differentiation and resource isolation by current DiffServ routers exposes their

vulnerability to Distributed Denial of Service (DDoS) attacks [36], causing a serious

threat to the availability of Internet services. Based on the concept of flow-based

aggregation, we present a flow-based congestion control architecture that provides fine-

grained service differentiation and resource isolation among different classes of traffic

91
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aggregates. The Flow-based Congestion Control (FCC) architecture consists of a Fine-

grained Quality-of-Service (FQoS) regulator and PD controller. The whole system

adopts a control-theoretic approach to adjust the flow rate of every link so as to maintain

the high priority flow-rates at their desired level, thus guaranteeing QoS to high-priority

flow. To realize Fine-grained Quality-of-Service (FQoS) regulator, we proposed a Multi-

Level Packet Classification (MLPC), dynamical traffic models and flow rate-limit

scheme. The flow-based network intrusion detection in chapter 2 is used to classify each

flow in the network into different priority classes and give different treatment to the flow-

rates belonging to different classes. The architecture is shown to be highly flexible

service differentiation and robust against different types of flooding attacks, and

traditional network traffic control can be implemented using one common framework.

The fine-grained service differentiation and resource isolation provided inside the FCC is

a powerful built-in protection mechanism to mitigate DDoS attacks, reducing the

vulnerability of Internet to DDoS attacks. This system has been evaluated by using

CONEX test-bed data. Results show the success that the system mitigates Distributed

Denial of Service Attacks

4.1 Introduction

Internet-enabled business, or e-business, has mushroomed into a significant part of the

US economy, yet the further advancement of e-business is plagued by various Quality-of-

Service (QoS) and security problems. One of the worst is the Distributed Denial-of-

Service (DDoS) attack, which aggregates junk data traffic from up to thousands of
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computers into a formidable volume and floods and effectively blocks a certain victim

website. Bandwidth depletion can be caused by packet flooding, or by redirect

amplification of attack packets. In a flooding attack, agents-zombies send large volumes

of traffic to the victim to consume the victim system's bandwidth, whereas in

amplification attack the broadcast router redirects and amplifies the attack to the victim.

However, current detection of the attack is unreliable and may have false-positives; rate

limiting is a better-suited response than complete filtering. Filtering out all the traffic to

the victim would greatly damage misclassified flows, whereas rate limiting still allows

some packets to reach the destination and thus keeps connection alive. Allowing some

attack packets through is acceptable, since the attack's overall impact depends on the

volume of the attack packets.

From the view of traffic flow (instead of packets), congestion control regulates

the behaviors of flows in the Internet. Many rate-limiting algorithms have been proposed

[41][49][50]. Aggregate-based Congestion Control (ACC) [39] is to minimize the

immediate damage done by high-bandwidth aggregates. It includes a detecting

mechanism, aggregate controlling mechanism, and a cooperative pushback mechanism in

which a router can ask upstream routers to control an aggregate. Sally Floyd[42] argues

that router mechanisms are needed to identify and restrict the flows that are using a

disproportionate share of the bandwidth in times if congestion. Ratual Manhajan [40]

proposed a mechanism name RED with preferential Dropping (RED-PD), which keeps

partial flow state for the high-bandwidth flows. It uses the packet drop history at the

router to detect high-bandwidth flows in times of congestion and preferentially drops
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packets from these flows. By restricting high-bandwidth flows, it improves the

performance of low-bandwidth flows.

As a response to the attacks, traffic control restricts the allowed sending rate to

the victim of attack. Since the detection of the attack is unreliable and may false-

positives, rate-limiting is a better-suited response than complete filtering. Filtering out all

the traffic to the victim would greatly damage misclassified flows, whereas rate-limiting

still allows some packets to reach the destination and thus keeps connection alive.

Allowing some attack packets through is acceptable, since the attack's overall impact

depends on the volume of the attack packets. Thus, we propose a Flow-rate Congestion

Control (FCC) architecture that will use the flow-based network intrusion detection [45]

to classify the traffic flows in the network into different priority classes and give different

treatment to the flow-rates belonging to different classes, and adopted a control-theoretic

approach to adaptively control the low-priority flows so as to maintain the high priority

flow-rates at their desired level, thus guaranteeing QoS to high-priority flow. To provide

this desired service guarantee to high priority flows, we set up network flow model and

network flow rate-limit scheme. This system has been evaluated by using CONEX test-

bed data. Results show the success that the system mitigates Distributed Denial of

Service Attacks.

The rest of the paper is organized as follows: section 4.2 introduces the related

work; section 4.3 discusses a Fine-grained QoS regulator design; Section 4.4 describes

the Controller design; Section 4.5 explains experiments and results; Section 4.6 draws

some conclusions and outlines future work.
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4.2 Related work

Today there are many studied [38][43][60] on solving the congestion problem of a

network caused by DDOS flooding. However, they rarely achieve complete blocking of

attack traffic in general conditions. Meanwhile, the DDoS attack is likely to remain as a

critical threat for the public servers. To thwart DDoS attacks and provide service

differentiation at victim servers, sophisticated resource management schemes at end-

servers have been proposed, such as Resource Containers, WebQoS, and Escort [65],

[67], [67], [68], [69]. Like the computing resources of an end-server, there is only a

limited amount of network resources—such as bandwidth, buffer, and processing power

of routers—available to Internet users. The vulnerability of the Internet to DDoS attacks

roots in its best-effort model that provides no resource isolation among different IP flows,

making it easy for attacking traffic to hog network resources. Having sufficient service

differentiation and resource isolation at IP routers is essential not only to provide network

Quality of Service (QoS) to end-users, but also to counter DDoS attacks as a powerful

built-in protection mechanism inside the Internet.

To support network QoS, the Differentiated Service (DiffServ) infrastructure [42]

has been proposed as a promising solution due mainly to its scalability and robustness.

Based on the DS field in the IP header, IP flows are classified into different Behavior

Aggregates (BAs).Services are provided for aggregates, not for individual flows, and

defined by a small set of Per-Hop Behaviors (PHBs), which are the forwarding behaviors

applied to different aggregates at IP routers. According to the three different services
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provided by DiffServ, three types of PHBs are specified: Expedited Forwarding (EF),

Assured Forwarding (AF), and Best-Effort (BE). Although EF traffic is strictly policed

and conditioned at edge routers, which protects the rest of the network resources from the

flooding EF traffic, the violated AF traffic is only remarked without strict policing at

network edges. More importantly, no conditioning is applied to BE traffic, which is the

main component of the Internet traffic. Compared with the best-effort service model,

DiffServ is more resilient against DDoS attacks, but it is still susceptible to DDoS

attacks, especially the BE flooding traffic. Because in the current DiffSery architecture,

the QoS classification at core routers depends solely upon the DS field in the IP header,

yielding only coarse-grained service differentiation and resource isolation. No further

service differentiation and resource isolation are provided among different transport-layer

protocols within a BA. On the other hand, UDP and TCP are two dominant transport-

layer protocols in the current Internet, but their services and traffic behaviors are quite

different. Furthermore, UDP and ICMP flooding attacks have been widely used for

stealing network bandwidth and disabling a victim server. It is necessary to provide

resource isolation among TCP, UDP, and ICMP traffic and the resource consumption of

UDP and ICMP traffic should be bounded. Besides meeting the requirement of the bi-

directional service differentiation to TCP sessions, which the current DiffServ fails to

achieve [70], [71], there are some reasons for differentiating TCP control segments-

SYNs, FINs, ACKs, and RSTs—from data segments, especially in the best-effort service

model. Usually, TCP control segments have much smaller packet size than data

segments, so they consume much less network bandwidth than data segments. The loss of
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a TCP control segment, especially SYNs, incurs more serious performance degradation

than the loss of a data segment. DDoS attack tools usually utilize TCP control segments

for generation of DoS attacks, such as TCP SYN and ACK flooding attacks. In other

words, the coarse-grained service differentiation and the lack of resource isolation on

metadata packets not only degrade the assured service of TCP sessions, but also expose

the vulnerability of Internet to DDoS attacks [72].

Recent literatures have shown that the control theory can be successfully applied

to rate control in ACM[50][51], and high-speed network infrastructure[40][45]

respectively. They demonstrated the effectiveness of feedback control mechanisms in

achieving predictable system performance without precise knowledge of worst-case load

patterns. Binary feedback control [42] is widely used in network traffic control for its

simplicity and efficiency. It relies upon a one-bit indicator in each probing packet to

determine the congestion status of a network resource. The key design issue here is the

threshold value(s) to set and unset the indicator bit. Mitigating DDoS Attacks using a

PID Controller [44] uses a filtering method based on Proportional-Integral-Derivative

(HD) control theory to predict traffic flow change in each border router. Since it is based

on numerous assumptions and only limited to particular types that it becomes impractical

in real network.

In summary, all the schemes up to now can punish a small number of large

unresponsive traffic flows to maintain a certain level of fairness. However, no scheme

works well during the time of DDoS attack, which is characterized by a large number of

small traffic.To some degree, both filtering-based and congestion control techniques will
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alleviate the anguished symptom of DDoS attacks, but they may inevitably block some

legitimate traffic, the more effective methods still further research.

4.3 Fine-grained QoS Regulator Design

In the previous section, we described that the diffserv architecture can counter DDoS

attacks in some degrees, but it is still susceptible to DDoS attacks, especially the BE

flooding traffic. Because in the current DiffServ architecture, the QoS classification at

core routers depends solely upon the DS field in the IP header, yielding only coarse-

grained service differentiation and resource isolation.

To provide transport-layer fine-grained service differentiation and resource

isolation, we will present a novel fine-grained QoS regulator (FQoS), which extracts

transport-layer information to further divide a behavior aggregates into a UDP aggregate,

a TCP aggregate, and an ICMP aggregate and, then, to distinguish IP Flags in the TCP

aggregate or source IP/port or QoS etc. The granularity of the regulator deploys Multi-

Level Packet Classification detailed in section 4.3.3, which is based on flow-based

aggregate schemes in chapter 2, and uses Adaptive Flow Aggregation Architecture

detailed in chapter 3 to defense spoofed flooding attacks. The fine-grained QoS regulator

drops packets from traffic streams at transport-layer. This filtering approach is based on

flow rate limits, where the rate limits dynamically varies according to the output of

controller (see section 4.4), and the output (maliciousness) of flow-based network

intrusion detection system to identify the malicious nature of traffic streams. Setting the

limit rates for the packets from the suspected malicious flows and dropping packets
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reaching in the next window can adaptively limit low priority (high possible malicious)

flows while maintaining high priority (normal) flows at a desired level so that full

utilization of network bandwidth can be achieved through adaptive flow control.

4.3.1 Bandwidth and Regulation

QoS regulator is used to balance or protect server's resource, like network bandwidth,

protocol state memory buffer, kernel interrupt processing, memory and CPU cycles.

Some of these resources can be protected by rate-based schemes, such as: traffic shaping

or rate control. Traffic control is a means to achieve the required QoS goals, including

bandwidth management.

There are many mechanisms that can be used for traffic control including input

firewall, ingress router, incoming link or at server. In this chapter, a combination of rate-

control and control-theoretical method is used, which has a better control over bandwidth

resource. Figure 4.1 shows a typical topology of Flow-based Congestion Controller

(FCC). The advantages of this approach are that it does not require any modification on

the server farm being protected. By separating the QOS regulator from the end servers,

the regulator also relieves the end servers of expensive interrupt processing of attack

packets [58]. Moreover, with the availability of network processors and other ASICs

specially designed for classifying and handling network traffic [61], the FCC can be

easily made to operate at line-speeds.
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Figure 4.1 The flow-based congestion controller (FCC) architecture

This approach deploys flow-based aggregate schemes detailed in chapter 2 and

Multi-Level Packet classification in the section 4.3.3 at the QoS regulator to support fine-

grained service differentiation and resource isolation, and establishes a flexible fine-

grained QoS regulator to reduce the impact of attacks on the end servers. In order for the

QoS regulator to function as desired, it needs to have a quantitative idea of the bandwidth

resources available in the end servers and the level of bandwidth consumption by

different packets, flows or traffic classes. Therefore, there is a need to set up network

rate-limit models. At the same time, it is necessary to map or reflect incoming packets to

flow aggregates, and controlling flows at transport-layer. This leads us to the creation of

traffic classes, where each traffic class is supposed to correspond to a certain kind of

flow.

The whole system adopts a control-theoretic approach to adjust the flow rate of

every link so as to maintain the high priority flow-rates at their desired level, thus

guaranteeing QoS to high-priority flow. By regulating bandwidth consumption, attacks
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(like Distributed Denial of Service) can be effectively limited. Figure 4.1 shows how

output traffic control is implemented on the QoS regulator.

4.3.2 Flow Aggregation Algorithms

The goal of a flooding DDoS attack is to send a large amount of traffic to exhaust a target

bandwidth so that legitimate users cannot access the server. The offending traffic can be

characterized as an aggregate of packets. A traffic aggregate is defined by matching the

fields in the packet headers (at IP, UDP, TCP, and/or application layers) against a set of

values. For example, the traffic aggregate for a SYN attack consists of all SYN packets to

a destination address/port pair, and the aggregate for a Smurf attack consists of all ICMP

echo-reply packets from a subnet to a destination address, blocking the SYN packets to

the destination can stop the SYN attacks or blocking ICMP packets to the destination also

can stop ICMP attacks.

The object of flow aggregation is to categorize packets by applying the header

fields of a packet. For simplify, the fields in our system typically used to classify IP

packets are the destination IP address, source IP address, destination port number, source

port number, protocol number and protocol flags. The flow key (FK) is denoted by

FK=[Destination IP, Source IP, Destination Port, Source IP, Protocol]. Using these fields

for classifying IP packets, a flow aggregation scheme specifies a flow key, for example,

FK = (192.168.10.120, *, 23, *, TCP), matching traffic addressed to subnet 192.168.10.1

using TCP protocol and destination port 23, which is used for incoming Telnet A firewall

may disallow Telnet into its network using a filter to block the flow with this flow key.

The flow key (FK) is an array of N values in program, where H [i] is a specification on i-
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th header field. The value H [i] specifies what i-th header field of a packet must contain

in order for the packet to match the flow key. In Linux `iptable', these flow keys form a

chain array seen in figure 4.3. These specifications often have the following forms: exact

match, for example "source address must equal 192.168.10.16"; prefix match, like

"destination address must match prefix 192.68.10. * "; Or range match, e.g. "destination

port must be in the range 0 to 1023". If specifying Server's port (destination IP is home

net) and protocol, flow aggregation mechanism can monitor the specific services, such as:

using TCP protocol and server's port 23, which is used for incoming Telnet. Therefore,

flow aggregation algorithms provide a flexible service differentiation and resource

isolation at layer-4. For instance, let FK = (192.168.10.* , *, *, 23,TCP) be a flow key,

then, a packet with header(192.168.10.120, 10.10.10.1, TCP, 23, 1025) matches FK, and

is therefore aggregated. The packet (192.168.10.120, 10.10.10.1, 21, 1024, TCP), on the

other hand, doesn't match.

From the view of protecting bandwidth from flooding attacks and reducing the

number of flow keys, the flow keys of the Fine-grained QoS regulator are based on the

destination address as well as on the port and protocol at the transport or higher layer.

Therefore, the forwarding database of a router keeps some filters to be applied on flow

keys. Since flow key is based on server side, the number of these filters is not too large to

influence the performance of QoS regulator.

4.3.3 Multi-Level Packet Classification

Internet routers that operate as firewalls, or provide a variety of service classes, perform

different operations on different flows. In order to classify a packet, a router consults a
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table (or classifier) using one or more fields from the packet header to search for the

corresponding flow. The classifier is a list of rules that identify each flow and the actions

to be performed on each flow. With the increasing demands on router performance, there

is a need for algorithms that can classify packets quickly with minimal storage

requirements and allow new flows to be frequently added and deleted. In this system, we

adapted the multi-level packet classification architecture to manage these rules.

For service differentiation, a Fine-grained QoS regulator is proposed here, which

employs a multi-stage packet classification mechanism. Similar to Figure 3.3, Packet

classification can be modeled at multi different hierarchical levels, as shown in Figure

4.2. The deeper level of packet classification has the finer grain of flow aggregation.

There are two kinds of information from IP header for packet classification: one is

reliable and another unreliable. The unreliable information includes source IP/Port that is

often forged by attacker, or some subnets used for amplification attack or reflection

attacks. The other information is reliable information. As the key component of the multi-

level packet classification architecture, the proposed QoS regulator at routers uses both

kinds of information for packet classification. In order to remove forged information to

reduce flow number caused by spoofed flooding attacks, adaptive flow aggregation

architecture in chapter 3 can be used in QoS regulator. Except that IP-layer reliable

information like destination IP/port aggregation can be used for level 1-2 packet

aggregates as shown in figure 4.2, transport-layer information also can be extracted to

further divide a behavior aggregates into a UDP aggregate, a TCP aggregate, and an

ICMP aggregate for level-3 packet aggregation and, then, to distinguish IP Flags in the
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TCP aggregate for level-4 packet aggregation etc. Routing and QoS lookups are

integrated into a single framework to fulfill layer-4 packet forwarding and, therefore, the

forwarding database of a router consists of many filters to be applied on multiple header

fields.

Figure 4.2 The multi-level packet classification

In figure 4.2, SA means server aggregates; PA means port aggregates; BA means

Behavior Aggregates; TA, UA and IA are TCP, UDS and ICMP aggregates separately.

At the first two levels, it is straightforward to set the filtering rules. By checking

destination (server) IP address/port and protocol type fields in the IP header against the
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filtering rules, the QoS classification is simple and does not cause any ambiguity.

Moreover, a general TCP control segment identification (Flags) can be used for the

identification of each individual TCP control segment, such as: SYN, FIN, ACK, and

RST. The only difference at the port-based identification is to check different bits in the

6-bit flag field.

4.3.4 Traffic Rate-limit Algorithms

As described above, an IP flow is a set of packets, which are observed in the network

within some time period, and share some common property known as its key. It can be a

TCP connection or a UDP stream described by source and destination IP addresses,

source and destination port numbers, or the protocol number etc. For the fine-grained

QoS regulator, flow key is based on the destination address as well as on the port and

protocol at the transport or higher layer. Therefore, the forwarding database of a router

consists of a large number of filters to be applied on flow keys.

Based on the Multi-level Packet Classification and flow aggregation schemes, all

packets can be classified as different flows. Limiting traffic rate of each flow can solve

the network congestion problem. Therefore, It is necessary to establish a flow-based

traffic model for QoS regulator.

4.3.4.1 Traffic Model

Let T denote the discrete time unit, and assume that fluid approximation for flow rates

holds. Consider a network that consists of a set £= {1, 2_1} of unidirectional links of
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capacity ck, ke L. Each link is connected to a server. Each flow must go through one of

these links to reach its corresponding sever. We will assume that the data streams are

lossless across links. The set of all flows is denoted by S, a subset of s. The incoming

flow rate Fk on the kth link uses a set of flows Fk :=Ifk(s) IS E SI. The rate Fk satisfies Mk< Fk<

Mk, where mk > 0 and Mk < Ck are the minimum and maximum transmission rates,

respectively.

Hence, we have:

The following constrains on the vector Fk := ids) I S E s} of the incoming flow rate:

Note that: for a given vector c := {ck I k E L} of capacities, no Fk of rates might exist if

mk > ck for any k. Therefore, we further assume that the vector C of capacities satisfies

A pair of vectors (Fk ,C) satisfying these constraints is said to be feasible.

Let F (nT) denote total network flow rate going through the network backbone

during the time window [(n-1)T, ni]. Then,
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In order to protect all of links or control network traffic, we assume that all traffic

must go through a network backbone. NT denotes the capacity of the network backbone.

Then, the maximum network traffic rate is denoted by:

The goal of implementing any network traffic rate adjustment scheme is to show

that the schemes can provide a mechanism, which will allow for the provisioning of the

network traffic rate requirements in a dynamic traffic environment.

Because the QoS regulation algorithm is based on flow-based aggregation, the

output (maliciousness) of flow-based Network Intrusion Detection can be used for the

QoS regulator adaptively to limit low priority (high possible malicious) streams while

maintaining high priority (normal) streams at a desired level so that full utilization of

network bandwidth can be achieved, and prevent servers from overloading or being

flooded.

4.3.4.2 Flow Rate-limit Schemes

In order to limit the traffic rate of a flow in a link, a flow rate-limit is introduced, which is

described as following:

Suppose Ak(s)(nT) is the incoming byte (or packet) number and vk(s)(nT) is the

outgoing byte number during the period [(n-1)T,nT] in the s th flow ,then the admitted

portion of bytes(or packet) in a flow can be defined by:



Where: k€£ and 0_ β__1.

Let the s th incoming flow rate (byte rate or packet rate) be denoted by:

And let the s th outgoing flow rate (byte rate or packet rate) be denoted by :
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(4.7)

(4.8)

Then we have:

Where: a is said to be a byte counting rate ratio or packet counting rate ratio.

When a =0 or 1,all bytes or packets are dropped or accepted at the sample time nT.

Because both byte counting and packet counting rate belong to flow level, we call a as

flow rate-limit or flow weight. For example: there is a flow, which contains 1000 packets

and each packet has the fixed packet size (53bytes) at a sample time. If the flow rate-limit

a (s)=0.7,then there are 700 packets (37100bytes) allowed to go through the QoS regulator

and others will be dropped at this sample time.

Substitute (4.8) into (4.1); the flow rate in the kth link is expressed by:

And the flow rate is constrained by:
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Fk ck , k=1,2, 	 L	 (4.10)

Where: ck is the capacity of the link k.

In flow rate-limit scheme, the system timely monitors the traffic rate in the link

and feedbacks the information to the regulator and predict every flow limit rate or flow

weight to support a good rate regulator as shown in figure 4-3.

Figure 4.3 Flow rate regulators for servers

Figure 4.3 shows flow rate regulators for servers. There are L servers, thus L links

is shown in this figure. In each Link, there are s filter ,which correspond to a series of

flow keys. After entering flow regulator, each packet is classified based on flow keys.

The packets with unknown flow key would be discarded. Each kind of packets will be
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transferred to the relevant filters. All filters form chain arrays. In hardware design, chain

arrays are made of ASIC chips (Application-Specific Integrated Circuit, a chip designed

for a particular application), which work parallel to deal with packets that greatly

improve process ability of the QoS regulator. In software design, the chain arrays can be

implemented by `iptable' or `tc' instruction in Linux system. Therefore, these chains

could be statistic (predefined) or dynamic (provided an updated by a flow management

module). In our implement, we used software to realize dynamical chain array.

4.3.4.3 Maliciousness-based Rate-limit Control Algorithms (MRCA)

In the above section, the traffic regulator models were discussed. Although these models

can be used to control network traffic including flooding DDoS, it cannot maximally

provide bandwidth resource for normal clients. In order maximally to block malicious

flows while maintaining normal flows at a desired level, Flow-based Network Intrusion

detection was introduced into FCC to realize MRCA.

Based on formula (4.9) and figure 4.3, we introduce a set of maliciousness factor,

denoted by mk := m(ks)  1 s E SI, which expresses the maliciousness degrees of every flow in the

link k. The more malicious flow is, the lower priority the flow has to pass through QoS

regulator. If the flow-rate of low-priority is reduced, the high-priority flow will get more

chances to access the medium they share, which eventually reduce the congestion and

improve the throughput of the high-priority flow. Thus maliciousness-based rate-limit

control is an effective means to provide service differentiation to different class of flow.

Thus, the general form of the maliciousness-based rate-limit function can be defined by:
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Where: Q is the feedback flow control function, which uses discrete form. "nT" is

sample time, which corresponds to nth time window. "Pk " is a output of controller, which

correspond to rate-limits.

Although formula (4.11) provides a general traffic control methods, it requires too

many controllers to provide rate limits. In order to simplify the control method, one

controller is used in our system, which is:

From (4.11), we have:

Where: w is a constant weight vector for each flow. The default value is 1. u is

P1D controller's output. In addition to reducing the number of controller, there are several

other benefits by using (4.13) as follows:

• Using one single-loop control system can realize link bandwidth control;

• Different weight can be used to emphasize different service;

Many functions could be used to model the formula (4.13). Such as: the

incomplete gamma function, Hyperbolic tangent function, Inverse tangent function etc. In

this system, the maliciousness-based flow rate-limit function is denoted by:
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Where: k = 1,2...L and ses. S is the set of all flows in this link.

ηk(nT):=ηk(s)(nT)I 5' E S} is a vector of rate-limits in the link k. The condition mks} is the

maliciousness of the Sth flows in the link k at the n th time window, which is provided by

flow-based network intrusion detection and it satisfies' 4 ) 1s 1.

If supposing that each flow has the same weight ( CO =1), the vector expression of

(4.14) and (4.14') can be written by:

Special case: when mk = I means that there are no malicious packet or FNIDS is

failed, the (4.15) is written by

The formula (4.16) is used for traditional traffic control.

Flows that have more maliciousness are quickly restricted to very low rates

whereas this restriction is more gradual for better-behaving flows. The figure 4.4 shows

the relationship between the rate-limit and control variables and the relationship between

the rate-limit and maliciousness.

From the Figure 4.4, it is can be seen that: (1) the rate-limit decreases as control

variable increase, which means that when network traffic of line is over the expected rate,

the controller will give out a positive value (control variable) and rate-limit will decrease

as control variable increases in order to limit the traffic going through this link; (2) the
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rate-limit decreases as maliciousness decreases, which proved that the formula (4.14) or

(4.15) has the function of maximal dropping malicious packets.

Figure 4.4 The performance of rate-limit η

4.4 Controller Design

We have developed network traffic models for rate-based QoS regulator in section 4.3. In

figure 4.1, we can see that the system consists of QoS regulator and traffic controller. In

this section, we will further discuss control theoretical approaches for traffic controller.

There are many methods for controller. In our system, we choose PID control as the

controller for the following reasons. (1) In term of control theory, the network traffic

control system is a dynamic system; it is known that PID control is a widely applicable

control technique in dynamic systems. (2) Compared with other control techniques, an

important feature of PID control is that it does not require a precise analytical model of

the system being controlled.
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4.4.1 PID Controller Design

A conventional PID regulator is the most frequently control element in the industrial

world. It is estimated that, at least, the 90% of the controllers employed in the industry

are PIDs or its variations.

A conventional PID controller is described by equation (4.17). The control signal

incorporates three actions on the error signal: proportional (process gain), integral

(transient response) and derivative (stationary error). Each of them is modified by a

constant, which are respectively called proportional gain Kp, integral time Ti, and

derivative time Td. They are also named proportional,

In figure 4.13, the feedback controller (PID) is designed to generate an output ii

that causes some corrective effort to be applied to a process so as to drive a measurable

process variable Y towards a desired value R known as the set point. The controller uses

an actuator to affect the process and a sensor to measure the results. Virtually all

feedback controllers determine their output by observing the error e between the set-point

(R) and a measurement of the process variable (Y). Errors occur when a disturbance or a

load on the process changes the process variable. The controller's mission is to eliminate

the error automatically.

4.4.1.1 PID Algorithms

Consider the ideal Proportional-Integral-Derivative (PID) controller written in the

continuous time domain form:
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Where: Kp, Ki and Kd are weighting constants; 110 is an offset; a(t) is the controller output.

Where: R is the target incoming traffic (or set point). C(t) is the observed coming traffic.

The variable e(t) represents the tracking error, the difference between the target incoming

traffic R and the observed incoming traffic C(t). This error signal e(t) is sent to the PID

controller, and the controller computes both the derivative and the integral of this error

signal. The signal u(t) just past the controller is now equal to the proportional gain (Kp)

times the magnitude of the error plus the integral gain (Ki) times the integral of the error

plus the derivative gain (Kd) times the derivative of the error.

The above equation (4.17) is a continuous representation of the controller and it

must be converted to a discrete representation and the final form of the equation is. To

discrete the controller, we need to approximate the integral and the derivative terms to

forms suitable for computation by a computer. From a purely numerical point of view, we

can use:

Therefore, the discrete PID algorithm is denoted by :

This is now in the form of a difference equation, suitable for coding in an

appropriate programming language.

From (4.19), the final form of PID controller is denoted by:



If Kd =0, the PI controller is denoted by:

If Ki =0, the PD controller is denoted by:

Where: T is the sampling period or Time Window.

4.4.1.2 PID Tuning and Stability

An important task of building a stable and high performance PID-based rate controller is

to tune the control parameters (i.e., Kp, Ki and Kd). One of the traditional ways to design

a PID controller was to use Ziegler and Nichols method, which gave two techniques for

selecting the PID parameters. The advantage of this method is that no knowledge of the

system model is needed; all the information required to choose the parameters is obtained

from simple experiments on the open-loop system. However, this method is usually used

for linear time-invariant system. In network system, it is very difficult to precisely model

real network traffic. Therefore, we used empirical tuning rules to determine the PID

parameters.

Proportional

Proportional control is the easiest feedback control to implement, and simple proportional

control is probably the most common kind of control loop. A proportional controller is

just the error signal multiplied by a constant and fed out to the drive.
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Figure 4.5 P-type controller with different proportional gains
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Figure 4.6 P-type controller with big / small P proportional gain

Figure 4.5 shows what happens when you add proportional feedback to the traffic

control system. For small gains (kp = 0.01, 0.1) the traffic rate goes to the correct target,

but it does so quite slowly, shown in figure 4.6(b). Increasing the gain (k p = 1) speeds up

the response to a point. Beyond that point (kp = 5, 10, 20) the traffic rate starts out faster,

but it overshoots the target, shown in figure 4.6(a). In the end, the system doesn't settle

out any quicker than it would have with lower gain, but there is more overshoot. If the
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controller keeps increasing the gain, it would eventually reach a point where the system

just oscillated around the target value.

The traffic controller starts to overshoot with high gains because of the delay in

the traffic rate response. If looking back at figure 4.5 and formula (4.26), it can be seen

that the traffic rate doesn't start ramping up immediately. This delay (at least one time

window), plus high feedback gain, is what causes the overshoot seen in Figure 4.5 and

Figure 4.6(a). Figure 4.6 shows the response of the precision actuator with proportional

feedback only. Proportional control alone obviously doesn't help this system. No matter

how low the gain is, the system will oscillate. As the gain is increased, the frequency of

the output will increase but the system just won't settle.

The experiment shows that a proportional controller alone can be useful for some

things, but it doesn't always help. Network system that has too much delay can't be

stabilized as the gains increase with proportional control. As the gains decrease, these

stable error increases. Therefore, traffic rate cannot be brought to the desired set point. To

solve these control problems we need to add integral or differential control or both.

Integral

Integral control is used to add long-term precision to a control loop. It is almost always

used in conjunction with proportional control.

Integral control by itself usually decreases stability, or destroys it altogether.

Figure 4.7 shows the traffic controller with pure integral control (Pk = 0). The system

doesn't settle as the gain is increased. Like the traffic controller with proportional control,

the traffic controller with integral control alone will oscillate with smaller and smaller
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swings until the rate approaches the expected value. The network traffic control system

with integral control alone has a bigger stable error as the gain decreases. This system

takes longer time to settle out than the same network traffic system with proportional

control (see figure 4.5), but notice that when it does settle out, it settles out to the target

value-even with the disturbance added in.

Figure 4.7 I-type controller with different integral gains

Figure 4.8 PI-type controller with different proportional gains
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Figure 4.7 shows that the integrator "remembers" all that has gone on before,

which is what allows the controller to cancel out any long-term errors in the output. This

same memory also contributes to instability. To stabilize the previous systems, the

system needs a little bit of their present value, which comes from a proportional term.

Figure 4.8 shows the network traffic control system with proportional and integral

(PI) control. Compare this with Figures 4.5 and 4.7. The network traffic control system

takes longer to settle out than the system with pure proportional control, but it will not

settle to the wrong spot. The QoS regulator still settles out to the exact target traffic rate,

as with pure integral control (see figure 4.7), but with PI control, it settles out two to three

times faster.

Differential

As describled above, pure integral control by itself usually decreases. Since proportional

control deals with the present behavior of the network traffic control system, and integral

control deals with the past behavior of the system, P-type and PI-type controller can't

stabilize. If there are some elements that predict the network traffic behavior then this

might be used to stabilize the network traffic control system. A differentiator will do the

trick.

With differential control, a controller can stabilize the network traffic control

system. Figure 4.9 shows the response of the network traffic control system with PID

control. We can see the performance improvement to be had by using full PID control

with this network traffic system.



Figure 4.9 PID-type controllers with different gains

Figure 4.10 PID-type controllers with big derivative gains

Differential control is very powerful, but it is also the most problematic of the

control types presented here. The main problem is that differential control suffers from

noise problems because noise is usually spread relatively evenly across the frequency

spectrum. Proportional control passes noise through unmolested. Integral control
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averages its input signal, which tends to kill noise. Differential control enhances high

frequency signals, so it enhances noise. We can low-pass filter the differential output to

reduce the noise, but this can severely affect its usefulness. The theory behind how to do

this and how to determine if it will work is beyond the scope of this thesis.

A more scientific and systematic approach is to apply control theory analysis to

select the PID control parameters. Such analysis requires an analytical model of the

system. Because the system is nonlinear and time variant, it is difficult to precisely model

a system such as a real-time system.

The procedure of tuning traditional HD is hard work in network traffic control

system because the parameters of PID depends on real network system and the mode of

control (PID) cannot be changed once the PID controller is started. Actually, it is not

necessary for controller to have a high accuracy. In other ward, the parameters of PID can

be in some ranges.

The fuzzy logic controller design is based on the linguistic description of the

control strategy that a skilled operator or expert should use in the manual control of the

process. Therefore, in the following section, we will design a fuzzy logic according to the

design of traditional PID in this section to simulate a PID-like controller.

4.4.2 The Fuzzy PID Controller Design

The fuzzy logic controller design is based on the linguistic description of the control

strategy that a skilled operator or expert should use in the manual control of the process.

The fuzzy controllers can be further classified into three types: the direct action (DA)

type, the gain scheduling (GS) type and a combination of DA and GS types.
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The majority of fuzzy PID applications belong to the DA type; here the fuzzy PID

controller is placed within the feedback control loop, and computes the PID actions

through fuzzy inference. In GS type controllers, fuzzy inference is used to compute the

individual PID gains and the inference is either error driven self-tuning [62] or

performance-based supervisory tuning [63].

There are several methods [64] available for the implementation of fuzzy PID

controllers, one of which utilizes the variables of the error, integral of error and derivative

of error. This method leads to too many rules, and its realization in practice is considered

difficult to implement and tune. Another realization of a fuzzy HD controller is the

parallel combination of fuzzy PI and PD controllers. The rule base is simpler because

each one has only two fuzzy input variables, and from the deduction process the

relationship between conventional PID parameters and fuzzy ones can be built up,

making it possible to apply conventional HD tuning methods.

In this section, we introduce a simple fuzzy PID-like structure for Flow-based

Congestion Controller for a reference. The PID-like controller utilizes the fuzzy logic

principle and simulates the performance of PID to control QoS regulators. More

professional PID methods can be found in [64].

The traffic rate-difference E and traffic rate-difference change CE are selected as

the inputs of fuzzy controller and rate-limit 77 is an output. Therefore, the PID-like

controller is a two-input and one-output fuzzy logic system. The system consists of a rule

base, membership functions, and an inference procedure, shown in Figure 4.11.
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Figure 4.11 The operational structure of fuzzy PID-like controller

Fuzzification / Defuzzification

Fuzzification and Defuzzification involve mapping the fuzzy variables of interest to

"crisp" numbers. Fuzzification translates traffic rates and traffic rate changes into

linguistic values.

In order to performance like PID controller during traffic control, the PID-like

controller uses rate-difference between the target incoming traffic and the observed

incoming traffic, and rate-different change as inputs of Fuzzy controller, which represent

the change and trends of real network traffic.

Fuzzification translates the traffic rate-difference E and traffic rate-difference

change CE into linguistic values. Three triangular membership functions (see figure

4.12.a) are defined for each input while three triangular membership functions (see figure

4.12.b) over the range [-1,1] are defined for the output n .

Once the input variables are fuzzified and run through the fuzzy rule bases, which

are discussed below. In a crisp system, the intersection of two sets contains the element

that is common to both sets. This is equivalent to the common logical AND operation. In

conventional fuzzy logic, the AND operator is supported by taking the minimum of the

truth membership grades.



(a) The Input Membership Functions
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(b) The Output Membership Functions

Figure 4.12 The input/output member functions of fuzzy Pid-like controller

There are many methods that can be used to defuzzy the outputs. One of the most

commonly used methods for defuzzification is the Centroid method also known as Center

of Area (COA) method. The model well coincides with the human images of fuzzy

inference rules in cases when the system has many input and many outputs. In the present
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simulator, the Centroid method has been used, in which the Centroid of the consequent

fuzzy set is found and it corresponding priority value on the x-axis is the final output.

Inference

The fuzzification process finds the degree of membership of each input to their

corresponding fuzzy sets. In the main working part of fuzzy logic, there are sets of rules

provided by an expert, which relate various fuzzy sets to a desired fuzzy output. Fuzzy

sets in this case are, high, medium and low. Fuzzy output sets are high-priority, medium-

priority and low-priority. Priority indicates the suitability of a particular flow aggregation

scheme to a particular request. Depending on the fuzzy inputs and the rule bases, the

output fuzzy set, 'priority' is computed using an inference scheme. Several inference

schemes are available like Mamdani, etc. For the present simulator, the Mamdani scheme

has been adopted (through MATLAB). Figure 4.10 shows the pictorial representation of

the inference scheme for several rules and its combined fuzzy output.

Table 4.1 The Inference Rules of PID-like Control

The 	 rule table of fuzzy 	 inference engine 	 (RL)

CE 1 E LN MN Z MP LP

LN LN LN LN LN MN

MN LN MN SN Z SP

Z MN SN Z SP MP

MP SN Z SP SP LP

LP MP LP LP LP LP



Table 4.2 Meanings of the Linguistic variables in PID-like Controller

LN Large Negative

MN Medium Negative

SN Small Negative

Z Zero

SP Small Positive

MP Medium Positive

LP Large Positive

E Error

CE Change in Error

RL Rate Limit

Rule Development

Our rule development strategy is to select the traffic rate-difference E and traffic rate-

difference change CE as the inputs of fuzzy controller and use our experience of using

PID above to make the FSC be similar to PID. There are different rules to achieve

different objectives, which depend on human experiences. As an example, all the

inference rules are shown in the table 4.1.

From table 4.1, there are 25 inference rules. Keywords like IF THEN represent

operations on the fuzzy inputs, which gives the output of that particular rule.

For example:

IF E = Z And CE = MP Then RL = SP

At the end of the inference a resultant fuzzy set is obtained, which needs to be

defuzzified to get a meaningful crisp output.
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4.5 Experiments and Results

4.5.1 Simulation Testbed Model

Although more and more high-speed routers adopt ASICs to fulfill routing and packet

forward, Linux-based routers still play important roles in Internet due to their scalability

and flexibility. Almost most of traditional traffic controls use the Linux QoS architecture.

In this section, we highlight how the ideas presented earlier are implemented in our

prototype. This simulation model is used to study the performance of FQoS and rate-limit

algorithms. The network traffic includes background traffic caused by normal clients and

abnormal traffic caused by attackers. Our simulation model consisted of a traffic

generator that generate background traffic; an attack launcher that launches different

types of flooding attacks; an Flow Congestion Controller (FCC) that makes

admission/rejection decisions on incoming packets or flows; end servers that are used as

victims for various kinds of attacks, while at the same time providing some useful

services to good clients; and a flow-based network intrusion detection system (FNIDS)

that on-line classify each flow.

Figure 4.13 The Prototype of FCC simulator model
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The following configuration is shown in the figure 4.13. The simulator network

was interconnected with 100 Mbps Ethernet cards. A fast machine (Pentium 2.6GHz,1 G

Ram, two 100Mbps Ethernet cards, one switch card) was chosen for FCC ,which includes

Input firewall, QoS regulator, PID controller and flow-based Network Intrusion Detection

System. The fast CPU enables FCC to carry out all incoming packets without getting

slowed down by a slow processing speed. Two PCs(Pentium 1GHz , 256MB Ram ,one

100Mbps Ethernet card) were chose as sender (client and attacker) .And one PC(Pentium

1 GHz , 256MB Ram ,one 100Mbps Ethernet card) was chose as a victim. To simulate

multi-homed machine, we set multi-1P addresses for the network interface card (NICs) of

the victim supposing each IP address corresponds to one server. All machines were

equipped with the Red Linux 9.0.

FCC Implementation

The FCC is to limit the traffic rate to protect servers. It includes Input firewall, flow-

based QoS regulator, PID controller and Flow-based Network Intrusion Detection System

(FNIDS). All of these parts can be separated or integrated together. In this simulator, a

PID controller and a Fine-grained QoS regulator are plugged into Flow-based Network

Intrusion Detection System to construct an integrated FCC, shown in Figure 14.



Figure 4.14 Flow congestion control model
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4.5.2 Results and Interpretation

Several experiments were conducted on the test-bed to test out FCC and its effectiveness

in mitigating DDoS attacks. Various parameters, like allocation of bandwidth under

normal user or attackers, service differentiation of FCC, traffic control by using PID

controller or fuzzy controller were evaluated in this section.

There are two kinds of counting rate: Packet counting rate and Byte counting rate,

for network traffic. When flows are mapped to classes, it is important to consider the per-

packet processing-cost in order to do a fair allocation of end server resources across

flows. Thus it is better to set a packets/sec rate limit than a bytes/sec limit [581

In this section, we shall discuss the results of our experiment and how may be

applied. We separately used traditional PID and Fuzzy PID for flow rate control system.

Based on these two controllers, we tested the performance of flow-based control system

under different stress flooding attacks. Moreover, we used flooding attacks to detect the

effects of FCC.

(a) Stress Testing of PID controller

In this section, stress testing was done for the sensitivity, and thus effectiveness, of PID
controller.

The results of stress testing are shown in Figure 4.15. The Figure 4.15 shows that

the outgoing flow rates of both the PID and Fuzzy PID approach the expected traffic rate

(300kbyte/sec) under various stress incoming traffic. We can notice that the traditional

PID took longer time to settles out to the exact target traffic rate than fuzzy PID. This is

because traditional HD is more sensitive to real network system because of static

parameters, but Fuzzy PID possesses self-adjusted function that make controller adaptive
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to various real network traffic state. It is also noticed that the final steady performance of

tradition PID is consistently better than that of fuzzy PID in this case, which is because

Fuzzy PID has a bigger stable error than traditional PID and oscillated around the target.

Figure 4.15 Stress testing of PID controller

In summary, Fuzzy PID has the same performance with the traditional PID and

even better. And the Fuzzy PID-like has better dynamical response performance than

traditional PID, which makes Fuzzy PID-like in traffic control system rapidly to stop

abrupt flooding attack while keeping a good performance..

(b) The Control Performance of FCC with/without PID under Flooding Attacks
There are two types of packets best suited to flooding DoS/DDoS attacks: Smurf --ICMP

flooding and Fraggle --UDP flooding. In a DDoS Smurf attack, the attacker sends packets

to a network amplifier (a system supporting broadcast addressing), with the return

address spoofed to the victim's IP address. The attacking packets are typically ICMP

ECHO REQUESTs, which are packets (similar to a "ping") that request the receiver to

generate an ICMP ECHO REPLY packet. The amplifier sends the ICMP ECHO
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REQUEST packets to all of the systems within the broadcast address range, and each of

these systems will return an ICMP ECHO REPLY to the target victim's IP address' This

type of attack amplifies the original packet tens or hundreds of times. A DDoS Fraggle

attack is similar to a Smurf attack in that the attacker sends packets to a network

amplifier. Fraggle is different from Smurf in that Fraggle uses UDP ECHO packets

instead of ICMP ECHO packets. Because the controlled object of FCC is packet/bytes

number, ICMP flooding and UDP flooding attacks has the same characteristic: a lot of

packets is launched to a victim.

In this experiment, the attacking machine kept sending a constant flood at

1000packets/s to the end server. The packet size of ICMP flooding packets was

1066bytes. And the packet size of UDP flooding was the length of IP head (1066bytes).

The rate limit on the QoS regulator was varied and the results plotted in Figure. It is seen

that if there were no PID/FPID control, the traffic rate would be over the desirable rate

(500 Packets/s) to the server; if there were PID/FPID control, the traffic rate was

controlled around the desirable value.

To measure the effectiveness of FCC and the impact that it has on attack, several

experiments were run in the identical testbed by using PID control and FPID control.

Figure 4.16 presents the results of the impact that PID/FPID has on TCP flooding. The

figure 4.16 shows that the packet rates settle out to the desirable traffic rate

(500packets/sec) in several time windows.



Figure 4.16 The control performance of FCC for Smurf flooding
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Figure 4.17 The control performance of FCC for Fraggle flooding

Likely, Figure 4.17 presents the results of the impact that PID/FPID has on UDP

flooding. The flooding traffic rates are rapidly approaching to the target rate.

(c) The allocation of bandwidth under different users
The allocation of bandwidth in PID or Fuzzy PID mechanisms without flooding attacks is

discussed here. The dynamic sharing of bandwidth between competing users has to be

achieved via flow-based congestion control schemes.

The experiments show two cases of accommodating the allocation of bandwidth.

In the first case, the background traffic is low; there is enough bandwidth for new users.



135

Every new user entering the area will take a certain percentage of the bandwidth. In the

second case, the background traffic takes 80% of bandwidth and only 20% of bandwidth

for new users. Thus, all users will compete for the bandwidth. A lower priority

application is asked to relinquish some of its bandwidth for the new higher priority

application. In order to show the influence of weights or priorities on the bandwidth

allocation, the fixed rate and highest-priority are assumed for background traffic. The

workings of both cases are described with the use of Figure 4.20 and Figure 4.21.

Case 1 : Enough Bandwidth for New Users
In figure 18, user 1, 2 and 3 transfer files by FTP by 20 packets/s(each packet contains

1448 bytes) and a traffic generator launches background traffic. Initially, traffic generator

launches traffic to a server by 20 packets/s. Userl starts to sent data to the same server.

After some time, a new user 2 enters this same server. Then, the user 3 enters the region.

Because the total traffic is not over the target value (100packets/s), the system allocates

the bandwidth to each user.

Figure 4.18 Bandwidth allocation for users
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Case 2: Limited Bandwidth for New Users with different Priorities (Weights)

In Figure 4.19, User 1, 2 and 3 are users in the system and a traffic generator launches

background traffic by 80 packets/s. Each user launches transfer a file by 20 packets/s

(each packet contains 1448bytes) through FTP. This figures show that since the total

traffic at this time is over the desired value (100packets/s), the lower priority userl is

asked to relinquish some of its bandwidth for the new higher priority user 2, and when

new user 3 with the highest priority enters the region, both of userl and user2 reduce

their sending rate to allocate bandwidth for the user3.

This experiment shows that the FCC has the formula (4.14) for setting the weight

for different flows, which is that a low priority application is asked to relinquish some of

its bandwidth for higher priority users once the bandwidth is not enough.

Figure 4.19 Bandwidth allocation for users with different priorities (weights)

(d) The allocation of bandwidth under normal user and attacker
The allocation of bandwidth in PID and Fuzzy PID mechanisms during flooding attacks

is discussed here. The dynamic sharing of bandwidth among normal users and attacker
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has to be achieved via flow-based congestion control scheme. Two cases were performed

in these experiments: case 1: attack rate below the target value of server; case 2 attack

rate over the target value of server.

The experiments show two cases of accommodating the allocation of bandwidth

for normal and malicious user by using formula (4.15). In both cases, a certain percentage

of the bandwidth is reserved for the normal user entering the area and the left percentage

of the bandwidth for malicious user (attacker). Total traffic rate approaches to the target

value (300packets/s). The working of both cases is described with the use of Figure 4.20

and Figure 4.21.

Case 1: Attack Rate below the Target Value

Figure 4.20 Attack rate below the target value

In figure 4.20, the bandwidth is reserved for user 1 and user 2. When the

malicious client enters this region, it is allocated by the left bandwidth. Because the total
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traffic rate is not over the desired traffic rate, the FCC did not limit the bandwidth of

malicious client.

Case 2: Attack Rate over the Target Value

In figure 4.21, user 1 and user 2 are running in the system. At time instance, a

flooding attacker enters this region, it can only use some of new bandwidth and the

bandwidths of user 1 and user 2 almost keep unchanged. FCC allocated the left

bandwidth for malicious client while normal FTP user and HTTP user kept unchanged

bandwidth.

Figure 4.21 Attack over the target value

These experiments show that a lower priority application will be asked to

relinquish some of its bandwidth for the new higher priority application. This further

proved that Flow-rate Congestion Control (FCC) architecture could adaptively control the

low-priority flows so as to maintain the high priority flow-rates at their desired level.
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4.6 Summary

The experiment results show that the mechanism outlined in this paper can effectively

detect and handle individual flooding DDoS flows at a QoS router by using PID control

and FNIDS.

Based on the concept of flow-based aggregation, we present a flow-based

congestion control architecture that provides fine-grained service differentiation and

resource isolation among different classes of traffic aggregates. The Flow-based

Congestion Control (FCC) architecture consists of a Fine-grained Quality-of-Service

(FQoS) regulator, which deploys a Multi-Level Packet Classification (MLPC) to realize

packet classification and traffic Rate-limit algorithms to limit traffic rate, and PID

controller. The whole system adopts a control-theoretic approach to adjust the flow rate

of every link so as to maintain the high priority flow-rates at their desired level, thus

guaranteeing QoS to high-priority flow. The architecture is shown to be highly flexible

service differentiation and robust against different types of flooding attacks, and

traditional network traffic control can be implemented using one common framework.

The fine-grained service differentiation and resource isolation provided inside the FCC is

a powerful built-in protection mechanism to mitigate DDoS attacks, reducing the

vulnerability of Internet to DDoS attacks.

The performance results evaluated by using CONEX test-bed data show the

success that the system mitigates Distributed Denial of Service Attacks. The Flow-based

QoS regulator guarantees that high-priority flows receive better service, hence, yield

better performance in terms of loss rate, effective throughput than low-priority flows.
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Furthermore, the simulation demonstrates that a FCC can provide good service

differentiation and resource isolation when network bandwidths are under provisioned. It

shows the effectiveness of FCC to defense the flooding attacks. Therefore, the flow-based

QoS regulator architecture can provide better network QoS and is a simple yet powerful

built-in protection mechanism to counter DDoS attacks.



CHAPTER 5

SERVER BANDWIDTH MANAGEMENT SYSTEM (SBMS)

5.1 Introduction

In the above chapters, we discussed FIDS-firewall defense mechanism and network

Flow-based Congestion Control (FCC) mechanism. In this chapter, we will mainly

present Server Bandwidth Defense System (SBMS), which utilizes the DynaTraXTM

switch to create a critical and meaningful solution to stop hackers from intruding into

networks, thereby thwarting cyber terrorists and an Intelligent Decision Machine (IDM)

to analyze the information from FNIDS to sent alarms or commands to ask

DynaTraX(TM) electronically to disconnect and reconnect links. In Chapter 2, we

introduced Flow-based NIDS. Here the server-based aggregation scheme was selected for

Flow-based Network Intrusion Detection for detecting each flow.

5.1.1 Problem Statement and Motivation

As a last layer of defense system, the SBMS integrated DynaTraXTM(see appendix B),

Flow-based NIDS and network management station together ,which uses the information

from FNIDS to automatically take action to disconnect or reconnect some links to

prevent servers from crashing under flooding attacks. The traditional way is to use

threshold as a referent value. Once the traffic rate is over threshold, the link is

disconnected and if the traffic is below the threshold, then the link is reconnected. This

way would cause the two problems:
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• The desired upper limit of traffic rate is not deterministic. Although the flow-

based control is used to limit the network traffic, the maximum traffic rate is not

easy to determine, because if it is high, which is closed to the maximum capacity

of link, then sudden incoming flooding attack could crash the server because of

the controller response delay and false negative will be high. If the maximum

traffic rate is too low, the false positive will be high and the bandwidth cannot be

fully utilized.

• High false alarms from network Intrusion detection system. In statistic

approached for anomaly detection, the threshold is always used to determine if a

packet or flow is normal or abnormal. This fixed threshold always causes high

positive or false negative. That is why the alarms directly from IDS are not trusted

In this chapter, we propose an SBMS to reduce the risk of flow control under high

threshold and at the same time reduce the false alarms from Flow network Intrusion

Detection System in order to improve the liability of our whole defense system. Because

the proposed SBMS directly manages the physical links between the protected user

networks and the public Internet, as the last resort, any wrong link-control action,

whether wrong connection while under attack or wrong disconnection while no attack,

could have significant impacts on the QoS and the effectiveness of this SBMS in

protecting the customer networks from the network-based attacks. Therefore, Fuzzy logic

algorithms have been proposed to reduce the false link-control actions to the lowest

possible level.

Fuzzy control theory has been successfully used in various fields, especially in

classification of a crisp boundary. Conventional classification approaches always assign a

new unidentified object into exactly one category by means of classifier constructed from
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the training data set. Even though they are suitable for various applications and have

proven to be an important tool, they do not reflect the nature of human concepts and

thoughts, which tend to be abstract and imprecise. Thus the introduction of fuzzy logic

into the realm of classification becomes necessary. Fuzzy Logic is a departure from

classical two-valued sets and logic, which uses "soft" linguistic (e.g. large, hot, tall)

system variables and a continuous range of truth-values in the interval [0,1], rather than

strict binary (True or False) decisions and assignments.

5.1.2 The Basic Fuzzy Logic System Structure

Formally, fuzzy logic is a structured, model-free estimator that approximates a function

through linguistic input/output associations.

Fuzzy rule-based systems apply these methods to solve many types of "real-

world" problems, especially where a system is difficult to model, is controlled by a

human operator or expert, or where ambiguity or vagueness is common. A typical fuzzy

system consists of a rule base, membership functions, and an inference procedure (see

Figure 5.1).

Member Function	 Rule Base	 Max,average,centroid,singl
ton,etc.

Figure 5.1 The operational structure of SMS
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5.2 SBMS Architecture

As described in section 1.2, the SBMS is used as the last-lined protection mechanism in

multi-lined defense system. It integrated DynaTraX(TM), a high-speed digital matrix

cross-connect switch, with Flow-based IDS together to thwart the increasing threat posed

by cyber terrorists. The relationship of SBMS with Flow-based NIDS is shown in figure

5.2.

Figure 5.2 The relationship of SBMS with flow-based NIDS
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Once there exist attacking action or suspicious packets in the network, FNIDS would

send alerts to the SBMS. Then the SBMS analyzes the information from FNIDS to

automatically take action to disconnect or reconnect some links to prevent servers from

crashing under flooding attacks.

5.2.1 Fuzzy Decision-Making Mechanism

This mechanism is involved in making decisions based on the information received from

FNIDS. In particular, it determines the type of attack and recommends actions when

attacks are detected. There are different decision support modules, which are specialized

in dealing with various anomalous situations. To accomplish this task, the agent uses

decision modules, such as Fuzzy Inference Engine (FIE) and Knowledge Base (KB). In

order to decide the final response, a bidding system is implemented, where each module

generates a bid along with its suggested action; the action with the largest bid is selected.

It may be possible to use weight vector to differentiate the importance and role of each

module as necessary. Also the bid value may represent the confidence of the decision in

taking a particular response. However, the final decision is passed to the Action/Response

agent.

5.2.2 Knowledge Base

This base provides a knowledge base of known attacks, which are stored as a set of

condition-action rules. The rules represent the expert and common sense knowledge as

well as some system level policies. We used a classifier system, which is an adaptive

learning system that evolves a set action selection rules to cope with the environment.

The condition-action rules are coded as fixed length strings (classifiers) and are evolved
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using a genetic search. These classifiers are evolved based on the security policy — this

rule set forms a security model with which the current system environment needs to be

compared. The decision agent activates this module to determine the attack type

whenever a deviation occurs.

5.2.3 Fuzzy Inference Engine

As the difference between the normal and the abnormal activities are not distinct, but

rather fuzzy, this module can reduce the false signal in determining intrusive activities.

The purpose of Fuzzy Inference System is to use imprecise and heuristic knowledge to

generate appropriate response. The imprecise knowledge is represented by fuzzy logic;

this allows representing vague concepts as 'small', 'high', etc. A fuzzy knowledge base

and a fuzzy inference system provide the following functionalities of this System. In this

system, we mainly manage the bandwidth of server. The traffic rate and maliciousness

are the monitored variables. Therefore, the Fuzzy Inference System receives the

monitored parameters (Traffic rate) and attack alerts (maliciousness) from FNIDS. The

values for these parameters are normalized between 0.0 and 1.0. The fuzzy engine loads

fuzzy knowledge before it starts reasoning process. The fuzzy reasoning applies the fuzzy

rules over the monitored values and deviation indicators and produces a diagnosis and

recommendation, which are then sent to the action agent.

5.2.4 Fuzzification / Defuzzification

The SBMS developed here is a two-input/two-output controller. The two inputs are the

maliciousness and traffic rate provided by FNIDS. The two outputs are the

reconnection/disconnection (1 or 0) of link and attack alarm.
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The Input/Output member functions of SBMS are shown in Figure 5.3 and 5.4.

Fuzzication translates the traffic rate r(k) and flow maliciousness m(k) into a linguistic

value. Three triangular membership functions (see figure 5.3) are defined for each input

while three triangular membership functions (see figure 5.4) over the range [4,1] are

defined for the output.

Figure 5.3 The input member functions of SBMS

In figure 5.3(a), maliciousness is divided into three ranges: large negative (more

possible malicious traffic), zero (undetermined range) and large positive (more possible
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normal traffic). In figure 5.3(b), traffic rate is also divided into three ranges: law-stress

traffic, normal traffic and high-stress traffic. In figure 5.4, the output for attack alarm and

the output for control DynaTraXTM have the same forms of output member functions.

Figure 5.4 The output member functions of SBMS

Once the input variables are fuzzified and run through the fuzzy rule base, which

is discussed below, the output of the rules are then aggregated and defuzzified.

Aggregation of the results of fuzzy rules takes the logical sum of all the output fuzzy sets.

Then, a numerical control signal is generated. A typical formula for this purpose is the

so-called centroid method [55].

The rules may use several variables both in the condition and conclusion of the

rules. The controller can therefore be applied to multi-input-multi-output (MIMO)

problem.

The figures 5.5 show the rule table of the fuzzy inference engine. The meaning of

the linguistic variables is explained in Table 5.1.
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RC/NA RC/NA DC/NA

RC/NA NC/NA DC/SA

RC/SA NC/SA DC/SA

Figure 5.5 The rule table of fuzzy inference engine

Table 5.1 The Meaning of the Linguistic Variables in SBMS

LT Low 	 Traffic

N T Normal 	 T raffic

H T High 	 Traffic

HN High 	 Normal 

NZ N ear Zero

H A High 	 Attack

R C Reconnection

NC No 	 Change

D C Disconnection

N A N o 	 Alarm

SA S end 	 Alarm



150

5.3 Implementation Description and Evaluations

5.3.1 The Graph Window of SBMS

SBMS was implemented by Visual Basic language working on window system. It has

two kinds of information sources: one is from DynatraxTM, which real-time reports the

network channel connection states (on/off); another is from FNIDS, which reports the

actual network traffic and attack alerts of the monitored network channels. At the same

time, SBMS provides two kinds of outputs: one is the command to DynatraxTM to

disconnect or connect the channel between outside and the server; another is to issue

alarms to inform administrators. A GUI front end is designed to display all information.

Figure 5.6 shows the main window of the GUI front end.

Figure 5.6 The GUI of SBMS
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In Figure 5.6, there are three information boards. The first board on left upper is

to show connection states and alarm information; the second board on bottom is to show

traffic distribution based on each channel; the third board on the right upper is to show

the detailed information, such as flow rate, IP address, maliciousness etc., of each

channel and total flow information.

5.3.2 The Experiment Results

The SBMS has been tested using two different test sets, the DARPA'98 data set and the

CONEX Testbed data set, to test the effectiveness of SBMS and the three above-

proposed algorithms.

Similar to the evaluation criteria of Flow-based NIDS, the SBMS is evaluated

based on the following measurements:

False Positive Alarms: are incidences that SBMS fails to issue negative alarms;

False Negative Alarms: are incidences that fail to issue positive alarms.

(1) The Results of the DARPA'98 Data Set

The DARPA'98 data set was provided by the MIT Lincoln labs as a research effort to

evaluate intrusion detection system. This data set includes seven weeks of training

TCPDUMP trace files and two weeks of testing TCPDUMP trace files. Totally 83989

events are collected when Server-based NIDS processes these files.

The misclassifications when using these two algorithms at flooding attack are

given in the table below.



Table 5.2 Misclassifications for the DARPA'98 Data Set

Server-Based Fuzzy logic

Number of samples 82890 83752
Number of normal samples 82366 82366
Number of attack samples 524 524
Misclassification Rate 0. 0063 1. 1940e-005
False Positive Rate 0. 0064 1. 1940e-005

False Negative Rate 1. 2064e-005 0

From the table 5.2, it can be seen that, misconnections decreases rapidly after

using SBMS. Because there are false messages in the DARPA'98 data set, thus, fuzzy

logic can intelligently correct the mistakes of server-based NIDS according to network

traffic state.

(2) The Results on the CONEX TESTBED Data Set

The CONEX TESTBED data set is collected from an attack-emulation network setup

within the CONEX lab of NJIT. Three day worth of TCPDUMP traces are processed by

Fuzzy logic. Totally 22555 events are generated during processing.

Table 5.3 Misclassifications for the CONEX TESTBED Data Set

Server-Base Fuzzy logic

umbberfof samlples 22555 22555
samp les 22089 22089

umber of attack samples 466 466

isclassification Rate 0.0047 O. 000982263

alse Positive Rate 0.00480. 0.000873628 __,

alse Negative Rate 0.1148 1
0. 0210526
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From the table 5.2, it can be seen that, misconnections decreases rapidly after

using SBMS. Because there are false messages in the Conex Testbed data set, thus, fuzzy

logic can intelligently correct the mistakes of server-based NIDS according to network

traffic state.

5.4 Summary

In this chapter, we introduced a Server-based Bandwidth Defense System (SBMS), which

utilized the DynaTraXTM switch to create a critical and meaningful solution to stop

hackers from intruding into networks, thereby thwarting cyber terrorists and an Intelligent

Decision Machine (IDM) to analyze the information from FNIDS to sent alarms or

commands to ask DynaTraX(TM) electronically to disconnect and reconnect links. The

system adopts fuzzy logic method to analysis each alert from FNIDS in order to reduce

false alarms and at the same time control DynaTraXTM to protect server from flooding

attacks.



CHAPTER 6

CONCLUSION

In this dissertation, we introduced "flow" concept into our system. We proposed a novel

Network Intrusion Detection System. Because it is based on flow aggregates that

dramatically reduces the amount of monitoring data and handles high amounts of

statistics and packet data. Moreover, FNIDS includes flow-based statistical feature

vectors and two parallel detectors, that make FNIDS not only be used to monitor network

behavior change ,but also be used classify every flow. Therefore, FNIDS configures flow

flexibly to provide security from network level to application level (IP, TCP, UDP,

HTTP, FTP...), and different aggregation schemes, such as server -based, client-based

flow.

We presented Adaptive Flow Aggregation Approach to address the problem that a

huge amount of malicious spoofed flow exhausts memories and CPU resources. As an

application of this approach, an adaptive flow-based network intrusion detection system

was introduced in this dissertation. Comparing the flow-based NIDS, the adaptive flow-

based NIDS can automatically choose the optimal flow aggregation scheme to detect the

DDoS. Therefore, the adaptive flow-based NIDS possesses much better performance of

detecting DDoS. Except this application, adaptive flow aggregation approach can be used

in firewall to block spoofed attacks while open the port alive to normal clients.

In this dissertation, we presented a Flow-based Congestion Control(FCC)

algorithm. The Flow-based Congestion Control (FCC) consists of a Fine-grained

Quality-of-Service (FQoS) regulator and PID controller. The whole system adopts a control-
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theoretic approach to adjust the flow rate of every link so as to maintain the high priority

flow-rates at their desired level, thus guaranteeing QoS to high-priority flow. To realize

Fine-grained Quality-of-Service (FQoS) regulator, we proposed traffic model based on

flow aggregation algorithms and defined flow rate-limit scheme. The flow-based

network intrusion detection is used to classify each flow in the network into different

priority classes and give different treatment to the flow-rates belonging to different

classes. The architecture is shown to be highly flexible service differentiation and robust

against different types of flooding attacks, and traditional network traffic control can be

implemented using one common framework. The fine-grained service differentiation and

resource isolation provided inside the FFCS is a powerful built-in protection mechanism

to mitigate DDoS attacks, reducing the vulnerability of Internet to DDoS attacks.

In the last part of this dissertation, we introduced a Switch-based Bandwidth

Defense System (SBMS), which utilize the DynaTraXTM switch to create a critical and

meaningful solution to stop hackers from intruding into networks, thereby thwarting

cyber terrorists and an Intelligent Decision Machine (rpm) to analyze the information

from FNIDS to sent alarms or commands to ask DynaTraXTM electronically to disconnect

and reconnect links. The system adopts fuzzy logic method to analysis each alert from

FNIDS in order to reduce false alarms and at the same time control DynaTraXTM to

protect server from flooding attacks.



APPENDIX A

MONITORED STATISTICAL FEATURES

This appendix gives the detailed descriptions on the statistical features monitored by

Flow-base Network Intrusion detection.

The FNIDS is capable of monitoring traffic into and out of the protected network.

The FNIDS statistical features can be categorized based on the protocols of network

traffic.

I. IP Packet Length measures the averages and the distributions of the IP packet lengths

within a time window. For simplicity, this parameter is symbolized as "ip-pkt-len"

afterward.

2. IP Packet Rate measures the averages and the distributions of the packet rates of all

observed IP packets within a time window. This feature will be symbolized as "ip-

pkt-rate" afterward.

3. IP Byte Rate measures the averages and the distributions of the byte rates of all

observed IP packets within a time window. This feature will be symbolized as "ip-

byt-rate" afterward.

4. IP Fragment Rate measures the averages and the distributions of the packet rates of

all observed IP fragments within a time window. This feature will be symbolized as

"ip-frag-rate" afterward.

5. IP Defragmentation Error Rate measures the averages and the distributions of the

IP defragmentation error rates occurred within a time window. This feature will be

symbolized as "ip-defrag-error" afterward.
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6. IP Checksum Error Rate measures the averages and the distributions of the IP

checksum error rates occurred within a time window. This feature will be symbolized

as "ip-csum-error" afterward.

7. TCP Invalid Packet Rate measures the averages and the distributions of the rates of

the TCP packets with invalid combinations of TCP control flags. This feature will be

symbolized as "tcp-pkt-invalid".

8. TCP Packet Length measures the averages and the distributions of the lengths of IP

packets within a time window. This feature will be symbolized as "tcp-pkt-len".

9. TCP Packet Rate measures the averages and the distributions of the TCP packet rates

within a time window. This feature will be symbolized as "tcp-pkt-rate".

10. TCP SYN Packet Rate measures the averages and the distributions of the rates of

TCP control packets with SYN flag set within a time window. This feature will be

symbolized as "tcp-syn-pkt-rate" afterward.

11. TCP FIN Packet Rate measures the averages and the distributions of the rates of

TCP control packets with FIN flag set within a time window. This feature will be

symbolized as "tcp-fin-pkt-rate" afterward.

12. TCP RST Packet Rate measures the averages and the distributions of the rates of

TCP control packets with RST flag set within a time window. This feature will be

symbolized as "tcp-rst-pkt-rate" afterward.

13. TCP Connection Open Rate measures the averages and the distributions of the TCP

connection open rates within a time window. This feature will be symbolized as "tcp-

con-new-opened" afterward.



158

14. TCP Connection Close Rate measures the averages and the distributions of the TCP

connection close rate within a time window. This feature will be symbolized as "tcp-

con-new-closed" afterward.

15. TCP Connection Abort Rate measures the averages and the distributions of the TCP

connection abort rate (connection closed by RESET or TIMEOUT other than normal

three-way hand shaking) within a time window. This feature will be symbolized as

"tcp-con-new-aborted" afterward.

16. TCP Connections from Different Source Address measures the distributions of

TCP connections from different source IP addresses within a time window. This

feature will be symbolized as "tcp-con-diff-src" afterward.

17. TCP Connection to Different Destination Address measures the distributions of

TCP connections to different destination IP addresses within a time window. This

feature will be symbolized as "tcp-con-diff-dst" afterward.

18. TCP Connection Anomalous Entropy measures the averages and the distributions

of the anomalous entropies of all TCP connections within a time window. This

feature was first proposed in Staniford [37]. The equation to calculate the connection

anomalous entropy is given in Equation 7.1. This feature will be symbolized as "tcp-

con-anomalous-entropy" afterward.

19. TCP Connection Half Opened Ratio measures the averages and the distributions of

the ratio between the half-opened TCP connections and all TCP connections within a

time window. This feature will be symbolized as "tcp-con-half-opened-ratio"

afterward.
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20. TCP Connection Duration measures the averages and the distributions of the TCP

connection durations within a time window. This feature will be symbolized as "

tcp-con-duration" afterward.

21. UDP Packet Length measures the averages and the distributions of UDP packets

within a time window. This feature is symbolized as "udp-pkt-len" afterward.

22. UDP Packet Rate measures the averages and the distributions of UDP packets within

a time window. This feature will be referred as "udp-pkt-rate" afterward.

23. UDP Byte Rate measures the averages and the distributions of UDP packets within a

time window. This feature will be referred as "udp-byt-rate" afterward.

24. UDP Packets from Different Sources measures the distributions of UDP packets

from different IP addresses. This feature will be referred as "udp-diff-src" afterward.

25. UDP Packet to Different Destinations measures the distributions of UDP packets

destined to different IP addresses. This feature will be referred as "udp-diff-dst"

afterward.

26. ICMP Packet Length measures the averages and the distributions of ICMP packet

lengths within a time window. This feature will be referred as "icmp-pkt-len"

afterward.

27. ICMP Packet Rate measures the averages and the distributions of ICMP packets

within a time window. This feature will be symbolized as "icmp-pkt-rate" afterward.

28. ICMP Packets from Different Sources measures the distributions of ICMP packets

originated from different IP addresses within a time window. This feature will be

symbolized as "icmp-diff-src" afterward.
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29. ICMP Packet to Different Destinations measures the distributions of ICMP packets

destined to different IP addresses within a time window. This feature will be referred

as "icmp-diff-dst" afterward.

30. ICMP Anomalous Echo Replies measures the averages and the distributions of

anomalous ICMP echo replies, which are ICMP echo reply packets without previous

echo request packets, within a time window. This feature will be referred as "icmp-

anomalous-echo-reply" afterward.

31. ICMP DUR Packet Rate measures the averages and the distributions of ICMP DUR

(destination-Unreachable) packets within a time window. This feature will be referred

as "icmp-dur-pkt-rate" afterward.



APPENDIX B

DYNATRAXTm

The DynaTraX system maintains the network configuration, allowing the user to

establish data links electronically from a remote location. This eliminates the need to

physically move, add and change (MAC) connections. Changes to the network can be

made quickly, simply, and safely. DynaTraX combines a comprehensive, flexible cable

management scheme and a unified management system that meet the EIA/TIA 606

standard.

1. Features of DynaTraX

• Electronic patch panel capable of cross-connecting up to 108 ports of 4-pair twisted-

pair cable to 108 ports of 4-pair (2-pair active) service ports;

• Remote provisioning capability for managing the network configuration;

• Support for Ethernet, Token Ring, 3270, 3X/AS400, TP-PMD (TP-DDI), Fast

Ethernet, ATM-25, ATM-52, ATM-155, DS-1(T1), DS-3(T3) or any mix of these

networks (Other protocols will be supported in the future. Please check with your local

representative regarding your specific requirements);

• SNMP capability facilitating network in-band and out-of-band (serial) management;

• A Test Card capable of testing the condition of the distribution cables; and

• A software package for managing the DynaTraX unit from a PC.

2. Main applications

• Main office: reduce MAC (moves, adds and changes) costs by centralizing the

operation and maintaining an up-to-date cable management database;

161



162

• Remote management: eliminate technician travel costs and downtime by managing

cross-connections in a remote, centralized location;

• Fast network reconfiguration: optimize LAN performance by resegmenting the network

to fit the traffic pattern in the organization;

• Improved network reliability: provide back-up LAN services in case of network

failure;

Figure B.1 Generic DynaTraX application

3. Physical Description

Figures B.2 and B.3 show front and rear views, respectively, of the DynaTraX

unit,which includes three main cards: Main Controller Cards, Equipment card and

Distribution Cards.



163

The Main Controller (MC) Card initiates all communication and is responsible for

the overall control of the system. When the DynaTraX unit is powered up, it queries each

card slot to ask for a status or sends a message to a card to perform an action.

Figure B.2 Front view of the DynaTraX unit

Figure B.3 Rear view of the DynaTraX unit
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The Equipment Card (EQUIP) provides universal transmit/receive connections to any of

a multitude of data services. It is available in the following three configurations: 1) up to

10 Mb/s (except 4Mb/s TR), 2) up to 16 Mb/s, and 3) up to 100 Mb/s. Upgrading a card

from one level to another is done via a firmware download. The cards offer a maximum

of 18 8-pin modular ports to which the hubs are connected. Figure B-3 shows an

Equipment Card faceplate.

The Distribution Card (DIST) provides universal transmit/receive connection

points through 18 standard 8-pin modular connectors. A DynaTraX unit containing 6 of

these cards can support up to 108 ports of 4-pair cables (any 2-pairs active) from the

terminal stations.
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