1,730 research outputs found

    Enabling Auditing and Intrusion Detection of Proprietary Controller Area Networks

    Get PDF
    The goal of this dissertation is to provide automated methods for security researchers to overcome ‘security through obscurity’ used by manufacturers of proprietary Industrial Control Systems (ICS). `White hat\u27 security analysts waste significant time reverse engineering these systems\u27 opaque network configurations instead of performing meaningful security auditing tasks. Automating the process of documenting proprietary protocol configurations is intended to improve independent security auditing of ICS networks. The major contributions of this dissertation are a novel approach for unsupervised lexical analysis of binary network data flows and analysis of the time series data extracted as a result. We demonstrate the utility of these methods using Controller Area Network (CAN) data sampled from passenger vehicles

    Interactive visualization of event logs for cybersecurity

    Get PDF
    Hidden cyber threats revealed with new visualization software Eventpa

    FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems

    Full text link
    This paper presents the FlowTransformer framework, a novel approach for implementing transformer-based Network Intrusion Detection Systems (NIDSs). FlowTransformer leverages the strengths of transformer models in identifying the long-term behaviour and characteristics of networks, which are often overlooked by most existing NIDSs. By capturing these complex patterns in network traffic, FlowTransformer offers a flexible and efficient tool for researchers and practitioners in the cybersecurity community who are seeking to implement NIDSs using transformer-based models. FlowTransformer allows the direct substitution of various transformer components, including the input encoding, transformer, classification head, and the evaluation of these across any flow-based network dataset. To demonstrate the effectiveness and efficiency of the FlowTransformer framework, we utilise it to provide an extensive evaluation of various common transformer architectures, such as GPT 2.0 and BERT, on three commonly used public NIDS benchmark datasets. We provide results for accuracy, model size and speed. A key finding of our evaluation is that the choice of classification head has the most significant impact on the model performance. Surprisingly, Global Average Pooling, which is commonly used in text classification, performs very poorly in the context of NIDS. In addition, we show that model size can be reduced by over 50\%, and inference and training times improved, with no loss of accuracy, by making specific choices of input encoding and classification head instead of other commonly used alternatives

    LogBERT: Log Anomaly Detection via BERT

    Get PDF
    When systems break down, administrators usually check the produced logs to diagnose the failures. Nowadays, systems grow larger and more complicated. It is labor-intensive to manually detect abnormal behaviors in logs. Therefore, it is necessary to develop an automated anomaly detection on system logs. Automated anomaly detection not only identifies malicious patterns promptly but also requires no prior domain knowledge. Many existing log anomaly detection approaches apply natural language models such as Recurrent Neural Network (RNN) to log analysis since both are based on sequential data. The proposed model, LogBERT, a BERT-based neural network, can capture the contextual information in log sequences. LogBERT is trained on normal log data considering the scarcity of labeled abnormal data in reality. Intuitively, LogBERT learns normal patterns in training data and flags test data that are deviated from prediction as anomalies. We compare LogBERT with four traditional machine learning models and two deep learning models in terms of precision, recall, and F1 score on three public datasets, HDFS, BGL, and Thunderbird. Overall, LogBERT outperforms the state-of-art models for log anomaly detection

    Attention Mechanism for Adaptive Feature Modelling

    Get PDF
    This thesis presents groundbreaking contributions in machine learning by exploring and advancing attention mechanisms within deep learning frameworks. We introduce innovative models and techniques that significantly enhance feature recognition and analysis in two key application areas: computer vision recognition and time series modeling. Our primary contributions include the development of a dual attention mechanism for crowd counting and the integration of supervised and unsupervised learning techniques for semi-supervised learning. Furthermore, we propose a novel Dynamic Unary Convolution in Transformer (DUCT) model for generalized visual recognition tasks, and investigate the efficacy of attention mechanisms in human activity recognition using time series data from wearable sensors based on the semi-supervised setting. The capacity of humans to selectively focus on specific elements within complex scenes has long inspired machine learning research. Attention mechanisms, which dynamically modify weights to emphasize different input elements, are central to replicating this human perceptual ability in deep learning. These mechanisms have proven crucial in achieving significant advancements across various tasks. In this thesis, we first provide a comprehensive review of the existing literature on attention mechanisms. We then introduce a dual attention mechanism for crowd counting, which employs both second-order and first-order attention to enhance spatial information processing and feature distinction. Additionally, we explore the convergence of supervised and unsupervised learning, focusing on a novel semi-supervised method that synergizes labeled and unlabeled data through an attention-driven recurrent unit and dual loss functions. This method aims to refine crowd counting in practical transportation scenarios. Moreover, our research extends to a hybrid attention model for broader visual recognition challenges. By merging convolutional and transformer layers, this model adeptly handles multi-level features, where the DUCT modules play a pivotal role. We rigorously evaluate DUCT's performance across critical computer vision tasks. Finally, recognizing the significance of time series data in domains like health surveillance, we apply our proposed attention mechanism to human activity recognition, analyzing correlations between various daily activities to enhance the adaptability of deep learning frameworks to temporal dynamics

    An Artificial Neural Network-based Decision-Support System for Integrated Network Security

    Get PDF
    As large-scale Cyber attacks become more sophisticated, local network defenders should employ strength-in-numbers to achieve mission success. Group collaboration reduces individual efforts to analyze and assess network traffic. Network defenders must evolve from an isolated defense in sector policy and move toward a collaborative strength-in-numbers defense policy that rethinks traditional network boundaries. Such a policy incorporates a network watch ap-proach to global threat defense, where local defenders share the occurrence of local threats in real-time across network security boundaries, increases Cyber Situation Awareness (CSA) and provides localized decision-support. A single layer feed forward artificial neural network (ANN) is employed as a global threat event recommender system (GTERS) that learns expert-based threat mitigation decisions. The system combines the occurrence of local threat events into a unified global event situation, forming a global policy that allows the flexibility of various local policy interpretations of the global event. Such flexibility enables a Linux based network defender to ignore windows-specific threats while focusing on Linux threats in real-time. In this thesis, the GTERS is shown to effectively encode an arbitrary policy with 99.7% accuracy based on five threat-severity levels and achieves a generalization accuracy of 96.35% using four distinct participants and 9-fold cross-validation

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy
    corecore