8,019 research outputs found

    MYSTIC: Michigan Young STar Imager at CHARA

    Get PDF
    We present the design for MYSTIC, the Michigan Young STar Imager at CHARA. MYSTIC will be a K-band, cryogenic, 6-beam combiner for the Georgia State University CHARA telescope array. The design follows the image-plane combination scheme of the MIRC instrument where single-mode fibers bring starlight into a non-redundant fringe pattern to feed a spectrograph. Beams will be injected in polarization-maintaining fibers outside the cryogenic dewar and then be transported through a vacuum feedthrough into the ~220K cold volume where combination is achieved and the light is dispersed. We will use a C-RED One camera (First Light Imaging) based on the eAPD SAPHIRA detector to allow for near-photon-counting performance. We also intend to support a 4-telescope mode using a leftover integrated optics component designed for the VLTI-GRAVITY experiment, allowing better sensitivity for the faintest targets. Our primary science driver motivation is to image disks around young stars in order to better understand planet formation and how forming planets might influence disk structures.Comment: Presented at the 2018 SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    Simultaneous interrogation of multiple fiber bragg grating sensors using an arrayed waveguide grating filter fabricated in SOI platform

    Get PDF
    A novel fiber Bragg grating (FBG) interrogator is demonstrated based on an optimized arrayed waveguide grating (AWG) filter. The AWG response is optimized to achieve large crosstalk between the output channels, which allows simultaneous detection of multiple FBG peaks, using centroid signal processing techniques, without constraints on the minimum FBG peak spectral width. The measured interrogator resolution is 2.5 pm, and the total measurement range is 50 nm. The device is fabricated in a silicon-on-insulator platform and has a footprint of only 2.2 x 1.5 mm. A novel approach to minimize the polarization dependence of the device is proposed and experimentally demonstrated

    Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy

    Full text link
    We review the potential of Astrophotonics, a relatively young field at the interface between photonics and astronomical instrumentation, for spectro-interferometry. We review some fundamental aspects of photonic science that drove the emer- gence of astrophotonics, and highlight the achievements in observational astrophysics. We analyze the prospects for further technological development also considering the potential synergies with other fields of physics (e.g. non-linear optics in condensed matter physics). We also stress the central role of fiber optics in routing and transporting light, delivering complex filters, or interfacing instruments and telescopes, more specifically in the context of a growing usage of adaptive optics.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 21 pages, 10 Figure

    Development of ultrafast laser inscribed astrophotonic components

    Get PDF
    The rapid development of astronomical instrumentation has been aided by many innovative new photonic designs, which offer improvements in stability, precision, size and cost, scalability, etc. ─ the field of astrophotonics. A powerful technique enabling many of these astrophotonic devices, ultrafast laser inscription (ULI), creates highly localised and controlled refractive index modification, which guides the path of light in a very efficient manner. This thesis discusses three separate astrophotonic devices, each with a specific application, to demonstrate the versatility of ULI. Firstly, a reformatting device based on a photonic lantern and 3D ULI waveguide reformatting component, transforms a multimode telescope PSF to a diffraction-limited pseudo-slit. When used to feed a spectrograph, a significant reduction in modal noise ─ a limiting factor in high-resolution multimode fibre-fed spectrographs ─ is demonstrated, with the potential for improved near-infrared radial velocity observations. Secondly, a similar ULI reformatting device for an integral field unit, based on multicore fibre with affixed microlenses, may enable the direct imaging of exoplanets and characterisation of their atmospheres. Thirdly, a two-telescope K-band beam combiner based on ULI directional couplers with an achromatic 3dB splitting ratio is presented. Such a device will upgrade the stellar interferometry capabilities of the CHARA array

    Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings

    Full text link
    The first demonstration of narrowband spectral filtering of multimode light on a 3D integrated photonic chip using photonic lanterns and waveguide Bragg gratings is reported. The photonic lanterns with multi-notch waveguide Bragg gratings were fabricated using the femtosecond direct-write technique in boro-aluminosilicate glass (Corning, Eagle 2000). Transmission dips of up to 5 dB were measured in both photonic lanterns and reference single-mode waveguides with 10.4-mm-long gratings. The result demonstrates efficient and symmetrical performance of each of the gratings in the photonic lantern. Such devices will be beneficial to space-division multiplexed communication systems as well as for units for astronomical instrumentation for suppression of the atmospheric telluric emission from OH lines.Comment: 5 pages, 4 figures, accepted to Laser & Photonics Review

    The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    Full text link
    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.Comment: Accepted for publication, 20 pages, 10 figure

    SPIFI: a Direct-Detection Imaging Spectrometer for Submillimeter Wavelengths

    Get PDF
    The South Pole Imaging Fabry-Perot Interferometer (SPIFI) is the first instrument of its kind -a direct-detection imaging spectrometer for astronomy in the submillimeter band. SPIFI ’s focal plane is a square array of 25 silicon bolometers cooled to 60 mK; the spectrometer consists of two cryogenic scanning Fabry-Perot interferometers in series with a 60-mK bandpass filter. The instrument operates in the short submillimeter windows (350 and 450 μm) available from the ground, with spectral resolving power selectable between 500 and 10,000. At present, SPIFI’s sensitivity is within a factor of 1.5-3 of the photon background limit, comparable with the best heterodyne spectrometers. The instrument ’s large bandwidth and mapping capability provide substantial advantages for specific astrophysical projects, including deep extragalactic observations. We present the motivation for and design of SPIFI and its operational characteristics on the telescope

    Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition

    Full text link
    There are numerous advantages to exploiting diffraction-limited instrumentation at astronomical observatories, which include smaller footprints, less mechanical and thermal instabilities and high levels of performance. To realize such instrumentation it is imperative to convert the atmospheric seeing-limited signal that is captured by the telescope into a diffraction-limited signal. This process can be achieved photonically by using a mode reformatting device known as a photonic lantern that performs a multimode to single-mode transition. With the aim of developing an optimized integrated photonic lantern, we undertook a systematic parameter scan of devices fabricated by the femtosecond laser direct-write technique. The devices were designed for operation around 1.55 {\mu}m. The devices showed (coupling and transition) losses of less than 5% for F/# \geq 12 injection and the total device throughput (including substrate absorption) as high as 75-80%. Such devices show great promise for future use in astronomy.Comment: 12 pages, 9 figure
    corecore