
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

Research Article

Android malware detection based on image‑based features
and machine learning techniques

Halil Murat Ünver1 · Khaled Bakour1

Received: 23 November 2019 / Accepted: 23 June 2020 / Published online: 29 June 2020
© Springer Nature Switzerland AG 2020

Abstract
In this paper, a malware classification model has been proposed for detecting malware samples in the Android environ-
ment. The proposed model is based on converting some files from the source of the Android applications into grayscale
images. Some image-based local features and global features, including four different types of local features and three
different types of global features, have been extracted from the constructed grayscale image datasets and used for
training the proposed model. To the best of our knowledge, this type of features is used for the first time in the Android
malware detection domain. Moreover, the bag of visual words algorithm has been used to construct one feature vector
from the descriptors of the local feature extracted from each image. The extracted local and global features have been
used for training multiple machine learning classifiers including Random forest, k-nearest neighbors, Decision Tree, Bag-
ging, AdaBoost and Gradient Boost. The proposed method obtained a very high classification accuracy reached 98.75%
with a typical computational time does not exceed 0.018 s for each sample. The results of the proposed model outper-
formed the results of all compared state-of-art models in term of both classification accuracy and computational time.

Keywords Android malware · Image local feature · Image global feature · Malware visualization

1 Introduction

The proliferation of mobile phones has made it an indis-
pensable part of our daily lives. Most people are using
these devices to access important services such as access-
ing banking applications or making e-shopping. So, natu-
rally, these devices contain very sensitive data that the
developers of malicious applications aspire to access. The
statistical studies estimate that there are at least eight
out of ten used mobile devices are based on the Android
operating system. For example, due to Gartner reports
[1], Google’s Android extended its lead by capturing 86
per cent of the total mobile phones market in 2017. Also
due to Statcounter GlobalStats statistical web site, the
percentage of Android-based smartphones devices’ sales

accounted for more than 73% of the total sales of smart-
phones for 2019 [2]. Therefore, naturally, the Android
operating system became the most important target
for the developers of malicious applications targeting
smartphones. GData Internet security centre stated that
2,040,293 new malware samples were recorded in the
first half of 2018 (almost 1.2 million of it have been dis-
covered in the second quarter alone) with a 31 per cent
increase over the second half of 2017 [3]. Also, according
to SecureLIST’s 2018 Mobile malware evolution report,
5,321,142 new malicious installation packages, 151,359
new mobile banking trojans, 60,176 new mobile ran-
somware Trojans have been detected by Kaspersky Lab
products and technologies in 2018 [4]. Moreover, accord-
ing to Doctor Web’s overview about the smartphones’

Halit Bakır: Khaled Bakour’s name can be written in two different ways due to his dual citizenship.

 * Khaled Bakour, khaledbakour@kku.edu.tr; Halil Murat Ünver, unver@kku.edu.tr | 1Department of Computer Engineering, Kırıkkale
University, Kırıkkale, Turkey.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-3132-2&domain=pdf
http://orcid.org/0000-0003-3327-2822

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

malware detected in September 2019 [5], Android users
were threatened by various malware, many of which were
distributed via Google Play such as Android.DownLoader,
Android.Banker and Android.HiddenAds.

Due to the widespread of the attacks targeting the
Android mobile operating system the android’s malware
detection domain got big attention in the academic and
commercial domains. But, although the big number of
works conducted on this domain there is a gap between
the achieved works and the huge number of malicious
applications published on a daily base, which it has made
even Google play store untrusted to some extent.

The main contributions of this paper can be concluded
as follows:

• Three grayscale image datasets each of which con-
tains 9700 samples (4850 benign samples and 4850
malware samples) have been constructed based on
different files from the contents of the APK archives.
The first dataset has been constructed by converting
the Manifest.xml file of each android application into a
grayscale image. The second image dataset has been
constructed by converting the DEX byte code files of
each android application into a grayscale image. The
final dataset images have been constructed by convert-
ing the Manifest.xml, DEX, and Resource.ARSC files of
each Android application into a grayscale image.

• Four different image-based local features, including
SIFT, SURF, KAZE and ORB, and three different image-
based global features, including Colour Histogram,
Haralick Texture and Hu Moments, have been extracted
and used to train multiple machines learning classifiers.
To the best of our knowledge, this type of features is
used for the first time in android malware detection
domain.

• The bag of visual words (BOVW) algorithm has been
used to obtain one feature vector from multiple local
feature’s descriptor vectors so that it can be fed to the
machine learning classifiers.

• The extracted local and global features have been used
to train six different machine learning classifiers includ-
ing Random forest, K-nearest neighbors, Decision Tree,
Bagging, AdaBoost and Gradient Boost.

• Moreover, the proposed method is generic, where any
type of apps can be converted to images and used to
train the proposed model.

2 Related works

As mentioned before, a big number of academic works
have been conducted in the android malware detection
domain, some of which will be listed in this section.

A hybrid instrumentation engine is designed by [6] in
order to achieve dataflow analysis, detection of resource
abuse, and analysing of suspicious behaviours. The pro-
posed model depends on decompiling the app, inject-
ing some hooks code sections, recompiling the app and
dynamically executing it for tracking and logging the
runtime events. SafeDroid, a static analysis based frame-
work has been proposed in [7]. The proposed framework
depends on analysing the DEX (Dalvik Executable) code
statically to extract binary feature vectors which have
been used for training multiple machine learning classi-
fiers. Moreover, multiple features including permissions,
sensitive APIs (Application program interfaces), system
events and permission-rate have been used by [8] to train
a random forest classifier to detect whether an Android
App is malicious or not. A combination of the required and
used permissions has been used in [9] to generate permis-
sion patterns in order to differentiate between normal and
malicious apps. In [10], the required and used permissions
have been extracted and analysed statistically. Then, the
most popular permissions in each apps’ class (whether
benign or malware) have been determined and used for
constructing patterns that have been used to distinguish
between malicious and benign apps. Moreover, a bi-clus-
tering method has been used for visualizing the required
and used permissions, and a mining method has been pro-
posed to produce contrastive permission patterns that can
separate non-harmful and harmful apps. Also, the used
permissions and app’s package information have been
used in [11] to train each of KNN (K-Nearest Neighbour),
Linear Discrimination function and RBF Network. Moreo-
ver, the API calls have been correlated with the permis-
sions by [12] and used as features for training and testing
a random forests classifier used in android apps’ classifica-
tion. Furthermore, a lightweight method for Android mal-
ware detection based on machine learning and dataflow-
related APIs has been proposed in [13]. In [14], the n-gram
sequences have been extracted from the opcode of both
benign and malware Android applications to generate
reduced feature vectors used in training Support Vector
Machines (SVM) and Random Forest (RF) classifiers. In [15],
the APK files have been installed on a real Android smart-
phone and multiple dynamic features including Binder,
Battery, Memory, CPU and Network behaviour have been
collected and used in malware classification. A dynamic
analysis framework has been proposed by [16] for classify-
ing android apps based on monitoring the apps’ runtime
behaviour and malicious URLs and correlating them with
DNS service network traffic in order to detect the malicious
behaviour at the network level. In [17], the system calls
and app’s network access behaviour have been collected
for constructing patterns set used in Android malware
detection. Multiple experiments have been conducted

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

in [18] in order to compare between emulator-based and
phone-based dynamic malware analysis. An extension
kit for the Android operating system has been proposed
by [19] to handle confused deputy attacks [i.e. a trusted
application is manipulated by a malicious application
through IPC (Inter-process Communication)]. The permis-
sions framework of android system has been extended in
[20] to perform a runtime monitoring and communication
links analysing to prevent malicious behaviour based on a
pre-defined policy. Moreover, the permissions have been
used with network log data for constructing a signatures
set used in android apps classification in [21]. Also, in [22],
some static features have been used with some dynamic
behaviour features to construct binary feature vectors
used as input for training a deep learning model. Further-
more, in [23], the APK archives have been decompiled and
the source code has been parsed for collecting and digitiz-
ing the importance of each word within it. After that, the
digitized word values in each APK have been converted
to an image. The constructed image dataset has been
used for training a convolutional neural network used
in android malware detection. Some semantic informa-
tion from system call sequences has been considered by
[24] to train a Long Short-Term Memory (LSTM) language
model. A deep autoencoder (DAE) and convolutional neu-
ral network (CNN) based hybrid android malware detec-
tion model has been proposed by [25]. Also, four groups
of feature including sensitive APIs, system events, permis-
sions, and permission rate have been extracted by [26]
and used to train an ensemble random forest classifier. In
[27], each sensitive API call used in the android app has
been assigned a weight to differentiate their correspond-
ing importance according to the malware family, and a
function call graph FCG has been constructed to represent
each app. The constructed FCGs have been simplified into
a sensitive API call-related graph (SARG) which contain
only sensitive API call nodes and their parent nodes. Then,
the common malicious behaviours shared by malware
within the same family have been generated and used to
train multiple machine learning classifiers. Moreover, the
source code of android apps have been extracted by [28]
and the hexadecimal representation of the instructions
has been used for constructing the RGB image’s three col-
our channels’ values. The constructed RGB image dataset
has been used to train a convolution neural network used
as android apps classification model. Furthermore, some
android APK archive contents have been converted to
grayscale images and the GIST image features have been
extracted from the images for training Random forests
classifier in [29]. Also, in [30], the 2-g of Opcode Sequences
have been weighted based on their frequency in android
apps dataset. The constructed weight values have been
converted to one grayscale image such that each value

has been converted to one pixel in the constructed image.
The best pixel values have been selected for constructing
a feature vector which has been used as a signature for
ransomware detection.

The image processing-based malware detection tech-
niques have been used limitedly to some extent in the
android malware detection domain. And since image local
and global features have been proven their efficiency in
the image classification domain, in this work, it has been
suggested testing this type of features in the android mal-
ware detection domain. Thus, this paper aims to test the
effectiveness of image processing techniques in classifying
android applications.

3 Materials and methodologies

In this section, the used materials and methodologies in
addition to the proposed model will be discussed. At first,
the constructed datasets, used features and other used
techniques will be described briefly, then, the proposed
model will be discussed in detail.

3.1 The constructed image datasets

In this work, it has been proposed constructing grayscale
image datasets from different APK archive’s contents in
order to test the image processing techniques’ efficiency
in the android malware detection domain. To this end, the
desired file has been read as a binary bitstream and stored
as a sequence of bytes. Since the grayscale image has been
used in this work, and since the grayscale image pixel val-
ues are ranged from 0 to 255, so the read byte sequence
can be converted to pixels in the image. On other words,
each byte in the bytes stream represents a pixel in the final
image.

In this work, it has been constructed three images
dataset each of which contains 9700 samples includes
4850 benign images and 4850 malicious images. The
malware samples contain 4850 samples selected ran-
domly from Drebin and Malgenom well-known android
malware datasets, in addition to 4850 samples have been
selected randomly from AMD android malware dataset.
The Drebin android malware dataset [31] contains 5,560
Android malicious apps from 179 different families, and
the Malgenom android malware dataset [32] contains
1260 malicious apps from 49 different families. The AMD
(Android Malware Dataset) [33] contains 24,553 samples,
categorized in 135 varieties among 71 malware families.
On the other hand, the benign apps have been down-
loaded from Google app store using APKPure free online
downloader. A Python script has been written to ensure
that the downloaded apps are benign based on scanning

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

them using the Virus Total online API. The app has been
accepted as benign only if it could not be detected by any
antivirus engine out of more than 60 engines available at
the Virus Total service. The algorithm used for download-
ing and scanning the benign dataset is shown in Fig. 1. The
constructed three image datasets will be described in the
following sections.

3.1.1 Manifest file‑based image dataset

The Manifest.xml file is one of the most important files in
the android application. The Manifest file is the first file
read by the system when executing any android app. This
file is considered as a road map specifying how the appli-
cation will be executed and how its behaviour will be. So,
it has suggested converting this file to grayscale images
in order to test its efficiency in android apps’ classification.

Due to the limitation in the Manifest file size, the width
of the image constructed using this file is 64 pixels and
its height is variable in accordance with the file size. It
is worth mentioning, that the image width 64 has been
selected experimentally after testing multiple widths
including 256, 128 and 64. The big similarity between the
Manifest files-based images of the Android applications
from the same malware family can be seen in Fig. 2.

3.1.2 DEX code‑based image dataset

Generally, Android application code is written using Java
programming language and compiled to DEX code. DEX
(Dalvik executable) code is an optimized byte code used
to initialize and execute Android applications. Since Dex
code contains the actual code of the app, these files are
very important to specify the app’s behaviour. So, it has

Fig. 1 The algorithm used for constructing the used benign apps dataset

Fig. 2 a Manifest files of two
malware samples. b Manifest
files of two benign samples

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

suggested converting Dex code files to a grayscale image
in this work to collect as much as possible information
about the app’s behaviour.

3.1.3 Manifest‑DEX‑ARSC image dataset

In the third dataset, it has been suggested constructing
the images using three files from APK archive contents, i.e.
Manifest, DEX and Resource.arsc files. The Resource.arsc
file contains the app’s compiled resources in a binary for-
mat. Also, the Resource.arsc file contains references to the
application’s resources such as UI layouts and string values.

It worth mentioning that the width of the constructed
images in the second and third image dataset is 256 pixels
while their height varies in accordance with the size of the
used files.

3.2 Image global features

This type of features describes the image as a whole [34],
such that the whole image is described using a one feature
vector. In this work, three different global features have
been used in order to test the efficiency of this type of
features in the malware detection domain. The first used
global feature is Colour Histogram, in which a histogram
is calculated based on the distribution of colours in the
image’s pixels (pixels intensity). Since the grayscale image
representation has been used in this work the constructed
histogram contains 255 bins (because that the grayscale
image pixels take intensity values between 0 and 255).
The second used global feature is Hu Moments. The image
moments are a weighted average of the image pixels’
intensity [35]. The Hu moments are a moment type com-
posed of seven number calculated using central moments.
The central moment can be calculated using Eq. 1

where,

Hu moments are invariant to translation, scale, reflec-
tion and rotation. The third global feature that has been
used in this paper is Haralick Texture. Texture descriptor
provides measures of image properties such as smooth-
ness, coarseness, and regularity [36]. Haralick textures are
one of the most famous texture features used in image
classification. Haralick texture features are calculated
based on the co-occurrence matrix and composed of 13
features.

(1)𝜇i,j =
+∞

∫
−∞

+∞

∫
−∞

(x − x̄)i ⋅ (y − ȳ)j ⋅ f (x, y)dx ⋅ dy

i, j = 1, 2, 3… x̄ =
m10

m00

, ȳ =
m01

m00

3.3 Image local features

The image local features describe the image’s objects (it is
based on describing a small group of pixels or small blobs
in the image) [37]. So, by using this type of algorithms the
image is described as a set of feature vectors (descriptor
vectors). On other words, local features aim to detect the
interesting points in the image and describe them as a
set of descriptors. In this work, four of the most used local
features i.e. SIFT, SURF, KAZE and ORB have been extracted
to test the efficiency of this type of features in the malware
detection domain.

3.3.1 Scale‑invariant feature transform (SIFT)

The SIFT algorithm is based on calculating Laplacian of
Gaussian LOG at different scale values and selecting the
scale which gives the best results. In the SIFT algorithm,
the interesting points are the local maxima/local minima
obtained using the Laplacian of Gaussian’s scale space.
On other words, in this algorithm, a multiple Laplacian of
Gaussian is applied at a different scale level (σ values) and
the responses are plotted. After that, the scale that gives
a local maxima/local minima for each pixel in the image
is selected. Since the LOG’s computation is costly to some
extent, the SIFT algorithm uses approximate Laplacian of
Gaussian which is calculated using Eq. 2.

where, G(x, y, �) is LoG in the location (x, y) for the scale σ.
G(x, y, k�) is LoG in the location (x, y) for scale kσ, kσ: is a
scale slightly larger than σ.

The SIFT algorithm represents the detected key points
(the interesting points) using 128-bit descriptors.

3.3.2 Speeded up robust features (SURF)

This algorithm is introduced by [38] as a fast algorithm
that can be an alternative of SIFT algorithm. SURF is a fast
and robust algorithm for similarity invariant representa-
tion and comparison of images. This algorithm charac-
terized by its fast computation using box filters (It uses
box filters for LOG approximation), thus it can be used in
real-time applications such as tracking and object recogni-
tion. The advantage of using box filters approximation in
this algorithm is that the convolution with a box filter can
be easily calculated using integral images. Moreover, SURF
algorithm is based on the determinant of Hessian matrix
for both scale and location. The SURF algorithm uses Hes-
sian matrix to detect the key points in the image, which
has a good performance in term of computation time and

(2)�Δ2G =
�G

��
=

G(x, y, k�) − G(x, y, �)

k� − �

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

accuracy. To this end, the image is filtered by a Gaussian
kernel, so that for a given point X = (x, y) the Hessian matrix
at scale σ is defined as in Eq. 3.

where Lxx(x, �) is the convolution of the Gaussian second
order derivative for the image I in the point x, and similarly
for Lxy (x, �) and Lyy(x, �).

After detecting the key points SURF descriptors are
created with two steps. In the first step, the Haar-wavelet
responses are calculated in the horizontal and vertical
direction for a neighbourhood of size 6 s. Then, a square
region aligned to the selected orientation is constructed
and the SURF descriptor (64-bit vector) is extracted from it.

3.3.3 KAZE feature

This algorithm has been introduced in 2012 by [39] as a
method for features detection and description in nonlinear
scale-spaces. This algorithm works based on the original
image resolution, without performing any downsampling
at each new octave as done in the SIFT algorithm. The
KAZE detector is based on normalized determinant of the
Hessian Matrix at multiple scale levels. The local minima/
maxima (extrema) is selected from a rectangular window
of size σi × σi on the current, upper and lower scales. Like in
the SURF algorithm the dominant orientation is found in a
circular area (has a 6σi radius) around each detected inter-
esting point in order to obtain rotation invariant descrip-
tors. The descriptor vector size in this algorithm is 64-bit.

3.3.4 Oriented FAST and rotated BRIEF (ORB)

Basically the ORB feature is a fusion of FAST key point
detector [40] and BRIEF descriptor [41] with many modifi-
cations to enhance the performance. The ORB algorithm
uses the FAST algorithm to detect the key points in the
image, then it uses Harris corner to find the top N among
the detected key points. Moreover, the ORB uses a pyramid
to produce multiscale features. The ORB features use 32-bit
BRIEF-based descriptor which is calculated using a set of
binary intensity test like in Eq. 4.

where, P is a smoothed image patch.
P(x) is the intensity of p at a point x.

(3)H(x, y) =

(

Lxx(x, �) Lxy(x, �)

Lxy(x, �) Lyy(x, �)

)

(4)𝜏(P;x, y) =

{

1 ∶ P(x) < p(y)

0 ∶ P(x) ≥ P(y)

3.4 The proposed model

In this work, a new image-based android malware clas-
sification model has been suggested. To this end, some
files from the source of the android application have been
converted into grayscale images. Then, the image process-
ing techniques and machine learning algorithms have
been used to classify the android apps as benign or mali-
cious as illustrated in Fig. 3. The novelty of the proposed
model is based on that the used image features have
not been used before in the malware detection domain.
Particularly, in the first step of the proposed model, each
sample in the benign and malware apps dataset has been
extracted to use its source for constructing the grayscale
image datasets. The proposed model composed of two
sub-models, each of which has been trained using a differ-
ent group of features. In the first sub-model, the APK sam-
ples have been extracted and their sources (i.e. Manifest,
Dex or Manifest-Dex-Resouces.arsc) have been converted
to grayscale images. The global features that have been
mentioned before i.e. Colour Histogram, Hu Moments
and Haralick Texture have been extracted from each
image in the constructed image datasets. The extracted
three global features have been stacked in one feature
vector. The obtained feature vector has been normal-
ized and used as input to train multiple machine learning
classifiers. Six well-known machine learning classifiers i.e.
Random forest, K-nearest neighbors, Decision Tree, Bag-
ging, AdaBoost, Gradient Boost have been adopted and
trained using the constructed global features-based vec-
tors. In the second sub-model, four different local feature
algorithms (i.e. SIFT, SURF, ORB and KAZE) have been used
to extract local features descriptors from the constructed
image datasets. The extracted local features have been
used one by one to train the mentioned machine learning
classifiers. Since the local features algorithms use multiple
descriptors to represent each image, the output of these
algorithms is multiple vectors. Since almost all machine
learning algorithms accept n-samples n-feature vectors as
an input, the output of the local features cannot be used
directly as input for the machine learning classifiers. So,
some techniques such as Bag of Visual Words (which has
been used in this work) are used to construct one feature
vector from multiple local feature descriptors [42]. The Bag
of Visual Words is based on using any clustering algorithm
for splitting the extracted descriptors vectors to multiple
clusters. Then, the clustering algorithm is used to predict
the cluster of each vector in the descriptors dataset.

So, first of all, the local descriptors (SIFT, SURF, KAZE
or ORB descriptors) have been extracted from one of
the constructed image datasets’ samples and the local
features descriptor dataset has been constructed. Then,
the K-means algorithm has been used for clustering the

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

Fig. 3 The proposed malware classification model

constructed descriptors dataset into multiple clusters.
After that, the K-mean algorithm has been used to predict
the class of each descriptor in the image datasets. A
histogram has been constructed based on the frequency
of the predicted descriptors’ classes using Eq. 5.

where, BOVW(i) is the Bag of Visual Words vector (classes
histogram) for the image i. q

[

j
]

 the frequency of the
descriptors belonging to class j in the image i.

The histogram values have been normalized during its
calculation using Eq. 6.

(5)BOVW(i) =
{

q[1], q[2],… , q
[

j
]}

(6)q
[

j
]

= q
[

j
]

+
1

No.OfKeypointsintheimage

After applying Bag of Visual Words to the descriptors
extracted from each image, it has been obtained a one
normalized feature vector. So, at the end of this stage, a
dataset composed of n samples n feature vectors have
been constructed. The constructed feature dataset has
been used to train the machine learning classifiers that
mentioned above. Algorithm 1 illustrates the proposed
and developed model pseudo code algorithm.

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

4 Experiments results

All the experiments have been applied using an Intel Xeon
E5-2680 8 cores and 64 GB of RAM. A codeword vocabulary
of size 120 (i.e. No of class * 10) has been chosen empirically
for applying the BOVW algorithm. With other words,
all the key points that gathered from the constructed
datasets have been clustered using K-means algorithm
(i.e. MiniBatchKMeans algorithm from Sklearn library) to
a vocabulary of size = 120. Also, the k-fold cross-validation
with k = 10 has been used so that 90% of the dataset has
been used for training the proposed model and 10% for
testing the proposed model. Moreover, some python
libraries such as Opencv, Sklearn, etc. have been used in
the proposed model’s development. All the performance
(classification accuracy) has been calculated in terms of
the overall percentage of true/false (positive/negative)
decisions. The suggested two sub-models have been trained
using the local and global features extracted from the three
constructed image datasets. The extracted local and global
features have been used to train six well-known machine
learning classifiers i.e. Random forest, K-nearest neighbors,
Decision tree, Bagging, AdaBoost and Gradient Boost. The
obtained results have been divided into the local features-
based results and the global features-based results, each of
which will be discussed in detail in the following sections.

4.1 The local features‑based results

The extracted four local features have been used one by
one to train the second sub-model of the proposed model.
In the following sections, the results obtained using each
local feature extracted from each one of the constructed
grayscale image datasets will be discussed. Four different
experiments have been applied to each of the constructed
image datasets. In each experiment, one of the used local

features i.e. SIFT, SURF, ORB or KAZE has been extracted,
converted to one feature vector using BOVW algorithm
and used to train the machine learning classifiers in the
second sub-model. Table 1 illustrates the results obtained
using the image local features.

4.1.1 The Manifest dataset based local features results

Four different experiments have been conducted over
this image dataset so that in each experiment different
local feature has been used to train the model. In the
first experiment, the SIFT local feature’s descriptors have
been extracted from each grayscale image in the Manifest
file-based dataset. After training the machine learning
classifiers using the SIFT’s descriptors based BOVW vectors
the classification accuracies of each of Random forest,
K-nearest neighbors, Decision tree, Bagging, AdaBoost
and Gradient Boost were 93.59, 90.69, 90.69, 89.89, 93.89
and 89.19% respectively.

In the second experiment, the SURF local features’
descriptors have been extracted to construct the BOVW
vectors used for training the second sub-model in the
proposed model. The obtained results showed that the
accuracies of the above-mentioned classifiers reached
91.87, 87.45, 84.94, 88.25, 92.57 and 84.34% respectively.

In the third experiment, the ORB local features have
been extracted from Manifest file-based dataset and used
to train the proposed model. The classification accuracies
of the used classifiers were 72.08, 65.16, 69.58, 67.97, 72.49
and 68.17% respectively.

In the last experiment, the KAZE features have been
used to train the second sub-model in the proposed
model. The results showed that the classification accura-
cies were 91.87, 86.55, 86.75, 86.14, 92.37 and 83.83% for
Random forest, K-nearest neighbors, Decision tree, Bag-
ging, AdaBoost and Gradient Boost respectively.

Table 1 The classification
accuracies obtained using the
image local features

Bold values indicate the best classification accuracy obtained using each local feature

Feature Dataset RF K-NN DT Bagging AdaBoost Gboost

SIFT Manifest 93.59 90.69 90.69 89.88 93.89 89.18
DEX 95.56 94.12 92.04 94.32 95.87 93.61
Manifest-DEX-ARSC 96.5 94.81 93.83 95.46 97.01 95.79

SURF Manifest 91.87 87.45 84.94 88.25 92.57 84.34
DEX 96.90 96.29 95.88 95.15 97.22 95.88
Manifest-DEX-ARSC 97.81 96.73 94.78 96.81 97.87 97.43

KAZE Manifest 93.59 90.69 90.69 89.89 93.89 89.19
DEX 97.42 96.80 94.64 96.49 97.22 96.19
Manifest-DEX-ARSC 98.31 97.37 95.49 96.93 98.16 97.50

ORB Manifest 72.09 65.16 69.58 67.97 72.49 68.17
DEX 90.21 87.42 86.49 87.52 90.72 87.11
Manifest-DEX-ARSC 93.21 91.72 87.67 90.90 93.56 88.77

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

4.1.2 The DEX dataset based local features results

Four experiments have been conducted over this dataset
to test the effectiveness of the local features extracted
from the DEX code-based images in classifying the android
applications.

In the first experiment, the SIFT features have been
extracted from each image in the DEX files-based image
dataset. The BOVW algorithm has been used to construct
a feature vector from the SIFT descriptors extracted from
each image in the dataset. The accuracies of the Random
forest, K-nearest neighbors, Decision tree, Bagging, Ada-
Boost and Gradient Boost were 95.56, 94.12, 92.04, 94.33,
95.88 and 93.61% respectively.

In the second experiment, the SURF descriptors-based
BOVW vectors have been used to train the machine
learning classifiers in the second sub-model. The results
showed that the accuracies of Random forest, K-nearest
neighbors, Decision tree, Bagging, AdaBoost and Gradient
Boost were 96.90, 96.29, 95.88, 95.15, 97.22 and 95.88%
respectively.

In the third experiment, the ORB features have been
extracted from the DEX code-based images to construct
the BOVW vectors used in training the machine learning
classifiers. The results showed that the classification accu-
racies were 90.21, 87.42, 86.49, 87.53, 90.72 and 87.11%
respectively.

In the last experiment that conducted over this dataset,
the KAZE feature has been extracted from the DEX code-
based images. When the constructed BOVW vectors have
been used to train the desired classifiers, the obtained
classification accuracies were 97.42, 96.80, 94.64, 96.49,
97.22 and 96.18% respectively.

4.1.3 The Manifest‑DEX‑ARSC image dataset based local
features results

Four experiments have been conducted using this dataset
too. In each experiment different local feature’s descriptors
have been used for constructing the BOVW vectors used
for training the machine learning classifiers.

In the first experiment, the SIFT feature has been
extracted from Manifest-DEX-ARSC image dataset. The
extracted SIFT descriptors have been used to construct
one feature vector using the BOVW algorithm. When the
constructed BOVW vectors have been used to train the
machine learning classifiers, the classification accuracies
of Random forest, K-nearest neighbors, Decision tree, Bag-
ging, AdaBoost and Gradient Boost classifiers were 96.5,
94.8, 93.8, 95.4, 97 and 95.7% respectively.

In the second experiment, the SURF feature has been
used for training the machine learning classifiers. The
classification accuracies of Random forest, K-nearest

neighbors, Decision tree, Bagging, AdaBoost and Gradient
Boost machine learning classifiers were 97.8, 96.7, 94.7,
96.8, 97.8 and 97.4% respectively.

In the third experiment, the ORB features have been
extracted from the Manifest-DEX-ARSC image dataset.
The BOVW algorithm has been used for constructing the
feature vectors from the extracted features’ descriptors.
The results showed that the classification accuracies were
93.23, 91.71, 87.65, 90.92, 93.51 and 88.73% respectively.

In the last experiment, the KAZE features have been
extracted from each image in the Manifest-DEX-ARSC
image dataset. Then, the BOVW algorithm has been used
to construct feature vectors from the extracted KAZE
descriptors. The constructed BOVW vectors have been
used for training the machine learning classifiers in the
proposed second sub-model. The obtained results showed
that the classification accuracies were 98.32, 97.29, 95.41,
96.89, 98.12 and 97.55% respectively.

4.1.4 The local features‑based results’ discussion

It has been noted that the results obtained using the local
features was worse when the Manifest-based image data-
set has been used. Also, it has been observed that when
the Manifest-based image dataset has been used the
best results have been obtained using the SIFT algorithm,
where its classification accuracy was ranging from 89.89
(using Bagging classifier) to 93.53% (using Random forest
classifier). On the other hand, the worst accuracy has been
obtained using the ORB feature (ranging from 65.16 to
72.49%). Moreover, when the DEX code-based image data-
set has been used, the best accuracies have been obtained
using the KAZE feature (ranging from 94.63 to 97.42%). The
SURF algorithm’s classification accuracy ranked second
with an accuracy ranging from 95.87 to 96.91%, followed
by the SIFT algorithm (its classification accuracy was rang-
ing from 92.04 to 95.88%), and the ORB features gave the
worst results, where its classification accuracy was ranging
from 87.11 to 90.21%. Moreover, when the Manifest-DEX-
ARSC image dataset has been used to train the classifiers,
the best results have been obtained using the KAZE fea-
tures (ranging from 95.41 to 98.35%). The SURF algorithm
obtained the second-best classification accuracies (rang-
ing from 94.73 to 97.89%), while the classification accura-
cies obtained using the SIFT algorithm was ranging from
93.82 to 97%. The worst classification accuracy obtained
using this dataset also has been gotten using the ORB
algorithm (ranging from 87.64 to 93.21%).

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

4.2 The global features‑based results

When the global features mentioned before have been
extracted and used to train the machine learning classifiers
the results were as in Table 2:

4.2.1 The Manifest dataset‑based global features’ results

In the first experiment, the global features have been
extracted from the Manifest image dataset and used for
training the first sub-model. The obtained results showed
that the classification accuracies of Random forest, K-near-
est neighbors, Decision tree, Bagging, AdaBoost and Gradi-
ent Boost classifiers were 98.19, 95.78, 95.78, 95.78, 98.59,
97.69 and 98.09% respectively.

4.2.2 The DEX dataset‑based global features’ results

In the second experiment, the global features have been
extracted from the DEX files-based image dataset and
used for training the first sub-model in the proposed
model. The classification accuracies of Random forest,
K-nearest neighbors, Decision tree, Bagging, AdaBoost and
Gradient Boost classifiers were 98.45, 98.25, 97.22, 97.53,
98.55 and 98.25% respectively.

4.2.3 The Manifest‑DEX‑ARSC dataset‑based global
features’ results

In the third experiment, the global features have been
extracted from the image dataset constructed using the
Manifest, DEX and ARSC files. When the extracted global
features have been used for training the machine learning
classifiers, the classification accuracies of Random forest,
K-nearest neighbors, Decision tree, Bagging, AdaBoost and

Gradient Boost were 98.75, 98.3, 98.1, 98.2, 98.7 and 98%
respectively.

4.2.4 The global features’ results discussion

The classification accuracies obtained using global features
were ranging from 95.78 to 98.75% based on the nature
of the image dataset and the trained classifier. It has been
noted that the results obtained using the Manifest image-
based global features were worse than that obtained using
the DEX image dataset and the Manifest-DEX-ARSC image
dataset. Also, it has been noted that the best results have
been obtained using the Random forest, AdaBoost and
Gradient Boost classifiers. Furthermore, it is noted that
the results obtained using the Decision tree and Bagging
classifiers were worse than that obtained using the other
classifiers to some extent.

4.3 Testing the proposed model using other
datasets

The proposed model has been tested using AMD dataset
(Android Malware Dataset) to prove its efficiency in detect-
ing any android malware dataset. The AMD android data-
set is one of the largest android malware datasets contains
more than 24000 samples related to 71 families. 4850 mal-
ware samples have been selected randomly from the AMD
dataset, and three malware image datasets have been con-
structed. After that, the proposed model has been tested
using the constructed AMD based image datasets. Since
the results obtained using the global features were bet-
ter than that obtained using the local features, only the
classification accuracy obtained using the global features
extracted from this dataset has been tested. The obtained
results (illustrated in Table 3) showed that the classifica-
tion accuracy reached more than 98% when the pro-
posed model has been trained using the global features

Table 2 The classification
accuracies obtained using the
image global features

Bold values indicate the best classification accuracy obtained using each local feature

Dataset RF K-NN DT Bagging AdaBoost Gboost

Manifest 98.29 94.78 96.18 94.98 98.49 97.09
DEX 98.14 98.25 97.22 97.63 98.35 97.83
Manifest-DEX-ARSC 98.49 98.31 97.89 98.1 98.75 98.19

Table 3 The results of testing
the proposed model using
AMD malware dataset

Bold values indicate the best classification accuracy obtained using each local feature

Dataset RF KNN DT Bagging AdaBoost GBoost

Manifest dataset 97.61 93.99 95.19 94.29 97.40 96.61
DEX dataset 97.11 96.71 97.02 95.99 97.12 96.40
Manifest-DEX-ARSC 98.36 96.81 97.1 96.71 98.36 96.81

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

extracted from the AMD-based Manifest-ARSC-DEX image
dataset.

4.4 The computational time analysing study

The computational cost has been analysed for each stage
in the proposed model including the feature extraction,
training and testing the model. The computational time
study has been conducted using the Manifest file-based
image dataset’s experiments, and the results were as in
Table 4. The computational time analysis study for the
proposed model showed that the SIFT features needs the
highest run-time overhead for training the model, where
its computational time reached 866.43 s on average
including the time of features extraction and training the
model. In contrast, it has been observed the ORB and KAZE
features need the lowest average total run-time overhead
(74.31 and 84.32 s respectively) for features extraction and
model’s training and testing.

5 The results comparison

In this section, the obtained results have been compared
with the results of some state-of-the-art works. Table 5
illustrates the comparison that has been conducted
between this work results and some other works’ results
in term of classification accuracy and computational time.
The compared works have been selected carefully so that
they include static analysis, dynamic analysis, hybrid analy-
sis and image-based analysis frameworks. It has been con-
cluded that the proposed model outperformed the other
frameworks with classification accuracy reached 98.75%
with a typical computational time does not exceed 0.018 s
for each sample.

6 Discussion and decision

In this work, a malware visualisation method has been
proposed for detecting Android malware based on
grayscale image representation and machine learning
techniques. Two types of image-based features have
been extracted from the constructed malware image
datasets and used to train six machine learning classifiers
in multiple scenarios. It has been observed that the
global features can give better classification accuracy
than that obtained using the local features almost in
all experiments. Particularly, the classification accuracy
reached more than 98% when the global features
extracted from each of Manifest, DEX and Manifest-DEX-
ARSC image dataset have been used to train the AdaBoost
classifier. Also, the classification accuracy reached more
than 98% when the local features extracted from the
Manifest-DEX-ARSC image dataset have been used to
train the AdaBoost classifier. With other words, the best
classification accuracies in this work have been obtained
using the AdaBoost classifier. In general, the local
features extracted from the Manifest image dataset gave
classification accuracies less than that obtained using the
local features extracted from the DEX or Manifest-DEX-
ARSC image datasets. Also, it has been noted that the ORB
local features gave the worst classification accuracies in
all experiments where its classification accuracy was
ranging from 65.16% to 93.56% based on the used image

Table 4 The computational
time of the proposed model

RF KNN DT Bagging AdaBoost G-boost

SIFT 868.84 864.94 864.39 865.61 867.04 867.75
SURF 762.99 759.65 759.39 759.99 761.4 762.18
KAZE 49.36 48.31 47.77 48.95 262.87 48.66
ORB 41.22 39.83 39.36 40.51 244.73 40.19
Global features 172.49 166.14 165.17 168.07 168.78 176.37

Table 5 Comparison of the proposed model results with the results
of some previous works

Model name Methodology Time/Sec Accuracy (%)

AspectDroid [6] Hybrid analysis – 94.68
SAFEDroid [7] Static analysis – 98.4
DroidDet [8] Static analysis – 88.26
Wang.et al. [9] Static analysis – 94
FalDroid [27] Static analysis 4.6 94.2
DREBIN [31] Static analysis 0.75 94
DroidSIFT [43] Static analysis 0.06 93
R2-D2 [28] Image-based 0.5 93
Yang.et al. [29] Image-based – 95.42
Karimi.et al. [30] Image-based – 97
Yen.et al. [23] Image-based – 92.67
Proposed Model Image-based 0.018 98.75

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

dataset and the trained classifier. According to the results
of the conducted time complexity analysis study, the ORB
features need the smallest total computational time for
extracting the features, training the model and detecting
the malware samples. Particularly, the average of the total
time needed for training the model using the ORB features
was 74.31 s; which means 0.008 s for each malware sample
on average. But in contrast, the ORB features gave the
worst classification accuracy results in all conducted
experiments. Furthermore, it has been concluded that the
SIFT features need the highest cost time for extracting the
features and training the model (the worst case), where its
average computational time was 866.43 s, which means
0.091 s on average for each sample.

It is worth mentioning that the KAZE features gave the
best classification accuracy (reached more 98%) which has
been obtained using the local features with an accepta-
ble run-time overhead close to that needed for the ORB
feature (where the KAZE feature’s average total compu-
tational time was 84.32 s; which means 0.009 s for each
sample). On the other hand, the average total time needed
for extracting the global features and training the model
was 169.50 s; which means 0.018 s for each sample. With
other words, the model needs 0.018 s (which considered
a very efficient computational time) on average for each
sample to give a classification accuracy reached 98.75%.
The proposed model outperformed all of the compared
previous works in term of the classification accuracy and
computational time, where its classification accuracy
reached 98.75% and its computational time was 0.018 s
for each sample.

7 Limitations

The proposed model’s performance may be affected by
the code obfuscation and code manipulation techniques
which is a drawback of almost all static analysis detec-
tion techniques. This can be overcome by integrating
the image-based features with some robust code-based
semantic features, which has been left to the future works.
Also, the proposed method cannot detect the injection
attacks proposed in [44]. It will be tried to bypass these
types of attack using image-based object detection tech-
niques in the future works.

8 Conclusions

In this paper, a visualization-based framework has
been proposed for classifying the android applications
as benign ware or malware. The proposed model is
based on converting some APK archive’s contents into

grayscale images and using image processing techniques
and machine learning algorithms for android apps
classification. To this end, three different grayscale image
datasets have been constructed. In the first dataset, the
APK archives have been decompiled and the Manifest.
xml files have been converted to grayscale images. In the
second dataset, the DEX code files of each application have
been converted into a grayscale image. In the third dataset,
each of Manifest, DEX and Resources.ARSC files from each
application have been converted into a grayscale image.
Two types of image-based features (i.e. Global features and
Local features) have been extracted for training multiple
machine learning classifiers (i.e. Random forest, K-nearest
neighbors, Decision tree, Bagging, AdaBoost and Gradient
Boost). Three global features including Colour Histogram,
Hu Moments and Haralick Texture have been extracted,
normalized and stacked in one feature vector and used
for training the above-mentioned machine learning
classifiers. On the other hand, four image local features
including SIFT, SURF, KAZE, ORB have been extracted and
the bag of visual words (BOVW) algorithm has been used
for constructing one feature vector from the extracted
local feature’s descriptors. The obtained results showed
that the proposed model outperforms the previous
conducted works in term of the classification accuracy
and computational time, where its classification accuracy
reached more than 98% with a typical run-time overhead
did not exceed 0.0.18 s on average for each sample.

In the future works, the proposed model will be
expanded for detecting camouflaged malware samples
(such as the obfuscation techniques-based attacks men-
tioned in Sect. 7) using image-based object detection
techniques.

Acknowledgements The authors thank Sen Chen, Minhui Xue, Lin-
gling Fan, Shuang Hao, Lihua Xu and Haojin Zhu for sharing their
KuafuDet malware Dataset. Also, the authors thank Daniel Arp,
Michael Spreitzenbarth, Malte Hubner, Hugo Gascon and Konrad
Rieck for sharing their Drebin Android malware dataset. Moreover,
the authors thank the authors of ADM Android malware dataset for
sharing their dataset.

Author contributions The manuscript was written by Khaled Bakour
under the supervision of H.Murat Ünver. The modelling, analysis,
and software development have been conducted by Khaled Bakour
under the supervision of H.Murat Ünver.

Funding This research did not receive any specific grant from fund-
ing agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2

References

 1. Gartner (2018) Gartner says worldwide sales of smartphones
recorded first ever decline during the fourth quarter of 2017.
https ://www.gartn er.com/en/newsr oom/press -relea ses/2018-
02-22-gartn er-says-world wide-sales -of-smart phone s-recor ded-
first -ever-decli ne-durin g-the-fourt h-quart er-of-2017. Accessed
27 Oct 2019

 2. StatcounterGlobalStats (2020) Mobile operating system market
share worldwide. Mobile Operating System Market Share World-
wide https ://gs.statc ounte r.com/os-marke t-share /mobil e/world
wide. Accessed 09 Mar 2020

 3. G-DATA (2018) Malware figures for Android rise rapidly. https ://
www.gdata softw are.com/blog/2018/07/30937 -malwa re-figur
es-for-andro id-rise-rapid ly. Accessed 27 Oct 2019

 4. SecureList (2018) Mobile malware evolution 2018. https ://secur
elist .com/mobil e-malwa re-evolu tion-2018/89689 /. Accessed 27
Oct-2019

 5. DoctorWeb (2019) Doctor Web’s overview of malware detected
on mobile devices in September 2019.” https ://news.drweb
.com/show/revie w/?i=13446 . Accessed 27 Oct 2019

 6. Ali-Gombe AI et al (2018) Toward a more dependable hybrid
analysis of android malware using aspect-oriented program-
ming. Comput Secur 73:235–248. https ://doi.org/10.1016/j.
cose.2017.11.006

 7. Goyal R, et al (2016) SafeDroid: a distributed malware detection
service for Android. In: 2016 IEEE 9th international conference
on service-oriented computing and applications (SOCA). 2016.
IEEE. https ://doi.org/10.1109/soca.2016.14

 8. Zhu H-J et al (2018) DroidDet: effective and robust detection
of android malware using static analysis along with rotation
forest model. Neurocomputing 272:638–646. https ://doi.
org/10.1016/j.neuco m.2017.07.030

 9. Wang C et al (2018) Research on data mining of permissions
mode for Android malware detection. Clust Comput. https ://
doi.org/10.1007/s1058 6-018-1904-x

 10. Moonsamy V, Rong J, Liu S (2014) Mining permission patterns
for contrasting clean and malicious android applications. Future
Gener Comput Syst 36:122–132. https ://doi.org/10.1016/j.futur
e.2013.09.014

 11. Xiaoyan Z, Juan F, Xiujuan W (2014) Android malware detec-
tion based on permissions. In: 2014 International conference
on information and communications technologies (ICT 2014).
https ://doi.org/10.1049/cp.2014.0605

 12. Tao G et al (2018) MalPat: mining patterns of malicious and
benign android apps via permission-related APIs. IEEE Trans
Reliab 67(1):355–369. https ://doi.org/10.1109/tr.2017.27781 47

 13. Wu S et al (2016) Effective detection of android malware based
on the usage of data flow APIs and machine learning. Inf Softw
Technol 75:17–25. https ://doi.org/10.1016/j.infso f.2016.03.004

 14. Canfora G, et al (2015) Effectiveness of opcode ngrams for detec-
tion of multi family android malware. In: 2015 10th International
conference on availability, reliability and security. IEEE

 15. Papadopoulos H et al (2018) Android malware detection with
unbiased confidence guarantees. Neurocomputing 280:3–12.
https ://doi.org/10.1016/j.neuco m.2017.08.072

 16. Somarriba O, Zurutuza U (2017) A collaborative framework for
android malware detection using DNS & dynamic analysis. In:
2017 IEEE 37th Central America and Panama Convention (CON-
CAPAN XXXVII). https ://doi.org/10.1109/conca pan.2017.82785
29

 17. Tong F, Yan Z (2017) A hybrid approach of mobile malware
detection in Android. J Parallel Distrib Comput 103:22–31. https
://doi.org/10.1016/j.jpdc.2016.10.012

 18. Alzaylaee MK, Yerima SY, Sezer S (2017) Emulator versus real
phone: Android malware detection using machine learning. In:
Proceedings of the 3rd ACM on international workshop on secu-
rity and privacy analytics. ACM. https ://doi.org/10.1145/30410
08.30410 10

 19. Dietz M, et al (2011) Quire: lightweight provenance for smart
phone operating systems. In: USENIX security symposium. San
Francisco, CA

 20. Bugiel S, et al (2011) XManDroid: a new Android evolution to
mitigate privilege escalation attacks. Technische Universit at
Darmstadt, Technical Report TR-2011-04

 21. Kabakus AT, Dogru IA (2018) An in-depth analysis of Android
malware using hybrid techniques. Digit Investig 24:25–33. https
://doi.org/10.1016/j.diin.2018.01.001

 22. Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware char-
acterization and detection using deep learning. Tsinghua Sci
Technol 21(1):114–123. https ://doi.org/10.1109/TST.2016.73992
88

 23. Yen Y-S, Sun H-M (2019) An Android mutation malware detec-
tion based on deep learning using visualization of importance
from codes. Microelectron Reliab 93:109–114. https ://doi.
org/10.1016/j.micro rel.2019.01.007

 24. Xiao X et al (2019) Android malware detection based on system
call sequences and LSTM. Multimedia Tools Appl 78(4):3979–
3999. https ://doi.org/10.1007/s1104 2-017-5104-0

 25. Wang W, Zhao M, Wang J (2019) Effective android malware
detection with a hybrid model based on deep autoencoder
and convolutional neural network. J Ambient Intell Humaniz
Comput 10(8):3035–3043. https ://doi.org/10.1007/s1265
2-018-0803-6

 26. Zhu H-J et al (2018) HEMD: a highly efficient random forest-
based malware detection framework for Android. Neural Com-
put Appl 30(11):3353–3361. https ://doi.org/10.1007/s0052
1-017-2914-y

 27. Fan M et al (2018) Android Malware familial classification and
representative sample selection via frequent subgraph analy-
sis. IEEE Trans Inf Forensics Secur 13(8):1890–1905. https ://doi.
org/10.1109/tifs.2018.28068 91

 28. Huang TH, Kao H (2018) R2-D2: ColoR-inspired Convolutional
NeuRal Network (CNN)-based AndroiD Malware Detections. In:
2018 IEEE international conference on big data (big data). https
://doi.org/10.1109/bigda ta.2018.86223 24

 29. Yang M, Wen Q (2017) Detecting android malware by apply-
ing classification techniques on images patterns. In: 2017 IEEE
2nd international conference on cloud computing and big
data analysis (ICCCBDA). IEEE. https ://doi.org/10.1109/icccb
da.2017.79519 36

 30. Karimi A, Moattar MH (2017) Android ransomware detection
using reduced opcode sequence and image similarity. In: 2017
7th International conference on computer and knowledge engi-
neering (ICCKE). https ://doi.org/10.1109/iccke .2017.81678 81

 31. Arp D, et al (2014) Drebin: effective and explainable detection
of android malware in your pocket. in Ndss

 32. Zhou Y, Jiang X (2012) Dissecting Android Malware: characteri-
zation and evolution. In: 2012 IEEE symposium on security and
privacy. https ://doi.org/10.1109/sp.2012.16

 33. Wei F, et al (2017) Deep ground truth analysis of current android
malware. In: International conference on detection of intrusions
and malware, and vulnerability assessment. Springer, Berlin

 34. Hassaballah M, Awad AI (2016) Detection and description
of image features: an introduction. In: Awad AI, Hassaballah
M (eds) Image feature detectors and descriptors : founda-
tions and applications. Springer, Cham, pp 1–8. https ://doi.
org/10.1007/978-3-319-28854 -3_1

 35. Zhihu H, Jinsong L (2010) Analysis of Hu’s moment invariants
on image scaling and rotation. In: 2010 2nd International

https://www.gartner.com/en/newsroom/press-releases/2018-02-22-gartner-says-worldwide-sales-of-smartphones-recorded-first-ever-decline-during-the-fourth-quarter-of-2017
https://www.gartner.com/en/newsroom/press-releases/2018-02-22-gartner-says-worldwide-sales-of-smartphones-recorded-first-ever-decline-during-the-fourth-quarter-of-2017
https://www.gartner.com/en/newsroom/press-releases/2018-02-22-gartner-says-worldwide-sales-of-smartphones-recorded-first-ever-decline-during-the-fourth-quarter-of-2017
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.gdatasoftware.com/blog/2018/07/30937-malware-figures-for-android-rise-rapidly
https://www.gdatasoftware.com/blog/2018/07/30937-malware-figures-for-android-rise-rapidly
https://www.gdatasoftware.com/blog/2018/07/30937-malware-figures-for-android-rise-rapidly
https://securelist.com/mobile-malware-evolution-2018/89689/
https://securelist.com/mobile-malware-evolution-2018/89689/
https://news.drweb.com/show/review/?i=13446
https://news.drweb.com/show/review/?i=13446
https://doi.org/10.1016/j.cose.2017.11.006
https://doi.org/10.1016/j.cose.2017.11.006
https://doi.org/10.1109/soca.2016.14
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1007/s10586-018-1904-x
https://doi.org/10.1007/s10586-018-1904-x
https://doi.org/10.1016/j.future.2013.09.014
https://doi.org/10.1016/j.future.2013.09.014
https://doi.org/10.1049/cp.2014.0605
https://doi.org/10.1109/tr.2017.2778147
https://doi.org/10.1016/j.infsof.2016.03.004
https://doi.org/10.1016/j.neucom.2017.08.072
https://doi.org/10.1109/concapan.2017.8278529
https://doi.org/10.1109/concapan.2017.8278529
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1145/3041008.3041010
https://doi.org/10.1145/3041008.3041010
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1016/j.microrel.2019.01.007
https://doi.org/10.1016/j.microrel.2019.01.007
https://doi.org/10.1007/s11042-017-5104-0
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1007/s00521-017-2914-y
https://doi.org/10.1007/s00521-017-2914-y
https://doi.org/10.1109/tifs.2018.2806891
https://doi.org/10.1109/tifs.2018.2806891
https://doi.org/10.1109/bigdata.2018.8622324
https://doi.org/10.1109/bigdata.2018.8622324
https://doi.org/10.1109/icccbda.2017.7951936
https://doi.org/10.1109/icccbda.2017.7951936
https://doi.org/10.1109/iccke.2017.8167881
https://doi.org/10.1109/sp.2012.16
https://doi.org/10.1007/978-3-319-28854-3_1
https://doi.org/10.1007/978-3-319-28854-3_1

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1299 | https://doi.org/10.1007/s42452-020-3132-2 Research Article

conference on computer engineering and technology. https ://
doi.org/10.1109/iccet .2010.54855 42

 36. Kumar RM, Sreekumar K (2014) A survey on image feature
descriptors. Int J Comput Sci Inf Technol 5:7668–7673

 37. Ehab Salahat MQ (2017) Recent advances in features extraction
and description algorithms: a comprehensive survey. In: IEEE
international conference on industrial technology (ICIT). 2017
of Conference. Toronto. https ://doi.org/10.1109/icit.2017.79155
08

 38. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust
features. In: European conference on computer vision. Springer,
Berlin

 39. Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In:
European conference on computer vision. Springer, Berlin

 40. Rosten E, Drummond T (2006) Machine learning for high-speed
corner detection. In: European conference on computer vision.
Springer, Berlin

 41. Calonder M, et al (2010) Brief: binary robust independent ele-
mentary features. In: European conference on computer vision.
Springer, Berlin

 42. Ali N, Bajwa KB, Sablatnig R, Chatzichristofis SA, Iqbal Z, Rashid M
et al (2016) A novel image retrieval based on visual words
integration of SIFT and SURF. PloS one 11(6):e0157428. https ://
doi.org/10.1371/journ al.pone.01574 28

 43. Zhang M, et al (2014) Semantics-aware android malware clas-
sification using weighted contextual API dependency graphs. In:
Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security. 2014 of conference. Scottsdale,
Arizona, USA: Association for Computing Machinery. https ://doi.
org/10.1145/26602 67.26603 59

 44. Bakour K, Ünver HM, Ghanem R (2019) A deep camouflage:
evaluating Android’s anti-malware systems robustness against
hybridization of obfuscation techniques with injection attacks.
Arab J Sci Eng 44(11):9333–9347. https ://doi.org/10.1007/s1336
9-019-04081 -5

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/iccet.2010.5485542
https://doi.org/10.1109/iccet.2010.5485542
https://doi.org/10.1109/icit.2017.7915508
https://doi.org/10.1109/icit.2017.7915508
https://doi.org/10.1371/journal.pone.0157428
https://doi.org/10.1371/journal.pone.0157428
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1007/s13369-019-04081-5
https://doi.org/10.1007/s13369-019-04081-5

	Android malware detection based on image-based features and machine learning techniques
	Abstract
	1 Introduction
	2 Related works
	3 Materials and methodologies
	3.1 The constructed image datasets
	3.1.1 Manifest file-based image dataset
	3.1.2 DEX code-based image dataset
	3.1.3 Manifest-DEX-ARSC image dataset

	3.2 Image global features
	3.3 Image local features
	3.3.1 Scale-invariant feature transform (SIFT)
	3.3.2 Speeded up robust features (SURF)
	3.3.3 KAZE feature
	3.3.4 Oriented FAST and rotated BRIEF (ORB)

	3.4 The proposed model

	4 Experiments results
	4.1 The local features-based results
	4.1.1 The Manifest dataset based local features results
	4.1.2 The DEX dataset based local features results
	4.1.3 The Manifest-DEX-ARSC image dataset based local features results
	4.1.4 The local features-based results’ discussion

	4.2 The global features-based results
	4.2.1 The Manifest dataset-based global features’ results
	4.2.2 The DEX dataset-based global features’ results
	4.2.3 The Manifest-DEX-ARSC dataset-based global features’ results
	4.2.4 The global features’ results discussion

	4.3 Testing the proposed model using other datasets
	4.4 The computational time analysing study

	5 The results comparison
	6 Discussion and decision
	7 Limitations
	8 Conclusions
	Acknowledgements
	References

