2,203 research outputs found

    AN OVERVIEW OF GEOINFORMATICS STATE-OF-THE-ART TECHNIQUES FOR LANDSLIDE MONITORING AND MAPPING

    Get PDF
    Abstract. Natural hazards such as landslides, whether they are driven by meteorologic or seismic processes, are constantly shaping Earth's surface. In large percentage of the slope failures, they are also causing huge human and economic losses. As the problem is complex in its nature, proper mitigation and prevention strategies are not straightforward to implement. One important step in the correct direction is the integration of different fields; as such, in this work, we are providing a general overview of approaches and techniques which are adopted and integrated for landslide monitoring and mapping, as both activities are important in the risk prevention strategies. Detailed landslide inventory is important for providing the correct information of the phenomena suitable for further modelling, analysing and implementing suitable mitigation measures. On the other hand, timely monitoring of active landslides could provide priceless insights which can be sufficient for reducing damages. Therefore, in this work popular methods are discussed that use remotely-sensed datasets with a particular focus on the implementation of machine learning into landslide detection, susceptibility modelling and its implementation in early-warning systems. Moreover, it is reviewed how Citizen Science is adopted by scholars for providing valuable landslide-specific information, as well as couple of well-known platforms for Volunteered Geographic Information which have the potential to contribute and be used also in the landslide studies. In addition to proving an overview of the most popular techniques, this paper aims to highlight the importance of implementing interdisciplinary approaches

    Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya

    Get PDF
    This paper presents a remote sensing-based method to efficiently generate multi-temporal landslide inventories and identify recurrent and persistent landslides. We used free data from Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 to 2021. The model successfully delineated >265,000 landslides, accurately identifying 83 % of manually mapped landslide areas and 94 % of reported landslide events in the region. Surprisingly, only 14 % of landslide areas each year were first occurrences, 55–83 % of landslide areas were persistent and 3–24 % had reactivated. On average, a landslide-affected pixel persisted for 4.7 years before recovery, a duration shorter than findings from small-scale studies following a major earthquake event. Among the recovered areas, 50 % of them experienced recurrent landslides after an average of five years. In fact, 22 % of landslide areas in the Himalaya experienced at least three episodes of landslides within 30 years. Disparities in landslide persistence across the Himalaya were pronounced, with an average recovery time of 6 years for Western India and Nepal, compared to 3 years for Bhutan and Eastern India. Slope and elevation emerged as significant controls of persistent and recurrent landslides. Road construction, afforestation policies, and seismic and monsoon activities were related to changes in landslide patterns in the Himalaya

    Rapid Mapping of Landslides in the Western Ghats (India) Triggered by 2018 Extreme Monsoon Rainfall Using a Deep Learning Approach

    Get PDF
    Rainfall-induced landslide inventories can be compiled using remote sensing and topographical data, gathered using either traditional or semi-automatic supervised methods. In this study, we used the PlanetScope imagery and deep learning convolution neural networks (CNNs) to map the 2018 rainfall-induced landslides in the Kodagu district of Karnataka state in theWestern Ghats of India.We used a fourfold cross-validation (CV) to select the training and testing data to remove any random results of the model. Topographic slope data was used as auxiliary information to increase the performance of the model. The resulting landslide inventory map, created using the slope data with the spectral information, reduces the false positives, which helps to distinguish the landslide areas from other similar features such as barren lands and riverbeds. However, while including the slope data did not increase the true positives, the overall accuracy was higher compared to using only spectral information to train the model. The mean accuracies of correctly classified landslide values were 65.5% when using only optical data, which increased to 78% with the use of slope data. The methodology presented in this research can be applied in other landslide-prone regions, and the results can be used to support hazard mitigation in landslide-prone regions

    Landslide mapping from multi-sensor data through improved change detection-based Markov random field

    Get PDF
    Abstract Accurate landslide inventory mapping is essential for quantitative hazard and risk assessment. Although multi-temporal change detection techniques have contributed greatly to landslide inventory preparation, it is still challenging to generate quality change detection images (CDIs) for accurate landslide mapping. The recently proposed change detection-based Markov random field (CDMRF) provides an effective approach for rapid mapping of landslides with minimum user interventions. However, when CDI is generated by change vector analysis (CVA) alone, the CDMRF method may suffer from noise especially when the pre- and post-event remote sensing images are acquired under different atmospheric, illumination, and phenological conditions. This paper improved such CDMRF approach by integrating normalized difference vegetation index (NDVI), principal component analysis (PCA), and independent component analysis (ICA) generated CDIs with MRF for landslide inventory mapping from multi-sensor data. To justify the effectiveness and applicability, the improved methods were applied to map rainfall-, typhoon-, and earthquake-triggered landslides from the pre- and post-event satellite images acquired by very high resolution QuickBird, high resolution FORMOSAT-2, and moderate resolution Sentinel-2. Moreover, they were tested on pre-event Landsat-8 and post-event Sentinel-2 datasets, indicating that they are operational for landslide inventory mapping from combined multi-temporal and multi-sensor data. The results demonstrate that the improved δNDVI-, PCA-, and ICA-based approaches perform much better than CVA-based CDMRF in terms of completeness, correctness, Kappa coefficient, and F-measures. To the best of our knowledge, it is the first time that NDVI, PCA, and ICA are integrated with MRF for landslide inventory mapping from multi-sensor data. It is anticipated that this research can be a starting point for developing new change detection techniques that can readily generate quality CDI and for applying advanced machine learning algorithms (e.g., deep learning) to automatic detection of natural hazards from multi-sensor time series data

    Automating global landslide detection with heterogeneous ensemble deep-learning classification

    Full text link
    With changing climatic conditions, we are already seeing an increase in extreme weather events and their secondary consequences, including landslides. Landslides threaten infrastructure, including roads, railways, buildings, and human life. Hazard-based spatial planning and early warning systems are cost-effective strategies to reduce the risk to society from landslides. However, these both rely on data from previous landslide events, which is often scarce. Many deep learning (DL) models have recently been applied for landside mapping using medium- to high-resolution satellite images as input. However, they often suffer from sensitivity problems, overfitting, and low mapping accuracy. This study addresses some of these limitations by using a diverse global landslide dataset, using different segmentation models, such as Unet, Linknet, PSP-Net, PAN, and DeepLab and based on their performances, building an ensemble model. The ensemble model achieved the highest F1-score (0.69) when combining both Sentinel-1 and Sentinel-2 bands, with the highest average improvement of 6.87 % when the ensemble size was 20. On the other hand, Sentinel-2 bands only performed very well, with an F1 score of 0.61 when the ensemble size is 20 with an improvement of 14.59 % when the ensemble size is 20. This result shows considerable potential in building a robust and reliable monitoring system based on changes in vegetation index dNDVI only.Comment: Author 1 and Author 2 contributed equally to this wor

    Automated Mapping of Ms 7.0 Jiuzhaigou Earthquake (China) Post-Disaster Landslides Based on High-Resolution UAV Imagery

    Get PDF
    The Ms 7.0 Jiuzhaigou earthquake that occurred on 8 August 2017 triggered hundreds of landslides in the Jiuzhaigou valley scenic and historic-interest area in Sichuan, China, causing heavy casualties and serious property losses. Quick and accurate mapping of post-disaster landslide distribution is of paramount importance for earthquake emergency rescue and the analysis of post-seismic landslides distribution characteristics. The automatic identification of landslides is mostly based on medium- and low-resolution satellite-borne optical remote-sensing imageries, and the high-accuracy interpretation of earthquake-triggered landslides still relies on time-consuming manual interpretation. This paper describes a methodology based on the use of 1 m high-resolution unmanned aerial vehicle (UAV) imagery acquired after the earthquake, and proposes a support vector machine (SVM) classification method combining the roads and villages mask from pre-seismic remote sensing imagery to accurately and automatically map the landslide inventory. Compared with the results of manual visual interpretation, the automatic recognition accuracy could reach 99.89%, and the Kappa coefficient was higher than 0.9, suggesting that the proposed method and 1 m high-resolution UAV imagery greatly improved the mapping accuracy of the landslide area. We also analyzed the spatial-distribution characteristics of earthquake-triggered landslides with the influenced factors of altitude, slope gradient, slope aspect, and the nearest faults, which provided important support for the further study of post-disaster landslide distribution characteristics, susceptibility prediction, and risk assessment.This work was funded by the National Key Research and Development Program of China (Project No. 2018YFC1505202), the National Natural Science Foundation of China (41941019), the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012), the project on identification and monitoring of potential geological hazards with remote sensing in Sichuan Province (510201202076888) and the Everest Scientific Project at Chengdu University of Technology (2020ZF114103)

    Landslide detection by deep learning of non-nadiral and crowdsourced optical images

    Get PDF
    The recent development of mobile surveying platforms and crowdsourced geoinformation has produced a huge amount of non-validated data that are now available for research and application. In the field of risk analysis, with particular reference to landslide hazard, images generated by autonomous platforms (such as UAVs, ground-based acquisition systems, satellite sensors) and pictures obtained from web data mining are easily gathered and contribute to the fast surge in the amount of non-organized information that may engulf data storage facilities. Therefore, the high potential impact of such methods is severely reduced by the need of a massive amount of human intelligence tasks (HITs), which is necessary to filter and classify the data, whatever the final purpose. In this work, we present a new set of convolutional neural networks (CNNs) specifically designed for the automated recognition of landslides and mass movements in non-standard pictures that can be used in automated image classification, in supporting UAV autonomous guidance and in the filtering of data-mined information. Computer vision can be of great help in fostering the autonomous capability of intelligent systems to complement, or completely substitute, HITs. Image and object recognition are at the forefront of this research field. The deep learning procedure has been accomplished by applying transfer learning to some of the top-performer CNNs available in the literature. Results show that the deep learning machines, calibrated on a relevant dataset of validated images of landforms, may supply reliable predictions with computational time and resource requirements compatible with most of the UAV platforms and web data mining applications in landslide hazard studies. Average accuracy achieved by the proposed methods ranges between 87 and 90% and is consistently higher than that obtained by general-purpose state-of-the-art image recognition convolutional neural networks. The method can be applied to early warning, vulnerability assessment, residual risk estimation, model parameterisation and landslide mapping. Specific advantages will be the reduction of the present limitations in the intelligent guidance of landslide mapping drones, the classification of fake news, the validation of post-disaster information and the correct interpretation of an impending change in the environment
    • …
    corecore