15 research outputs found

    Practice and Innovations in Sustainable Transport

    Get PDF
    The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid

    Novel Approaches for State of Charge Modeling in Battery Management Systems

    Get PDF
    One of the key steps of any battery management system design is the representation of the open circuit voltage (OCV) as a function of the state of charge (SOC). The OCV-SOC relationship is very non-linear that is often represented using a polynomial that has log and inverse terms that are not defined around SOC equal to zero or one. The traditional response to this problem was only at the software level. In this thesis, I present a formal scaling approach to the OCV-SOC characterization in Li-ion batteries. I show that, through formal modeling and optimization, the traditional approach to OCV-SOC modeling can be significantly improved by selecting the proper value of ϵ\epsilon. When the proposed technique is used a decrease in the maximum SOC error of 9\% is reported. The proposed approach is tested on data collected from multiple cells over various temperatures for OCV-SOC characterization and the results are presented. State-space model (SSM) and the Kalman filter have several applications in the emerging areas of automation and data science including in battery SOC estimation. In many such applications, the application of Kalman filtering requires model identification with the help of the observed data. I present the formulas with derivations for linear state-space model parameter estimation using the expectation maximization (EM) algorithm. Particularly, I derive the formulas for different special SSM cases of practical interest, such as the continuous white noise acceleration (CWNA) model. Through simulation, I show the benefits of these derivations for the special models in comparison with the generalized approach

    Data Science-Based Full-Lifespan Management of Lithium-Ion Battery

    Get PDF
    This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers

    Data Science-Based Full-Lifespan Management of Lithium-Ion Battery

    Get PDF
    This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers

    Trajectory optimization based on recursive B-spline approximation for automated longitudinal control of a battery electric vehicle

    Get PDF
    Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nichtlinearen gewichteten Kleinste-Quadrate-Approximation einer unbeschränkten Anzahl von Datenpunkten mit einer B-Spline-Funktion. Das entwickelte Verfahren basiert auf iterativen Algorithmen zur Zustandsschätzung und sein Rechenaufwand nimmt linear mit der Anzahl der Datenpunkte zu. Das Verfahren ermöglicht eine Verschiebung des beschränkten Definitionsbereichs einer B-Spline-Funktion zur Laufzeit, sodass der aktuell betrachtete Datenpunkt ungeachtet des anfangs gewählten Definitionsbereichs bei der Approximation berücksichtigt werden kann. Zudem ermöglicht die Verschiebeoperation die Reduktion der Größen der Matrizen in den Zustandsschätzern zur Senkung des Rechenaufwands sowohl in Offline-Anwendungen, in denen alle Datenpunkte gleichzeitig zur Verarbeitung vorliegen, als auch in Online-Anwendungen, in denen in jedem Zeitschritt weitere Datenpunkte beobachtet werden. Das Trajektorienoptimierungsproblem wird so formuliert, dass das Approximationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-Funktion berechnet, die die gewünschte Geschwindigkeitstrajektorie bezüglich der Zeit repräsentiert. Der Rechenaufwand des resultierenden direkten Trajektorienoptimierungsverfahrens steigt lediglich linear mit der unbeschränkten zeitlichen Trajektorienlänge an. Die Kombination mit einem adaptiven Modell des Antriebsstrangs eines batterie-elektrischen Fahrzeugs mit festem Getriebeübersetzungsverhältnis ermöglicht die Optimierung von Geschwindigkeitstrajektorien hinsichtlich Fahrzeit, Komfort und Energieverbrauch. Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenzsystem für die automatisierte Fahrzeuglängsführung erweitert, das simulativ und in realen Erprobungsfahrten getestet wird. Simulierte Fahrten auf der gewählten Referenzstrecke benötigten bis zu 3,4 % weniger Energie mit der automatisierten Längsführung als mit einem menschlichen Fahrer bei derselben Durchschnittsgeschwindigkeit. Für denselben Energieverbrauch erzielt die automatisierte Längsführung eine 2,6 % höhere Durchschnittsgeschwindigkeit als ein menschlicher Fahrer

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore