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Abstract
In this paper, a malware classification model has been proposed for detecting malware samples in the Android environ-
ment. The proposed model is based on converting some files from the source of the Android applications into grayscale 
images. Some image-based local features and global features, including four different types of local features and three 
different types of global features, have been extracted from the constructed grayscale image datasets and used for 
training the proposed model. To the best of our knowledge, this type of features is used for the first time in the Android 
malware detection domain. Moreover, the bag of visual words algorithm has been used to construct one feature vector 
from the descriptors of the local feature extracted from each image. The extracted local and global features have been 
used for training multiple machine learning classifiers including Random forest, k-nearest neighbors, Decision Tree, Bag-
ging, AdaBoost and Gradient Boost. The proposed method obtained a very high classification accuracy reached 98.75% 
with a typical computational time does not exceed 0.018 s for each sample. The results of the proposed model outper-
formed the results of all compared state-of-art models in term of both classification accuracy and computational time.

Keywords Android malware · Image local feature · Image global feature · Malware visualization

1 Introduction

The proliferation of mobile phones has made it an indis-
pensable part of our daily lives. Most people are using 
these devices to access important services such as access-
ing banking applications or making e-shopping. So, natu-
rally, these devices contain very sensitive data that the 
developers of malicious applications aspire to access. The 
statistical studies estimate that there are at least eight 
out of ten used mobile devices are based on the Android 
operating system. For example, due to Gartner reports 
[1], Google’s Android extended its lead by capturing 86 
per cent of the total mobile phones market in 2017. Also 
due to Statcounter GlobalStats statistical web site, the 
percentage of Android-based smartphones devices’ sales 

accounted for more than 73% of the total sales of smart-
phones for 2019 [2]. Therefore, naturally, the Android 
operating system became the most important target 
for the developers of malicious applications targeting 
smartphones. GData Internet security centre stated that 
2,040,293 new malware samples were recorded in the 
first half of 2018 (almost 1.2 million of it have been dis-
covered in the second quarter alone) with a 31 per cent 
increase over the second half of 2017 [3]. Also, according 
to SecureLIST’s 2018 Mobile malware evolution report, 
5,321,142 new malicious installation packages, 151,359 
new mobile banking trojans, 60,176 new mobile ran-
somware Trojans have been detected by Kaspersky Lab 
products and technologies in 2018 [4]. Moreover, accord-
ing to Doctor Web’s overview about the smartphones’ 
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malware detected in September 2019 [5], Android users 
were threatened by various malware, many of which were 
distributed via Google Play such as Android.DownLoader, 
Android.Banker and Android.HiddenAds.

Due to the widespread of the attacks targeting the 
Android mobile operating system the android’s malware 
detection domain got big attention in the academic and 
commercial domains. But, although the big number of 
works conducted on this domain there is a gap between 
the achieved works and the huge number of malicious 
applications published on a daily base, which it has made 
even Google play store untrusted to some extent.

The main contributions of this paper can be concluded 
as follows:

• Three grayscale image datasets each of which con-
tains 9700 samples (4850 benign samples and 4850 
malware samples) have been constructed based on 
different files from the contents of the APK archives. 
The first dataset has been constructed by converting 
the Manifest.xml file of each android application into a 
grayscale image. The second image dataset has been 
constructed by converting the DEX byte code files of 
each android application into a grayscale image. The 
final dataset images have been constructed by convert-
ing the Manifest.xml, DEX, and Resource.ARSC files of 
each Android application into a grayscale image.

• Four different image-based local features, including 
SIFT, SURF, KAZE and ORB, and three different image-
based global features, including Colour Histogram, 
Haralick Texture and Hu Moments, have been extracted 
and used to train multiple machines learning classifiers. 
To the best of our knowledge, this type of features is 
used for the first time in android malware detection 
domain.

• The bag of visual words (BOVW) algorithm has been 
used to obtain one feature vector from multiple local 
feature’s descriptor vectors so that it can be fed to the 
machine learning classifiers.

• The extracted local and global features have been used 
to train six different machine learning classifiers includ-
ing Random forest, K-nearest neighbors, Decision Tree, 
Bagging, AdaBoost and Gradient Boost.

• Moreover, the proposed method is generic, where any 
type of apps can be converted to images and used to 
train the proposed model.

2  Related works

As mentioned before, a big number of academic works 
have been conducted in the android malware detection 
domain, some of which will be listed in this section.

A hybrid instrumentation engine is designed by [6] in 
order to achieve dataflow analysis, detection of resource 
abuse, and analysing of suspicious behaviours. The pro-
posed model depends on decompiling the app, inject-
ing some hooks code sections, recompiling the app and 
dynamically executing it for tracking and logging the 
runtime events. SafeDroid, a static analysis based frame-
work has been proposed in [7]. The proposed framework 
depends on analysing the DEX (Dalvik Executable) code 
statically to extract binary feature vectors which have 
been used for training multiple machine learning classi-
fiers. Moreover, multiple features including permissions, 
sensitive APIs (Application program interfaces), system 
events and permission-rate have been used by [8] to train 
a random forest classifier to detect whether an Android 
App is malicious or not. A combination of the required and 
used permissions has been used in [9] to generate permis-
sion patterns in order to differentiate between normal and 
malicious apps. In [10], the required and used permissions 
have been extracted and analysed statistically. Then, the 
most popular permissions in each apps’ class (whether 
benign or malware) have been determined and used for 
constructing patterns that have been used to distinguish 
between malicious and benign apps. Moreover, a bi-clus-
tering method has been used for visualizing the required 
and used permissions, and a mining method has been pro-
posed to produce contrastive permission patterns that can 
separate non-harmful and harmful apps. Also, the used 
permissions and app’s package information have been 
used in [11] to train each of KNN (K-Nearest Neighbour), 
Linear Discrimination function and RBF Network. Moreo-
ver, the API calls have been correlated with the permis-
sions by [12] and used as features for training and testing 
a random forests classifier used in android apps’ classifica-
tion. Furthermore, a lightweight method for Android mal-
ware detection based on machine learning and dataflow-
related APIs has been proposed in [13]. In [14], the n-gram 
sequences have been extracted from the opcode of both 
benign and malware Android applications to generate 
reduced feature vectors used in training Support Vector 
Machines (SVM) and Random Forest (RF) classifiers. In [15], 
the APK files have been installed on a real Android smart-
phone and multiple dynamic features including Binder, 
Battery, Memory, CPU and Network behaviour have been 
collected and used in malware classification. A dynamic 
analysis framework has been proposed by [16] for classify-
ing android apps based on monitoring the apps’ runtime 
behaviour and malicious URLs and correlating them with 
DNS service network traffic in order to detect the malicious 
behaviour at the network level. In [17], the system calls 
and app’s network access behaviour have been collected 
for constructing patterns set used in Android malware 
detection. Multiple experiments have been conducted 
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in [18] in order to compare between emulator-based and 
phone-based dynamic malware analysis. An extension 
kit for the Android operating system has been proposed 
by [19] to handle confused deputy attacks [i.e. a trusted 
application is manipulated by a malicious application 
through IPC (Inter-process Communication)]. The permis-
sions framework of android system has been extended in 
[20] to perform a runtime monitoring and communication 
links analysing to prevent malicious behaviour based on a 
pre-defined policy. Moreover, the permissions have been 
used with network log data for constructing a signatures 
set used in android apps classification in [21]. Also, in [22], 
some static features have been used with some dynamic 
behaviour features to construct binary feature vectors 
used as input for training a deep learning model. Further-
more, in [23], the APK archives have been decompiled and 
the source code has been parsed for collecting and digitiz-
ing the importance of each word within it. After that, the 
digitized word values in each APK have been converted 
to an image. The constructed image dataset has been 
used for training a convolutional neural network used 
in android malware detection. Some semantic informa-
tion from system call sequences has been considered by 
[24] to train a Long Short-Term Memory (LSTM) language 
model. A deep autoencoder (DAE) and convolutional neu-
ral network (CNN) based hybrid android malware detec-
tion model has been proposed by [25]. Also, four groups 
of feature including sensitive APIs, system events, permis-
sions, and permission rate have been extracted by [26] 
and used to train an ensemble random forest classifier. In 
[27], each sensitive API call used in the android app has 
been assigned a weight to differentiate their correspond-
ing importance according to the malware family, and a 
function call graph FCG has been constructed to represent 
each app. The constructed FCGs have been simplified into 
a sensitive API call-related graph (SARG) which contain 
only sensitive API call nodes and their parent nodes. Then, 
the common malicious behaviours shared by malware 
within the same family have been generated and used to 
train multiple machine learning classifiers. Moreover, the 
source code of android apps have been extracted by [28] 
and the hexadecimal representation of the instructions 
has been used for constructing the RGB image’s three col-
our channels’ values. The constructed RGB image dataset 
has been used to train a convolution neural network used 
as android apps classification model. Furthermore, some 
android APK archive contents have been converted to 
grayscale images and the GIST image features have been 
extracted from the images for training Random forests 
classifier in [29]. Also, in [30], the 2-g of Opcode Sequences 
have been weighted based on their frequency in android 
apps dataset. The constructed weight values have been 
converted to one grayscale image such that each value 

has been converted to one pixel in the constructed image. 
The best pixel values have been selected for constructing 
a feature vector which has been used as a signature for 
ransomware detection.

The image processing-based malware detection tech-
niques have been used limitedly to some extent in the 
android malware detection domain. And since image local 
and global features have been proven their efficiency in 
the image classification domain, in this work, it has been 
suggested testing this type of features in the android mal-
ware detection domain. Thus, this paper aims to test the 
effectiveness of image processing techniques in classifying 
android applications.

3  Materials and methodologies

In this section, the used materials and methodologies in 
addition to the proposed model will be discussed. At first, 
the constructed datasets, used features and other used 
techniques will be described briefly, then, the proposed 
model will be discussed in detail.

3.1  The constructed image datasets

In this work, it has been proposed constructing grayscale 
image datasets from different APK archive’s contents in 
order to test the image processing techniques’ efficiency 
in the android malware detection domain. To this end, the 
desired file has been read as a binary bitstream and stored 
as a sequence of bytes. Since the grayscale image has been 
used in this work, and since the grayscale image pixel val-
ues are ranged from 0 to 255, so the read byte sequence 
can be converted to pixels in the image. On other words, 
each byte in the bytes stream represents a pixel in the final 
image.

In this work, it has been constructed three images 
dataset each of which contains 9700 samples includes 
4850 benign images and 4850 malicious images. The 
malware samples contain 4850 samples selected ran-
domly from Drebin and Malgenom well-known android 
malware datasets, in addition to 4850 samples have been 
selected randomly from AMD android malware dataset. 
The Drebin android malware dataset [31] contains 5,560 
Android malicious apps from 179 different families, and 
the Malgenom android malware dataset [32] contains 
1260 malicious apps from 49 different families. The AMD 
(Android Malware Dataset) [33] contains 24,553 samples, 
categorized in 135 varieties among 71 malware families. 
On the other hand, the benign apps have been down-
loaded from Google app store using APKPure free online 
downloader. A Python script has been written to ensure 
that the downloaded apps are benign based on scanning 
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them using the Virus Total online API. The app has been 
accepted as benign only if it could not be detected by any 
antivirus engine out of more than 60 engines available at 
the Virus Total service. The algorithm used for download-
ing and scanning the benign dataset is shown in Fig. 1. The 
constructed three image datasets will be described in the 
following sections.

3.1.1  Manifest file‑based image dataset

The Manifest.xml file is one of the most important files in 
the android application. The Manifest file is the first file 
read by the system when executing any android app. This 
file is considered as a road map specifying how the appli-
cation will be executed and how its behaviour will be. So, 
it has suggested converting this file to grayscale images 
in order to test its efficiency in android apps’ classification. 

Due to the limitation in the Manifest file size, the width 
of the image constructed using this file is 64 pixels and 
its height is variable in accordance with the file size. It 
is worth mentioning, that the image width 64 has been 
selected experimentally after testing multiple widths 
including 256, 128 and 64. The big similarity between the 
Manifest files-based images of the Android applications 
from the same malware family can be seen in Fig. 2.

3.1.2  DEX code‑based image dataset

Generally, Android application code is written using Java 
programming language and compiled to DEX code. DEX 
(Dalvik executable) code is an optimized byte code used 
to initialize and execute Android applications. Since Dex 
code contains the actual code of the app, these files are 
very important to specify the app’s behaviour. So, it has 

Fig. 1  The algorithm used for constructing the used benign apps dataset

Fig. 2  a Manifest files of two 
malware samples. b Manifest 
files of two benign samples
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suggested converting Dex code files to a grayscale image 
in this work to collect as much as possible information 
about the app’s behaviour.

3.1.3  Manifest‑DEX‑ARSC image dataset

In the third dataset, it has been suggested constructing 
the images using three files from APK archive contents, i.e. 
Manifest, DEX and Resource.arsc files. The Resource.arsc 
file contains the app’s compiled resources in a binary for-
mat. Also, the Resource.arsc file contains references to the 
application’s resources such as UI layouts and string values.

It worth mentioning that the width of the constructed 
images in the second and third image dataset is 256 pixels 
while their height varies in accordance with the size of the 
used files.

3.2  Image global features

This type of features describes the image as a whole [34], 
such that the whole image is described using a one feature 
vector. In this work, three different global features have 
been used in order to test the efficiency of this type of 
features in the malware detection domain. The first used 
global feature is Colour Histogram, in which a histogram 
is calculated based on the distribution of colours in the 
image’s pixels (pixels intensity). Since the grayscale image 
representation has been used in this work the constructed 
histogram contains 255 bins (because that the grayscale 
image pixels take intensity values between 0 and 255). 
The second used global feature is Hu Moments. The image 
moments are a weighted average of the image pixels’ 
intensity [35]. The Hu moments are a moment type com-
posed of seven number calculated using central moments. 
The central moment can be calculated using Eq. 1

where,

Hu moments are invariant to translation, scale, reflec-
tion and rotation. The third global feature that has been 
used in this paper is Haralick Texture. Texture descriptor 
provides measures of image properties such as smooth-
ness, coarseness, and regularity [36]. Haralick textures are 
one of the most famous texture features used in image 
classification. Haralick texture features are calculated 
based on the co-occurrence matrix and composed of 13 
features.

(1)𝜇i,j =
+∞

∫
−∞

+∞

∫
−∞

(x − x̄)i ⋅ (y − ȳ)j ⋅ f (x, y)dx ⋅ dy

i, j = 1, 2, 3… x̄ =
m10

m00

, ȳ =
m01

m00

3.3  Image local features

The image local features describe the image’s objects (it is 
based on describing a small group of pixels or small blobs 
in the image) [37]. So, by using this type of algorithms the 
image is described as a set of feature vectors (descriptor 
vectors). On other words, local features aim to detect the 
interesting points in the image and describe them as a 
set of descriptors. In this work, four of the most used local 
features i.e. SIFT, SURF, KAZE and ORB have been extracted 
to test the efficiency of this type of features in the malware 
detection domain.

3.3.1  Scale‑invariant feature transform (SIFT)

The SIFT algorithm is based on calculating Laplacian of 
Gaussian LOG at different scale values and selecting the 
scale which gives the best results. In the SIFT algorithm, 
the interesting points are the local maxima/local minima 
obtained using the Laplacian of Gaussian’s scale space. 
On other words, in this algorithm, a multiple Laplacian of 
Gaussian is applied at a different scale level (σ values) and 
the responses are plotted. After that, the scale that gives 
a local maxima/local minima for each pixel in the image 
is selected. Since the LOG’s computation is costly to some 
extent, the SIFT algorithm uses approximate Laplacian of 
Gaussian which is calculated using Eq. 2.

where, G(x, y, �) is LoG in the location (x, y) for the scale σ. 
G(x, y, k�) is LoG in the location (x, y) for scale kσ, kσ: is a 
scale slightly larger than σ.

The SIFT algorithm represents the detected key points 
(the interesting points) using 128-bit descriptors.

3.3.2  Speeded up robust features (SURF)

This algorithm is introduced by [38] as a fast algorithm 
that can be an alternative of SIFT algorithm. SURF is a fast 
and robust algorithm for similarity invariant representa-
tion and comparison of images. This algorithm charac-
terized by its fast computation using box filters (It uses 
box filters for LOG approximation), thus it can be used in 
real-time applications such as tracking and object recogni-
tion. The advantage of using box filters approximation in 
this algorithm is that the convolution with a box filter can 
be easily calculated using integral images. Moreover, SURF 
algorithm is based on the determinant of Hessian matrix 
for both scale and location. The SURF algorithm uses Hes-
sian matrix to detect the key points in the image, which 
has a good performance in term of computation time and 

(2)�Δ2G =
�G

��
=

G(x, y, k�) − G(x, y, �)

k� − �
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accuracy. To this end, the image is filtered by a Gaussian 
kernel, so that for a given point X = (x, y) the Hessian matrix 
at scale σ is defined as in Eq. 3.

where Lxx(x, �) is the convolution of the Gaussian second 
order derivative for the image I in the point x, and similarly 
for Lxy (x, �) and Lyy(x, �).

After detecting the key points SURF descriptors are 
created with two steps. In the first step, the Haar-wavelet 
responses are calculated in the horizontal and vertical 
direction for a neighbourhood of size 6 s. Then, a square 
region aligned to the selected orientation is constructed 
and the SURF descriptor (64-bit vector) is extracted from it.

3.3.3  KAZE feature

This algorithm has been introduced in 2012 by [39] as a 
method for features detection and description in nonlinear 
scale-spaces. This algorithm works based on the original 
image resolution, without performing any downsampling 
at each new octave as done in the SIFT algorithm. The 
KAZE detector is based on normalized determinant of the 
Hessian Matrix at multiple scale levels. The local minima/
maxima (extrema) is selected from a rectangular window 
of size σi × σi on the current, upper and lower scales. Like in 
the SURF algorithm the dominant orientation is found in a 
circular area (has a 6σi radius) around each detected inter-
esting point in order to obtain rotation invariant descrip-
tors. The descriptor vector size in this algorithm is 64-bit.

3.3.4  Oriented FAST and rotated BRIEF (ORB)

Basically the ORB feature is a fusion of FAST key point 
detector [40] and BRIEF descriptor [41] with many modifi-
cations to enhance the performance. The ORB algorithm 
uses the FAST algorithm to detect the key points in the 
image, then it uses Harris corner to find the top N among 
the detected key points. Moreover, the ORB uses a pyramid 
to produce multiscale features. The ORB features use 32-bit 
BRIEF-based descriptor which is calculated using a set of 
binary intensity test like in Eq. 4.

where, P is a smoothed image patch.
P(x) is the intensity of p at a point x.

(3)H(x, y) =

(

Lxx(x, �) Lxy(x, �)

Lxy(x, �) Lyy(x, �)

)

(4)𝜏(P;x, y) =

{

1 ∶ P(x) < p(y)

0 ∶ P(x) ≥ P(y)

3.4  The proposed model

In this work, a new image-based android malware clas-
sification model has been suggested. To this end, some 
files from the source of the android application have been 
converted into grayscale images. Then, the image process-
ing techniques and machine learning algorithms have 
been used to classify the android apps as benign or mali-
cious as illustrated in Fig. 3. The novelty of the proposed 
model is based on that the used image features have 
not been used before in the malware detection domain. 
Particularly, in the first step of the proposed model, each 
sample in the benign and malware apps dataset has been 
extracted to use its source for constructing the grayscale 
image datasets. The proposed model composed of two 
sub-models, each of which has been trained using a differ-
ent group of features. In the first sub-model, the APK sam-
ples have been extracted and their sources (i.e. Manifest, 
Dex or Manifest-Dex-Resouces.arsc) have been converted 
to grayscale images. The global features that have been 
mentioned before i.e. Colour Histogram, Hu Moments 
and Haralick Texture have been extracted from each 
image in the constructed image datasets. The extracted 
three global features have been stacked in one feature 
vector. The obtained feature vector has been normal-
ized and used as input to train multiple machine learning 
classifiers. Six well-known machine learning classifiers i.e. 
Random forest, K-nearest neighbors, Decision Tree, Bag-
ging, AdaBoost, Gradient Boost have been adopted and 
trained using the constructed global features-based vec-
tors. In the second sub-model, four different local feature 
algorithms (i.e. SIFT, SURF, ORB and KAZE) have been used 
to extract local features descriptors from the constructed 
image datasets. The extracted local features have been 
used one by one to train the mentioned machine learning 
classifiers. Since the local features algorithms use multiple 
descriptors to represent each image, the output of these 
algorithms is multiple vectors. Since almost all machine 
learning algorithms accept n-samples n-feature vectors as 
an input, the output of the local features cannot be used 
directly as input for the machine learning classifiers. So, 
some techniques such as Bag of Visual Words (which has 
been used in this work) are used to construct one feature 
vector from multiple local feature descriptors [42]. The Bag 
of Visual Words is based on using any clustering algorithm 
for splitting the extracted descriptors vectors to multiple 
clusters. Then, the clustering algorithm is used to predict 
the cluster of each vector in the descriptors dataset.

So, first of all, the local descriptors (SIFT, SURF, KAZE 
or ORB descriptors) have been extracted from one of 
the constructed image datasets’ samples and the local 
features descriptor dataset has been constructed. Then, 
the K-means algorithm has been used for clustering the 
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Fig. 3  The proposed malware classification model

constructed descriptors dataset into multiple clusters. 
After that, the K-mean algorithm has been used to predict 
the class of each descriptor in the image datasets. A 
histogram has been constructed based on the frequency 
of the predicted descriptors’ classes using Eq. 5.

where, BOVW(i) is the Bag of Visual Words vector (classes 
histogram) for the image i. q

[

j
]

 the frequency of the 
descriptors belonging to class j in the image i.

The histogram values have been normalized during its 
calculation using Eq. 6.

(5)BOVW(i) =
{

q[1], q[2],… , q
[

j
]}

(6)q
[

j
]

= q
[

j
]

+
1

No.OfKeypointsintheimage

After applying Bag of Visual Words to the descriptors 
extracted from each image, it has been obtained a one 
normalized feature vector. So, at the end of this stage, a 
dataset composed of n samples n feature vectors have 
been constructed. The constructed feature dataset has 
been used to train the machine learning classifiers that 
mentioned above. Algorithm 1 illustrates the proposed 
and developed model pseudo code algorithm.
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4  Experiments results

All the experiments have been applied using an Intel Xeon 
E5-2680 8 cores and 64 GB of RAM. A codeword vocabulary 
of size 120 (i.e. No of class * 10) has been chosen empirically 
for applying the BOVW algorithm. With other words, 
all the key points that gathered from the constructed 
datasets have been clustered using K-means algorithm 
(i.e. MiniBatchKMeans algorithm from Sklearn library) to 
a vocabulary of size = 120. Also, the k-fold cross-validation 
with k = 10 has been used so that 90% of the dataset has 
been used for training the proposed model and 10% for 
testing the proposed model. Moreover, some python 
libraries such as Opencv, Sklearn, etc. have been used in 
the proposed model’s development. All the performance 
(classification accuracy) has been calculated in terms of 
the overall percentage of true/false (positive/negative) 
decisions. The suggested two sub-models have been trained 
using the local and global features extracted from the three 
constructed image datasets. The extracted local and global 
features have been used to train six well-known machine 
learning classifiers i.e. Random forest, K-nearest neighbors, 
Decision tree, Bagging, AdaBoost and Gradient Boost. The 
obtained results have been divided into the local features-
based results and the global features-based results, each of 
which will be discussed in detail in the following sections.

4.1  The local features‑based results

The extracted four local features have been used one by 
one to train the second sub-model of the proposed model. 
In the following sections, the results obtained using each 
local feature extracted from each one of the constructed 
grayscale image datasets will be discussed. Four different 
experiments have been applied to each of the constructed 
image datasets. In each experiment, one of the used local 

features i.e. SIFT, SURF, ORB or KAZE has been extracted, 
converted to one feature vector using BOVW algorithm 
and used to train the machine learning classifiers in the 
second sub-model. Table 1 illustrates the results obtained 
using the image local features.

4.1.1  The Manifest dataset based local features results

Four different experiments have been conducted over 
this image dataset so that in each experiment different 
local feature has been used to train the model. In the 
first experiment, the SIFT local feature’s descriptors have 
been extracted from each grayscale image in the Manifest 
file-based dataset. After training the machine learning 
classifiers using the SIFT’s descriptors based BOVW vectors 
the classification accuracies of each of Random forest, 
K-nearest neighbors, Decision tree, Bagging, AdaBoost 
and Gradient Boost were 93.59, 90.69, 90.69, 89.89, 93.89 
and 89.19% respectively.

In the second experiment, the SURF local features’ 
descriptors have been extracted to construct the BOVW 
vectors used for training the second sub-model in the 
proposed model. The obtained results showed that the 
accuracies of the above-mentioned classifiers reached 
91.87, 87.45, 84.94, 88.25, 92.57 and 84.34% respectively.

In the third experiment, the ORB local features have 
been extracted from Manifest file-based dataset and used 
to train the proposed model. The classification accuracies 
of the used classifiers were 72.08, 65.16, 69.58, 67.97, 72.49 
and 68.17% respectively.

In the last experiment, the KAZE features have been 
used to train the second sub-model in the proposed 
model. The results showed that the classification accura-
cies were 91.87, 86.55, 86.75, 86.14, 92.37 and 83.83% for 
Random forest, K-nearest neighbors, Decision tree, Bag-
ging, AdaBoost and Gradient Boost respectively.

Table 1  The classification 
accuracies obtained using the 
image local features

Bold values indicate the best classification accuracy obtained using each local feature

Feature Dataset RF K-NN DT Bagging AdaBoost Gboost

SIFT Manifest 93.59 90.69 90.69 89.88 93.89 89.18
DEX 95.56 94.12 92.04 94.32 95.87 93.61
Manifest-DEX-ARSC 96.5 94.81 93.83 95.46 97.01 95.79

SURF Manifest 91.87 87.45 84.94 88.25 92.57 84.34
DEX 96.90 96.29 95.88 95.15 97.22 95.88
Manifest-DEX-ARSC 97.81 96.73 94.78 96.81 97.87 97.43

KAZE Manifest 93.59 90.69 90.69 89.89 93.89 89.19
DEX 97.42 96.80 94.64 96.49 97.22 96.19
Manifest-DEX-ARSC 98.31 97.37 95.49 96.93 98.16 97.50

ORB Manifest 72.09 65.16 69.58 67.97 72.49 68.17
DEX 90.21 87.42 86.49 87.52 90.72 87.11
Manifest-DEX-ARSC 93.21 91.72 87.67 90.90 93.56 88.77
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4.1.2  The DEX dataset based local features results

Four experiments have been conducted over this dataset 
to test the effectiveness of the local features extracted 
from the DEX code-based images in classifying the android 
applications.

In the first experiment, the SIFT features have been 
extracted from each image in the DEX files-based image 
dataset. The BOVW algorithm has been used to construct 
a feature vector from the SIFT descriptors extracted from 
each image in the dataset. The accuracies of the Random 
forest, K-nearest neighbors, Decision tree, Bagging, Ada-
Boost and Gradient Boost were 95.56, 94.12, 92.04, 94.33, 
95.88 and 93.61% respectively.

In the second experiment, the SURF descriptors-based 
BOVW vectors have been used to train the machine 
learning classifiers in the second sub-model. The results 
showed that the accuracies of Random forest, K-nearest 
neighbors, Decision tree, Bagging, AdaBoost and Gradient 
Boost were 96.90, 96.29, 95.88, 95.15, 97.22 and 95.88% 
respectively.

In the third experiment, the ORB features have been 
extracted from the DEX code-based images to construct 
the BOVW vectors used in training the machine learning 
classifiers. The results showed that the classification accu-
racies were 90.21, 87.42, 86.49, 87.53, 90.72 and 87.11% 
respectively.

In the last experiment that conducted over this dataset, 
the KAZE feature has been extracted from the DEX code-
based images. When the constructed BOVW vectors have 
been used to train the desired classifiers, the obtained 
classification accuracies were 97.42, 96.80, 94.64, 96.49, 
97.22 and 96.18% respectively.

4.1.3  The Manifest‑DEX‑ARSC image dataset based local 
features results

Four experiments have been conducted using this dataset 
too. In each experiment different local feature’s descriptors 
have been used for constructing the BOVW vectors used 
for training the machine learning classifiers.

In the first experiment, the SIFT feature has been 
extracted from Manifest-DEX-ARSC image dataset. The 
extracted SIFT descriptors have been used to construct 
one feature vector using the BOVW algorithm. When the 
constructed BOVW vectors have been used to train the 
machine learning classifiers, the classification accuracies 
of Random forest, K-nearest neighbors, Decision tree, Bag-
ging, AdaBoost and Gradient Boost classifiers were 96.5, 
94.8, 93.8, 95.4, 97 and 95.7% respectively.

In the second experiment, the SURF feature has been 
used for training the machine learning classifiers. The 
classification accuracies of Random forest, K-nearest 

neighbors, Decision tree, Bagging, AdaBoost and Gradient 
Boost machine learning classifiers were 97.8, 96.7, 94.7, 
96.8, 97.8 and 97.4% respectively.

In the third experiment, the ORB features have been 
extracted from the Manifest-DEX-ARSC image dataset. 
The BOVW algorithm has been used for constructing the 
feature vectors from the extracted features’ descriptors. 
The results showed that the classification accuracies were 
93.23, 91.71, 87.65, 90.92, 93.51 and 88.73% respectively.

In the last experiment, the KAZE features have been 
extracted from each image in the Manifest-DEX-ARSC 
image dataset. Then, the BOVW algorithm has been used 
to construct feature vectors from the extracted KAZE 
descriptors. The constructed BOVW vectors have been 
used for training the machine learning classifiers in the 
proposed second sub-model. The obtained results showed 
that the classification accuracies were 98.32, 97.29, 95.41, 
96.89, 98.12 and 97.55% respectively.

4.1.4  The local features‑based results’ discussion

It has been noted that the results obtained using the local 
features was worse when the Manifest-based image data-
set has been used. Also, it has been observed that when 
the Manifest-based image dataset has been used the 
best results have been obtained using the SIFT algorithm, 
where its classification accuracy was ranging from 89.89 
(using Bagging classifier) to 93.53% (using Random forest 
classifier). On the other hand, the worst accuracy has been 
obtained using the ORB feature (ranging from 65.16 to 
72.49%). Moreover, when the DEX code-based image data-
set has been used, the best accuracies have been obtained 
using the KAZE feature (ranging from 94.63 to 97.42%). The 
SURF algorithm’s classification accuracy ranked second 
with an accuracy ranging from 95.87 to 96.91%, followed 
by the SIFT algorithm (its classification accuracy was rang-
ing from 92.04 to 95.88%), and the ORB features gave the 
worst results, where its classification accuracy was ranging 
from 87.11 to 90.21%. Moreover, when the Manifest-DEX-
ARSC image dataset has been used to train the classifiers, 
the best results have been obtained using the KAZE fea-
tures (ranging from 95.41 to 98.35%). The SURF algorithm 
obtained the second-best classification accuracies (rang-
ing from 94.73 to 97.89%), while the classification accura-
cies obtained using the SIFT algorithm was ranging from 
93.82 to 97%. The worst classification accuracy obtained 
using this dataset also has been gotten using the ORB 
algorithm (ranging from 87.64 to 93.21%).
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4.2  The global features‑based results

When the global features mentioned before have been 
extracted and used to train the machine learning classifiers 
the results were as in Table 2:

4.2.1  The Manifest dataset‑based global features’ results

In the first experiment, the global features have been 
extracted from the Manifest image dataset and used for 
training the first sub-model. The obtained results showed 
that the classification accuracies of Random forest, K-near-
est neighbors, Decision tree, Bagging, AdaBoost and Gradi-
ent Boost classifiers were 98.19, 95.78, 95.78, 95.78, 98.59, 
97.69 and 98.09% respectively.

4.2.2  The DEX dataset‑based global features’ results

In the second experiment, the global features have been 
extracted from the DEX files-based image dataset and 
used for training the first sub-model in the proposed 
model. The classification accuracies of Random forest, 
K-nearest neighbors, Decision tree, Bagging, AdaBoost and 
Gradient Boost classifiers were 98.45, 98.25, 97.22, 97.53, 
98.55 and 98.25% respectively.

4.2.3  The Manifest‑DEX‑ARSC dataset‑based global 
features’ results

In the third experiment, the global features have been 
extracted from the image dataset constructed using the 
Manifest, DEX and ARSC files. When the extracted global 
features have been used for training the machine learning 
classifiers, the classification accuracies of Random forest, 
K-nearest neighbors, Decision tree, Bagging, AdaBoost and 

Gradient Boost were 98.75, 98.3, 98.1, 98.2, 98.7 and 98% 
respectively.

4.2.4  The global features’ results discussion

The classification accuracies obtained using global features 
were ranging from 95.78 to 98.75% based on the nature 
of the image dataset and the trained classifier. It has been 
noted that the results obtained using the Manifest image-
based global features were worse than that obtained using 
the DEX image dataset and the Manifest-DEX-ARSC image 
dataset. Also, it has been noted that the best results have 
been obtained using the Random forest, AdaBoost and 
Gradient Boost classifiers. Furthermore, it is noted that 
the results obtained using the Decision tree and Bagging 
classifiers were worse than that obtained using the other 
classifiers to some extent.

4.3  Testing the proposed model using other 
datasets

The proposed model has been tested using AMD dataset 
(Android Malware Dataset) to prove its efficiency in detect-
ing any android malware dataset. The AMD android data-
set is one of the largest android malware datasets contains 
more than 24000 samples related to 71 families. 4850 mal-
ware samples have been selected randomly from the AMD 
dataset, and three malware image datasets have been con-
structed. After that, the proposed model has been tested 
using the constructed AMD based image datasets. Since 
the results obtained using the global features were bet-
ter than that obtained using the local features, only the 
classification accuracy obtained using the global features 
extracted from this dataset has been tested. The obtained 
results (illustrated in Table 3) showed that the classifica-
tion accuracy reached more than 98% when the pro-
posed model has been trained using the global features 

Table 2  The classification 
accuracies obtained using the 
image global features

Bold values indicate the best classification accuracy obtained using each local feature

Dataset RF K-NN DT Bagging AdaBoost Gboost

Manifest 98.29 94.78 96.18 94.98 98.49 97.09
DEX 98.14 98.25 97.22 97.63 98.35 97.83
Manifest-DEX-ARSC 98.49 98.31 97.89 98.1 98.75 98.19

Table 3  The results of testing 
the proposed model using 
AMD malware dataset

Bold values indicate the best classification accuracy obtained using each local feature

Dataset RF KNN DT Bagging AdaBoost GBoost

Manifest dataset 97.61 93.99 95.19 94.29 97.40 96.61
DEX dataset 97.11 96.71 97.02 95.99 97.12 96.40
Manifest-DEX-ARSC 98.36 96.81 97.1 96.71 98.36 96.81
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extracted from the AMD-based Manifest-ARSC-DEX image 
dataset.

4.4  The computational time analysing study

The computational cost has been analysed for each stage 
in the proposed model including the feature extraction, 
training and testing the model. The computational time 
study has been conducted using the Manifest file-based 
image dataset’s experiments, and the results were as in 
Table 4. The computational time analysis study for the 
proposed model showed that the SIFT features needs the 
highest run-time overhead for training the model, where 
its computational time reached 866.43  s on average 
including the time of features extraction and training the 
model. In contrast, it has been observed the ORB and KAZE 
features need the lowest average total run-time overhead 
(74.31 and 84.32 s respectively) for features extraction and 
model’s training and testing.

5  The results comparison

In this section, the obtained results have been compared 
with the results of some state-of-the-art works. Table 5 
illustrates the comparison that has been conducted 
between this work results and some other works’ results 
in term of classification accuracy and computational time. 
The compared works have been selected carefully so that 
they include static analysis, dynamic analysis, hybrid analy-
sis and image-based analysis frameworks. It has been con-
cluded that the proposed model outperformed the other 
frameworks with classification accuracy reached 98.75% 
with a typical computational time does not exceed 0.018 s 
for each sample.

6  Discussion and decision

In this work, a malware visualisation method has been 
proposed for detecting Android malware based on 
grayscale image representation and machine learning 
techniques. Two types of image-based features have 
been extracted from the constructed malware image 
datasets and used to train six machine learning classifiers 
in multiple scenarios. It has been observed that the 
global features can give better classification accuracy 
than that obtained using the local features almost in 
all experiments. Particularly, the classification accuracy 
reached more than 98% when the global features 
extracted from each of Manifest, DEX and Manifest-DEX-
ARSC image dataset have been used to train the AdaBoost 
classifier. Also, the classification accuracy reached more 
than 98% when the local features extracted from the 
Manifest-DEX-ARSC image dataset have been used to 
train the AdaBoost classifier. With other words, the best 
classification accuracies in this work have been obtained 
using the AdaBoost classifier. In general, the local 
features extracted from the Manifest image dataset gave 
classification accuracies less than that obtained using the 
local features extracted from the DEX or Manifest-DEX-
ARSC image datasets. Also, it has been noted that the ORB 
local features gave the worst classification accuracies in 
all experiments where its classification accuracy was 
ranging from 65.16% to 93.56% based on the used image 

Table 4  The computational 
time of the proposed model

RF KNN DT Bagging AdaBoost G-boost

SIFT 868.84 864.94 864.39 865.61 867.04 867.75
SURF 762.99 759.65 759.39 759.99 761.4 762.18
KAZE 49.36 48.31 47.77 48.95 262.87 48.66
ORB 41.22 39.83 39.36 40.51 244.73 40.19
Global features 172.49 166.14 165.17 168.07 168.78 176.37

Table 5  Comparison of the proposed model results with the results 
of some previous works

Model name Methodology Time/Sec Accuracy (%)

AspectDroid [6] Hybrid analysis – 94.68
SAFEDroid [7] Static analysis – 98.4
DroidDet [8] Static analysis – 88.26
Wang.et al. [9] Static analysis – 94
FalDroid [27] Static analysis 4.6 94.2
DREBIN [31] Static analysis 0.75 94
DroidSIFT [43] Static analysis 0.06 93
R2-D2 [28] Image-based 0.5 93
Yang.et al. [29] Image-based – 95.42
Karimi.et al. [30] Image-based – 97
Yen.et al. [23] Image-based – 92.67
Proposed Model Image-based 0.018 98.75
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dataset and the trained classifier. According to the results 
of the conducted time complexity analysis study, the ORB 
features need the smallest total computational time for 
extracting the features, training the model and detecting 
the malware samples. Particularly, the average of the total 
time needed for training the model using the ORB features 
was 74.31 s; which means 0.008 s for each malware sample 
on average. But in contrast, the ORB features gave the 
worst classification accuracy results in all conducted 
experiments. Furthermore, it has been concluded that the 
SIFT features need the highest cost time for extracting the 
features and training the model (the worst case), where its 
average computational time was 866.43 s, which means 
0.091 s on average for each sample.

It is worth mentioning that the KAZE features gave the 
best classification accuracy (reached more 98%) which has 
been obtained using the local features with an accepta-
ble run-time overhead close to that needed for the ORB 
feature (where the KAZE feature’s average total compu-
tational time was 84.32 s; which means 0.009 s for each 
sample). On the other hand, the average total time needed 
for extracting the global features and training the model 
was 169.50 s; which means 0.018 s for each sample. With 
other words, the model needs 0.018 s (which considered 
a very efficient computational time) on average for each 
sample to give a classification accuracy reached 98.75%. 
The proposed model outperformed all of the compared 
previous works in term of the classification accuracy and 
computational time, where its classification accuracy 
reached 98.75% and its computational time was 0.018 s 
for each sample.

7  Limitations

The proposed model’s performance may be affected by 
the code obfuscation and code manipulation techniques 
which is a drawback of almost all static analysis detec-
tion techniques. This can be overcome by integrating 
the image-based features with some robust code-based 
semantic features, which has been left to the future works. 
Also, the proposed method cannot detect the injection 
attacks proposed in [44]. It will be tried to bypass these 
types of attack using image-based object detection tech-
niques in the future works.

8  Conclusions

In this paper, a visualization-based framework has 
been proposed for classifying the android applications 
as benign ware or malware. The proposed model is 
based on converting some APK archive’s contents into 

grayscale images and using image processing techniques 
and machine learning algorithms for android apps 
classification. To this end, three different grayscale image 
datasets have been constructed. In the first dataset, the 
APK archives have been decompiled and the Manifest.
xml files have been converted to grayscale images. In the 
second dataset, the DEX code files of each application have 
been converted into a grayscale image. In the third dataset, 
each of Manifest, DEX and Resources.ARSC files from each 
application have been converted into a grayscale image. 
Two types of image-based features (i.e. Global features and 
Local features) have been extracted for training multiple 
machine learning classifiers (i.e. Random forest, K-nearest 
neighbors, Decision tree, Bagging, AdaBoost and Gradient 
Boost). Three global features including Colour Histogram, 
Hu Moments and Haralick Texture have been extracted, 
normalized and stacked in one feature vector and used 
for training the above-mentioned machine learning 
classifiers. On the other hand, four image local features 
including SIFT, SURF, KAZE, ORB have been extracted and 
the bag of visual words (BOVW) algorithm has been used 
for constructing one feature vector from the extracted 
local feature’s descriptors. The obtained results showed 
that the proposed model outperforms the previous 
conducted works in term of the classification accuracy 
and computational time, where its classification accuracy 
reached more than 98% with a typical run-time overhead 
did not exceed 0.0.18 s on average for each sample.

In the future works, the proposed model will be 
expanded for detecting camouflaged malware samples 
(such as the obfuscation techniques-based attacks men-
tioned in Sect. 7) using image-based object detection 
techniques.
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