16 research outputs found

    Bridging the gap between business process models and service-oriented architectures with reference to the grid environment

    Get PDF
    In recent years, organisations have been seeking technological solutions for enacting their business process models using ad-hoc and heuristic approaches. However, limited results have been obtained due to the expansion of business processes across geographical boundaries and the absence of structured methods, frameworks and/or Information Technology (IT) infrastructures to enact these processes. In an attempt to enact business process models using distributed technologies, we introduce a novel architectural framework to bridge the gap between business process models and Grid-aware Service-Oriented Architectures (GSOA). BPMSOA framework is aligned with the Model-Driven Engineering (MDE) approach and is instantiated for role-based business process models [in particular Role Activity Diagramming (RAD)], using mobile process languages such as pi-ADL. The evaluation of the BPMSOA framework using the Submission process from the digital libraries domain has revealed that role-based business process models can be successfully enacted in GSOA environments with certain limitations. © 2011 Inderscience Enterprises Ltd

    Cloud computing contribution to manufacturing industry

    Get PDF
    Manufacturing industry has been always facing challenge to improve the production efficiency, product quality, innovation ability and struggling to adopt cost-effective manufacturing system. In recent years cloud computing is emerging as one of the major enablers for the manufacturing industry. Combining the emerged cloud computing and other advanced manufacturing technologies such as Internet of Things, service-oriented architecture (SOA), networked manufacturing (NM) and manufacturing grid (MGrid), with existing manufacturing models and enterprise information technologies, a new paradigm called cloud manufacturing is proposed by the recent literature. This study presents concepts and ideas of cloud computing and cloud manufacturing. The concept, architecture, core enabling technologies, and typical characteristics of cloud manufacturing are discussed, as well as the difference and relationship between cloud computing and cloud manufacturing. The research is based on mixed qualitative and quantitative methods, and a case study. The case is a prototype of cloud manufacturing solution, which is software platform cooperated by ATR Soft Oy and SW Company China office. This study tries to understand the practical impacts and challenges that are derived from cloud manufacturing. The main conclusion of this study is that cloud manufacturing is an approach to achieve the transformation from traditional production-oriented manufacturing to next generation service-oriented manufacturing. Many manufacturing enterprises are already using a form of cloud computing in their existing network infrastructure to increase flexibility of its supply chain, reduce resources consumption, the study finds out the shift from cloud computing to cloud manufacturing is feasible. Meanwhile, the study points out the related theory, methodology and application of cloud manufacturing system are far from maturity, it is still an open field where many new technologies need to be studied.siirretty Doriast

    Policies for Web Services

    Get PDF
    Web services are predominantly used to implement service-oriented architectures (SOA). However, there are several areas such as temporal dimensions, real-time, streaming, or efficient and flexible file transfers where web service functionality should be extended. These extensions can, for example, be achieved by using policies. Since there are often alternative solutions to provide functionality (e.g., different protocols can be used to achieve the transfer of data), the WS-Policy standard is especially useful to extend web services with policies. It allows to create policies to generally state the properties under which a service is provided and to explicitly express alternative properties. To extend the functionality of web services, two policies are introduced in this thesis: the Temporal Policy and the Communication Policy. The temporal policy is the foundation for adding temporal dimensions to a WS-Policy. The temporal policy itself is not a WS-Policy but an independent policy language that describes temporal dimensions of and dependencies between temporal policies and WS-Policies. Switching of protocol dependencies, pricing of services, quality of service, and security are example areas for using a temporal policy. To describe protocol dependencies of a service for streaming, real-time and file transfers, a communication policy can be utilized. The communication policy is a concrete WS-Policy. With the communication policy, a service can expose the protocols it depends on for a communication after its invocation. Thus, a web service client knows the protocols required to support a communication with the service. Therefore, it is possible to evaluate beforehand whether an invocation of a service is reasonable. On top of the newly introduced policies, novel mechanisms and tools are provided to alleviate service use and enable flexible and efficient data handling. Furthermore, the involvement of the end user in the development process can be achieved more easily. The Flex-SwA architecture, the first component in this thesis based on the newly introduced policies, implements the actual file transfers and streaming protocols that are described as dependencies in a communication policy. Several communication patterns support the flexible handling of the communication. A reference concept enables seamless message forwarding with reduced data movement. Based on the Flex-SwA implementation and the communication policy, it is possible to improve usability - especially in the area of service-oriented Grids - by integrating data transfers into an automatically generated web and Grid service client. The Web and Grid Service Browser is introduced in this thesis as such a generic client. It provides a familiar environment for using services by offering the client generation as part of the browser. Data transfers are directly integrated into service invocation without having to perform data transmissions explicitly. For multimedia MIME types, special plugins allow the consumption of multimedia data. To enable an end user to build applications that also leverage high performance computing resources, the Service-enabled Mashup Editor is presented that lets the user combine popular web applications with web and Grid services. Again, the communication policy provides descriptive means for file transfers and Flex-SwAs reference concept is used for data exchange. To show the applicability of these novel concepts, several use cases from the area of multimedia processing have been selected. Based on the temporal policy, the communication policy, Flex-SwA, the Web and Grid Service Browser, and the Service-enabled Mashup Editor, the development of a scalable service-oriented multimedia architecture is presented. The multimedia SOA offers, among others, a face detection workflow, a video-on-demand service, and an audio resynthesis service. More precisely, a video-on-demand service describes its dependency on a multicast protocol by using a communication policy. A temporal policy is then used to perform the description of a protocol switch from one multicast protocol to another one by changing the communication policy at the end of its validity period. The Service-enabled Mashup Editor is used as a client for the new multicast protocol after the multicast protocol has been switched. To stream single frames from a frame decoder service to a face detection service (which are both part of the face detection workflow) and to transfer audio files with the different Flex-SwA communication patterns to an audio resynthesis service, Flex-SwA is used. The invocation of the face detection workflow and the audio resynthesis service is realized with the Web and Grid Service Browser

    Grid-based semantic integration of heterogeneous data resources : implementation on a HealthGrid

    Get PDF
    The semantic integration of geographically distributed and heterogeneous data resources still remains a key challenge in Grid infrastructures. Today's mainstream Grid technologies hold the promise to meet this challenge in a systematic manner, making data applications more scalable and manageable. The thesis conducts a thorough investigation of the problem, the state of the art, and the related technologies, and proposes an Architecture for Semantic Integration of Data Sources (ASIDS) addressing the semantic heterogeneity issue. It defines a simple mechanism for the interoperability of heterogeneous data sources in order to extract or discover information regardless of their different semantics. The constituent technologies of this architecture include Globus Toolkit (GT4) and OGSA-DAI (Open Grid Service Architecture Data Integration and Access) alongside other web services technologies such as XML (Extensive Markup Language). To show this, the ASIDS architecture was implemented and tested in a realistic setting by building an exemplar application prototype on a HealthGrid (pilot implementation). The study followed an empirical research methodology and was informed by extensive literature surveys and a critical analysis of the relevant technologies and their synergies. The two literature reviews, together with the analysis of the technology background, have provided a good overview of the current Grid and HealthGrid landscape, produced some valuable taxonomies, explored new paths by integrating technologies, and more importantly illuminated the problem and guided the research process towards a promising solution. Yet the primary contribution of this research is an approach that uses contemporary Grid technologies for integrating heterogeneous data resources that have semantically different. data fields (attributes). It has been practically demonstrated (using a prototype HealthGrid) that discovery in semantically integrated distributed data sources can be feasible by using mainstream Grid technologies, which have been shown to have some Significant advantages over non-Grid based approaches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Semantic Grid Technologies in Computer Integrated Construction

    Get PDF
    Important goal of computer science in civil engineering projects is to facilitate dynamic collaboration among the companies, improvements of services and reuse of programs, data, information and knowledge. Civil engineering has some specific requirements concerning computer applications, which arise from the irrepeatability and scale of particular civil engineering products, processes and collaborating groups. Internet technologies are basis for linking processes in all construction phases, which leads to computer integrated construction. Computing grid, or shortly grid is a service infrastructure, which is being developed to facilitate infinite and seamless sharing of widely distributed, heterogeneous resources, hence, contributing towards the solution of complex engineering problems. A hypothesis of this work is that the grid can become viable platform for computer integrated construction, if semantic technologies are used for its development, i.e. ontologies and metadata, information, ontology and resource broker grid services. The hypothesis is tested by developing an ontology that defines the concept of a grid resource to describe specific resources in a grid environment. The aforementioned grid services are included in the design of a grid system, and are developed and deployed in a test bed. The test bed allows for the execution of complex grid applications, which take the form of workflows. It is shown that the ontology and the metadata about grid resources are useful when enabling, discovering, selecting and dynamically integrating resources on the grid. This approach yields several improvements against existing systems: a higher level of abstraction when developing and executing innovative and powerful engineering applications, greater flexibility, resource utilization and security, which is very important for dynamic collaboration within virtual organizations

    Interorganizational Information Systems: Systematic Literature Mapping Protocol

    Get PDF
    Organizations increasingly need to establish partnerships with other organizations to face environment changes and remain competitive. This interorganizational relationship allows organizations to share resources and collaborate to handle business opportunities better. This technical report present the protocol of the systematic mapping performed to understand what is an IOIS and how these systems support interorganizational relationships

    Supercomputing futures : the next sharing paradigm for HPC resources : economic model, market analysis and consequences for the Grid

    Get PDF
    À la croisée des chemins du génie informatique, de la finance et de l'économétrie, cette thèse se veut fondamentalement un exercice en ingénierie économique dont l' objectif est de contribuer un système novateur, durable et adaptatif pour le partage de resources de calcul haute-performance. Empruntant à la finance fondamentale et à l'analyse technique, le modèle proposé construit des ratios et des indices de marché à partir de statistiques transactionnelles. Cette approche, encourageant les comportements stratégiques, pave la voie à une métaphore de partage plus efficace pour la Grid, où l'échange de ressources se voit maintenant pondéré. Le concept de monnaie de Grid, un instrument beaucoup plus liquide et utilisable que le troc de resources comme telles est proposé: les Grid Credits. Bien que les indices proposés ne doivent pas être considérés comme des indicateurs absolus et contraignants, ils permettent néanmoins aux négociants de se faire une idée de la valeur au marché des différentes resources avant de se positionner. Semblable sur de multiples facettes aux bourses de commodités, le Grid Exchange, tel que présenté, permet l'échange de resources via un mécanisme de double-encan. Néanmoins, comme les resources de super-calculateurs n'ont rien de standardisé, la plate-forme permet l'échange d'ensemble de commodités, appelés requirement sets, pour les clients, et component sets, pour les fournisseurs. Formellement, ce modèle économique n'est qu'une autre instance de la théorie des jeux non-coopératifs, qui atteint éventuellement ses points d'équilibre. Suivant les règles du "libre-marché", les utilisateurs sont encouragés à spéculer, achetant, ou vendant, à leur bon vouloir, l'utilisation des différentes composantes de superordinateurs. En fin de compte, ce nouveau paradigme de partage de resources pour la Grid dresse la table à une nouvelle économie et une foule de possibilités. Investissement et positionnement stratégique, courtiers, spéculateurs et même la couverture de risque technologique sont autant d'avenues qui s'ouvrent à l'horizon de la recherche dans le domaine

    A Semantically Enhanced Approach for Orchestration of Web Services in Factory Automation Systems

    Get PDF
    The Service-oriented Architecture (SOA) paradigm makes it possible to build systems from several independent components. Most typically, web services are chosen as the building blocks of such a system. A web service is essentially a passive software entity, which listens for request messages sent to it over the network, possibly reacts to the requests by performing some operations, and finally sends response messages to the request senders. The traditional application domain of web services belongs to the so-called IT domain. While opening new horizons in software development life-cycles, web services have been adopted in various new application domains, including the domain of factory automation (software development for factory automation). Indeed, recent research projects have experimented with controlling production system equipment through web service interfaces. When migrated from pure software to the physical realm involving industrial equipment, web services set additional demands for the application domains. For example, since the domains involve operations with physical effects, roll-back or application recovery procedures become challenging. This research work targets the orchestration of factory automation systems encapsulated as web services and presents various techniques for overcoming the difficulties. Orchestrating web services to accomplish a complicated production task can be difficult due to the transitoriness of both production equipment states and the set of available web services. Nevertheless, the selection of appropriate web services can be facilitated by augmenting each service with semantic information describing its conditions and effects. Web services augmented with such descriptions are termed semantic web services. While Web Ontology Language, OWL, is ideal for describing application domain concepts and property relationships, the OWL-S ontology, which is based on OWL, has been specifically developed for describing web services. Once the semantic service descriptions have been analyzed to find the appropriate web services, the selected services can be invoked using their syntactic WSDL descriptions. In addition to automated web service selection, semantic descriptions allow the composition of web services to achieve production tasks. Service composition involves first analyzing the descriptions to determine the appropriate service invocation process for achieving the desired goal and then executing the process. This dissertation presents an approach in which the production equipment and their states are represented using an ontology, and the model is dynamically used in decision-making. In particular, the devices in the considered production systems provide web service interfaces through which they can be controlled, while semantic web service descriptions formulated in OWL-S make it possible to determine the conditions and effects of invoking the web services. The approach presented in this research work additionally involves a set of specialized web services that co-operate to achieve production goals using the domain web services. One of the services maintains a semantic model of the current system state, while another uses the model to compose the domain web services so that they jointly achieve the desired goals. The semantic model of the system is automatically updated based on event notifications sent by the domain services. Software agents controlling production devices must maintain an up-to-date view of the physical world state in order to efficiently reason and plan their actions. Especially in a factory automation system, the world state undergoes rapid evolution, and the world view must remain synchronized with the changes. This research discusses two approaches to updating the world view based on event notifications sent by web services representing production devices in a manufacturing system. One of the approaches is based on separately specified update rules, and one automatically uses semantic web service descriptions formulated in OWL-S. While all of the examples presented in this research work specifically focus on the factory automation domain, the presented approaches are applicable to all domains involving semantic web services. Semantic Web Service descriptions facilitate the automated discovery and composition of web services. Particularly in the production system domain, the service condition and effect descriptions are essential in selecting the appropriate service or service composition for a given task. OWL-S is one of the most popular semantic web service description languages, and due to its XML syntax, OWL-S can be effortlessly incorporated into service WSDL descriptions. However, developing OWL-S documents for each service instance is laborious. This dissertation presents an approach to automatically generating executable OWL-S descriptions from semantically annotated service WSDL files. Computing clouds facilitate rapid and effortless resource allocation. Cloud consumers can generally be ignorant of the physical computing resources used or their geographical location, as the resources are abstracted into a commodity that can be dynamically leased from the cloud provider. In particular, Infrastructure-as-a-Service clouds allow clients to dynamically lease virtual machines that behave similarly to physical servers. However, executing an application by directly using computing cloud resources is complicated and typically involves similar steps as installing and executing an application on a physical machine. Moreover, starting numerous application instances on a single virtual machine may result in poor performance. Thus, this dissertation considers the development of a web service that facilitates the use of cloud resources by abstracting them. When the web service is used, an application can be effortlessly started in a computing cloud by invoking simple web service operations. Furthermore, when multiple applications are started, the workload can be automatically distributed between several virtual machines, resulting in higher performance. To conclude, the results presented in this research work demonstrate that semantic web service descriptions can indeed facilitate automatic web service composition and invocation. However, the effort of developing semantic web service descriptions can partly undermine the benefits achieved through their application. Therefore, new tools and methods should be developed to minimize the effort of developing such descriptions
    corecore