4 research outputs found

    A novel dataset for fake android anti-malware detection

    Get PDF

    Android malware detection based on image-based features and machine learning techniques

    Get PDF
    Bakour, Khaled/0000-0003-3327-2822WOS:000545934700001In this paper, a malware classification model has been proposed for detecting malware samples in the Android environment. The proposed model is based on converting some files from the source of the Android applications into grayscale images. Some image-based local features and global features, including four different types of local features and three different types of global features, have been extracted from the constructed grayscale image datasets and used for training the proposed model. To the best of our knowledge, this type of features is used for the first time in the Android malware detection domain. Moreover, the bag of visual words algorithm has been used to construct one feature vector from the descriptors of the local feature extracted from each image. The extracted local and global features have been used for training multiple machine learning classifiers including Random forest, k-nearest neighbors, Decision Tree, Bagging, AdaBoost and Gradient Boost. The proposed method obtained a very high classification accuracy reached 98.75% with a typical computational time does not exceed 0.018 s for each sample. The results of the proposed model outperformed the results of all compared state-of-art models in term of both classification accuracy and computational time

    DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection

    Get PDF
    Malicious apps specifically aimed at the Android platform have increased in tandem with the proliferation of mobile devices. Malware is now so carefully written that it is difficult to detect. Due to the exponential growth in malware, manual methods of malware are increasingly ineffective. Although prior writers have proposed numerous high-quality approaches, static and dynamic assessments inherently necessitate intricate procedures. The obfuscation methods used by modern malware are incredibly complex and clever. As a result, it cannot be detected using only static malware analysis. As a result, this work presents a hybrid analysis approach, partially tailored for multiple-feature data, for identifying Android malware and classifying malware families to improve Android malware detection and classification. This paper offers a hybrid method that combines static and dynamic malware analysis to give a full view of the threat. Three distinct phases make up the framework proposed in this research. Normalization and feature extraction procedures are used in the first phase of pre-processing. Both static and dynamic features undergo feature selection in the second phase. Two feature selection strategies are proposed to choose the best subset of features to use for both static and dynamic features. The third phase involves applying a newly proposed detection model to classify android apps; this model uses a neural network optimized with an improved version of HHO. Application of binary and multi-class classification is used, with binary classification for benign and malware apps and multi-class classification for detecting malware categories and families. By utilizing the features gleaned from static and dynamic malware analysis, several machine-learning methods are used for malware classification. According to the results of the experiments, the hybrid approach improves the accuracy of detection and classification of Android malware compared to the scenario when considering static and dynamic information separately
    corecore