78,937 research outputs found

    Small-World File-Sharing Communities

    Full text link
    Web caches, content distribution networks, peer-to-peer file sharing networks, distributed file systems, and data grids all have in common that they involve a community of users who generate requests for shared data. In each case, overall system performance can be improved significantly if we can first identify and then exploit interesting structure within a community's access patterns. To this end, we propose a novel perspective on file sharing based on the study of the relationships that form among users based on the files in which they are interested. We propose a new structure that captures common user interests in data--the data-sharing graph-- and justify its utility with studies on three data-distribution systems: a high-energy physics collaboration, the Web, and the Kazaa peer-to-peer network. We find small-world patterns in the data-sharing graphs of all three communities. We analyze these graphs and propose some probable causes for these emergent small-world patterns. The significance of small-world patterns is twofold: it provides a rigorous support to intuition and, perhaps most importantly, it suggests ways to design mechanisms that exploit these naturally emerging patterns

    Network Sampling: From Static to Streaming Graphs

    Full text link
    Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms

    User centred evaluation of a recommendation based image browsing system

    Get PDF
    In this paper, we introduce a novel approach to recommend images by mining user interactions based on implicit feedback of user browsing. The underlying hypothesis is that the interaction implicitly indicates the interests of the users for meeting practical image retrieval tasks. The algorithm mines interaction data and also low-level content of the clicked images to choose diverse images by clustering heterogeneous features. A user-centred, task-oriented, comparative evaluation was undertaken to verify the validity of our approach where two versions of systems { one set up to enable diverse image recommendation { the other allowing browsing only { were compared. Use was made of the two systems by users in simulated work task situations and quantitative and qualitative data collected as indicators of recommendation results and the levels of user's satisfaction. The responses from the users indicate that they nd the more diverse recommendation highly useful

    Network-Level Performance Evaluation of a Two-Relay Cooperative Random Access Wireless System

    Full text link
    In wireless networks relay nodes can be used to assist the users' transmissions to reach their destination. Work on relay cooperation, from a physical layer perspective, has up to now yielded well-known results. This paper takes a different stance focusing on network-level cooperation. Extending previous results for a single relay, we investigate here the benefits from the deployment of a second one. We assume that the two relays do not generate packets of their own and the system employs random access to the medium; we further consider slotted time and that the users have saturated queues. We obtain analytical expressions for the arrival and service rates of the queues of the two relays and the stability conditions. We investigate a model of the system, in which the users are divided into clusters, each being served by one relay, and show its advantages in terms of aggregate and throughput per user. We quantify the above, analytically for the case of the collision channel and through simulations for the case of Multi-Packet Reception (MPR), and we provide insight on when the deployment of a second relay in the system can yield significant advantages.Comment: Submitted for journal publicatio

    Extraction and Analysis of Facebook Friendship Relations

    Get PDF
    Online Social Networks (OSNs) are a unique Web and social phenomenon, affecting tastes and behaviors of their users and helping them to maintain/create friendships. It is interesting to analyze the growth and evolution of Online Social Networks both from the point of view of marketing and other of new services and from a scientific viewpoint, since their structure and evolution may share similarities with real-life social networks. In social sciences, several techniques for analyzing (online) social networks have been developed, to evaluate quantitative properties (e.g., defining metrics and measures of structural characteristics of the networks) or qualitative aspects (e.g., studying the attachment model for the network evolution, the binary trust relationships, and the link prediction problem).\ud However, OSN analysis poses novel challenges both to Computer and Social scientists. We present our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations, is restricted; thus, we acquired the necessary information directly from the front-end of the Web site, in order to reconstruct a sub-graph representing anonymous interconnections among a significant subset of users. We describe our ad-hoc, privacy-compliant crawler for Facebook data extraction. To minimize bias, we adopt two different graph mining techniques: breadth-first search (BFS) and rejection sampling. To analyze the structural properties of samples consisting of millions of nodes, we developed a specific tool for analyzing quantitative and qualitative properties of social networks, adopting and improving existing Social Network Analysis (SNA) techniques and algorithms

    FECES STANDARD MONEY: BEYOND TRANSACTIONS

    Get PDF
    Department of Urban and Environmental Engineering (Convergence of Science and Arts)Feces Standard Money (fSM), is a complementary currency that is different from other currencies in a number of ways. It is the first currency to adopt feces as its standard. In a world where objects and people are thought of as "goods and services," reality is compressed into conceptions of "use value" or "utility???. However, in the fSM system, feces and food waste that have traditionally and culturally been classified as ???human waste??? are used to produce biogas, creating value. Feces then becomes a representation of a new conception of value - one based on abundance instead of scarcity. This study aims to explore how the use of fSM can facilitate a redefinition of sustainable wealth. It begins by exploring neoclassical and modern theories of money and their relationship to the current state of money. It argues that economics??? failure to adequately account for the role of money as a basis of social relations contributes to the current unsustainable economic system. Building on the background and philosophical underpinnings of fSM, it postulates that money based on a feces standard might be a possible solution to developing a monetary system that can serve as the basis of social relations and facilitation of exchange as a means of instigating social change in attitudes towards global challenges like inequality and climate change. Social network analysis is used to investigate the social footprint of fSM in a game simulation of the fSM system. It is found that the mechanisms of fSM has the potential to imbue the network with tight knit connections -knots- that can contribute to a more inclusive monetary system.clos

    A comparative study of the AHP and TOPSIS methods for implementing load shedding scheme in a pulp mill system

    Get PDF
    The advancement of technology had encouraged mankind to design and create useful equipment and devices. These equipment enable users to fully utilize them in various applications. Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. Due to this, any malfunction of the equipment might cause mass losses to the company. In particular, the breakdown of the generator would cause other generators to be overloaded. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. Once the fault had been fixed, the load shedding scheme can be deactivated. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. Multi Criteria Decision Making (MCDM) can be applied in determination of the load shedding scheme in the electric power system. In this thesis two methods which are Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were introduced and applied. From this thesis, a series of analyses are conducted and the results are determined. Among these two methods which are AHP and TOPSIS, the results shown that TOPSIS is the best Multi criteria Decision Making (MCDM) for load shedding scheme in the pulp mill system. TOPSIS is the most effective solution because of the highest percentage effectiveness of load shedding between these two methods. The results of the AHP and TOPSIS analysis to the pulp mill system are very promising

    Fast Shortest Path Distance Estimation in Large Networks

    Full text link
    We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.Yahoo! Research (internship
    corecore