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Abstract 

      As large-scale Cyber attacks become more sophisticated, local network defenders 

should employ strength-in-numbers to achieve mission success.  Group collaboration re-

duces individual efforts to analyze and assess network traffic. Network defenders must 

evolve from an isolated defense in sector policy and move toward a collaborative 

strength-in-numbers defense policy that rethinks traditional network boundaries. Such a 

policy incorporates a network watch approach to global threat defense, where local de-

fenders share the occurrence of local threats in real-time across network security bounda-

ries, increases Cyber Situation Awareness (CSA) and provides localized decision-

support.  A single layer feed forward artificial neural network (ANN) is employed as a 

global threat event recommender system (GTERS) that learns expert-based threat mitiga-

tion decisions. The system combines the occurrence of local threat events into a unified 

global event situation, forming a global policy that allows the flexibility of various local 

policy interpretations of the global event. Such flexibility enables a Linux based network 

defender to ignore windows-specific threats while focusing on Linux threats in real-time. 

In this thesis, the GTERS is shown to effectively encode an arbitrary policy with 99.7% 

accuracy based on five threat-severity levels and achieves a generalization accuracy of 

96.35% using four distinct participants and 9-fold cross-validation.  
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AN ARTIFICIAL NEURAL NETWORK-BASED DECISION-SUPPORT SYSTEM  
FOR INTEGRATED NETWORK SECURITY 

 
I.  Introduction 

 

Conventionally, isolating network security boundaries was an effective method of mini-

mizing security vulnerabilities.  Isolated defense worked well against targeted threats where the 

network security boundary was well defined.  Today however, network security boundaries in 

Cyberspace span geospatial and geopolitical boundaries, making isolated network defense 

against globally occurring threats more undefined.  To overcome this situation, this research calls 

for a strength-in-numbers approach to global threat network defense, where independent neigh-

bors participate in global threat reporting. The hope is that the aggregated events can be filtered 

based on localized policy and interests to provide localized, customizable situational awareness 

and decision-support for isolated network defenders.  Choosing the best course of action to im-

plement such a collaborative effort can often be accomplished through modeling and simulation 

of the operational environment.  The purpose of the modeling and simulation environment is to 

explore those conditions which likely provides the necessary information to support decision-

making in real-time under similar conditions. This research effort develops such a simulated en-

vironment using a single layer feed forward artificial neural network (ANN) to provide the deci-

sion-support to the isolated network defender. 

This chapter presents the background of the general problem and recent research efforts 

that are relevant to this research.  After presenting the research problem statement formally, the 

motivation for conducting the research is discussed.  The hypotheses of this research to include 

the objectives are laid out.  Finally the chapter ends with a preview of the remaining chapters of 

this research.   
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We begin with a background of the general situation and larger problem of modeling and 

simulating large-scale communication networks. There are five distinct local area networks that 

are separated by a firewall in the large-scale network (Figure 1) that represents a subset of the 

larger Cyberspace (i.e. The Internet).  Each LAN’s local firewall provides specific filtering ser-

vices for the LAN.  Often times the configurations vary drastically, but as interests of the LANs 

become more similar, the configurations may also become more similar. The goal of the firewall, 

as a sensor, is to prevent unauthorized or undesirable traffic from entering the LAN security 

boundary.  Sensors can take on several names in networking, to include access control lists, in-

trusion detection systems, intrusion prevention systems as examples. These sensors enhance the 

decision-maker’s ability to monitor detect and respond to network security violations and threats.  

Appropriate responses enable the network security defender to win in Cyberspace.  In static envi-

ronments, where the threat is well defined, the strategic employment of sensors provides reliable 

decision-support.  However, as the level of global threat sophistication increase, old rules may no 

longer apply for appropriate decision-making, and thus the strategy to win must be altered in a 

contested and dynamic operational environment of globally occurring threats.  

The production of a plan or strategy to win becomes the courses of action that an entity 

hopes to attain as their winning goal, thus war-gaming is of significant importance for decision-

makers, who desire to win. War-gaming is a conscious attempt to form a mental model of the 

area of operation’s situation (Wade Norman, 2010). Conventional war-gaming methods employ 

the belt, avenue-in-depth and the box techniques to model and simulate the operational environ-

ment (U.S. Army, 2011).  War-gaming is not strictly for the military, as business organizations 

employ terms like game-face, competitive advantage and corporate strategy.  
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Figure 1. The General Situation, Isolated Security Boundaries in Cyberspace 

 

For the business organization, war-gaming is the strategy, plans, goals and objectives that 

they hope to achieve in order to gain a competitive advantage and minimize costs against threat 

vulnerabilities or aggressive competitors.    The strategy is often rehearsed, actions and reactions 

are simulated and courses of action are further refined and developed that yield the best courses 

of action.  Each disparate LAN has an independent strategy to win according to their organiza-

tional goals and objectives.  In (Figure 1a), a web server is being protected by the LAN’s firewall 

and intrusion detection device. (Figure 1b) has a LAN that provides network security for a power 

grid, servers, telephones and laptop devices.  (Figure 1c) shows a town as the protected network 

resource, while (Figure 1d) indicates an intrusion detection management LAN.  Figure 1 depicts 

an intrusion detection device that provides service to an arbitrary resource.  
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 Each LAN has a different set of protected resources, which needs a customized strategy 

to provide security vulnerability protection against a globally occurring threat event that crosses 

network security boundaries. These seemingly dissimilar LANs may share a common need to 

actively participate in defending against such a global threat. The development of a way to col-

laborate across network security boundaries would provide a strength-in numbers approach to 

defending against global threats, where the adversary’s strategy is to win, by making organiza-

tions lose indiscriminately.  Defining a mental model, which provides simulated globally occur-

ring threat situations, may lead to a winning strategy in Cyberspace.  Mental models are tools 

that help people think about how something works. Building and maintaining effective mental 

models where complex systems are involved; require significant data filtering, are dynamic in 

nature, are adaptive in nature and are can create significant challenges to obtaining good SA 

(Endsley & Bolte, 2003). 

Modeling and simulating mental models that represent Cyberspace as an operational bat-

tlefield for good CSA, is an ongoing challenge for the Department of Defense (DoD).  The Na-

tional Cyber Range, using Strategic Initiative 2: Employ new defense operating concepts to pro-

tect DoD networks and systems, is intended to enable the military and others to address this need 

by simulating and testing new technologies and capabilities (U.S. Army, 2011).  The Army is 

developing the Modeling, Emulation, Simulation Tool for Analysis (MODESTA), which is a ho-

listic tactical modeling and simulations program that provides a large-scale systems–of-systems 

approach to modeling and simulating Cyber activities, which enhances decision-support and war-

gaming efforts in Cyberspace (Jontz, 2014).  In fact, all branches of the US military are conduct-

ing research in Cyberspace and developing new ways to operationalize the manmade domain.   
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These efforts include the development of decision-support systems (DSS) and mental models 

that enhance the decision-making process by the Air Force’s Research Laboratory (AFRL) and 

Air Force Institute of Technology (AFIT). 

AFRL has declared Cyberspace as the ultimate complex and adaptive system, and 

acknowledges that the DoD must develop and integrate real-time situational awareness mecha-

nisms to enable contextual understanding and enhance decision-making domains (Phister, 2010). 

Phister contends that the DoD will require more than just purely defensive measures to achieve 

information superiority in Cyberspace.  He calls for required information technologies in the 

Cognitive, Social, Information, and Physical Domains in Cyberspace.  This research effort hopes 

to make contributions in the cognitive, social and physical domains by developing a mental 

model of a simulated IDPS environment using an ANN-based recommender system.   

The research models the LAN’s culture to consist of the set of traffic-mix and the strate-

gy to win given the traffic mix.  The traffic mix is the traffic type (i.e. voice, video, data, Face 

book, email, secure voice, peak busy hour, bandwidth utilization etc.) that is unique to the LAN.  

No two sets separately managed LANs will have the exact same traffic mix.  The organizational 

behavior modeling and simulation capability is derived from the local policy or threat mitigation 

responses that are appropriate for the organization that is providing network security defense. 

Information exploitation and understanding is achieved by providing the capability of localized 

interpretation of globally occurring events.  These two items represent the cognitive and social 

domain elements of the research.  The ANN-based recommender system represents the robust 

physical domain to provide real-time situation awareness and decision-support. 
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Mental models of simulated complex systems like intrusion detection and protection sys-

tems (IDPS) can provide information overload, out-of-the-loop syndrome and create complexity 

creep.  As a result, full automation efforts can lead to inappropriate decision-making despite a 

change in the contextual environment (Endsley & Garland, 2000). The employment of the ANN-

based mental model provides a partially automated solution that makes the best threat mitigation 

recommendation to the local network defender, given the occurrence of a global event. 

Effective situation awareness in time sensitive environments is critical.   In his thesis, 

Raulerson argued that cyber defenders must first have SA of their respective cyber networks in 

order to defend them (Raulerson, 2013). He went on to develop a tool that aggregates data from 

heterogeneous sensors creating a real-time network model using data fusion techniques for im-

proved SA.  Raulerson used the Common Vulnerability Scoring System to provide scores to vul-

nerabilities and attacks categories in the CVE online repository to conduct his risk assessment of 

protected resources (Raulerson, 2013).  This research adapts the CVE and risk factor calculations 

methods provided by Pipken (2002).  Finally, Raulerson’s approach of aggregating from dissimi-

lar sensors provided a SA picture using a centralized virtual machine to manage the network and 

demonstrated that data fusion using multiple disparate networks was beneficial.  

This research differs from Raulerson’s research effort in three primary ways.  First, the 

ANN is employed as the communications infrastructure and the associated link weights are ad-

justed during training.  As a result there is no need to maintain a central repository of threats.  In 

Raulerson’s the sensor’s ability to identify malicious traffic directly from five different sensor 

devices and assesses the amount of information that an administrator utilizes as a measure of da-

ta reduction. 
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 In this work, the second primary difference, the performance of the sensor devices are not con-

sidered in the evaluation of the SUT, instead the ability to recommend the protective posture lev-

el that matches expert human opinion is assessed.   

Data reduction processing is not necessary for the network defender in real-time since the 

network’s physical structure contains the weights that specify the level of information contribu-

tion from data resources (i.e. participant reports) this is significantly different from Raulerson’s 

work because it directly introduces the human-element into the overall threat mitigation and 

avoidance control loop.  By doing this, the SUT can interpret multiple sensor inputs and provide 

a locally defined threat-severity level that maps to a desired protective posture level to mitigate 

or avoid threats.   

Each locally defined threat-severity level can then be mapped to a localized protective 

posture level.  In the event that the pattern is detected in real-time, the ANN provides the protec-

tive posture level recommendation specified in the Decision-support profile. The decision-

support profile is determined off-line and learned by the ANN during training. Finally, the third 

distinction from Raulerson’s work, the resulting recommendation is customized for each inde-

pendent participant based on their desired response given the global event detected using the 

ANN-based model. This capability provides a predictive decision-support capability for threat 

mitigation and avoidance.  Because the ANN learns the expert’s desired-response, the local net-

work defender does not have to process the details of the recommendation in real-time event de-

tection. In Raulerson’s work, there is no method to provide customized real-time decision-

support without the administrator’s assessment afterwards. 
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In research by Lyons (2014), a predictive recommender system that provides the Cyber 

defender a list of recommended defense actions based on information gained from nearest neigh-

bor similarity assessments.  Prior to this, little research had been conducted to develop a pure 

recommender system for cyber defense (Lyons, 2014).  Although the research did not provide 

significant insight into comparable predictors, additional effort in this area may yield benefits.  

From such inspiration, this research integrates IDPS agents from separate large-scale dis-

similar networking environments using a single feed forward artificial neural network to generate 

security posture recommendations.  Such recommendations are based on an aggregated global 

policy that provides localized recommendations for decision-support, which is different than pre-

senting the network defender with a list of options as the decision-support mechanism.  Further-

more, this method does not store reports in a central repository, instead the ANN structure pro-

vides a link-weighted structure that aggregates the contribution level of reports from several 

IDPS sensors and learns the appropriate response.  

An ANN’s structure is a subset of complex adaptive system (CAS). The definition for a 

CAS in this research is: A complex system containing adaptive agents, networked so that the en-

vironment of each adaptive agent includes other agents in the system (Holland & Miller, 1991). 

The IDPS agents utilize three simple rules of monitoring their operational environment for un-

wanted traffic, detecting the status of unwanted traffic behavior and reporting the status of criti-

cal SA element cues to decision-makers. Because the global Internet or Cyberspace in this con-

text is comprised, of dissimilar and independent local area networks (LANs) they are represented 

as IDPS agents who provide IDPS services in the intrusion detection and prevention process 

(IDP).  The emergent behavior of their independent threat reporting is learned by the ANN and 

recommends a threat mitigation protective posture level (PPL) to local decision-makers. 
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This thesis abstracts the IDP as a working model to investigate a specific case of how 

critical cue elements influence the war fighter’s SA and decision-making in collaborative envi-

ronments.  For example, the research shows that when sharing threat information, a decision-

maker is presented with a clearer picture of globally occurring threats not only for their local en-

vironment, but also for threats occurring at participating neighbor networks.  As a result, this ad-

ditional threat awareness provided by neighbors may provide actionable information to local-

decision-makers if the neighbor reports are interpreted as something meaningful to the local area. 

Neighbor reports enable local decision-makers to make informed decisions on how to mitigate 

and avoid threats against their local network boundary, thus the reports provide local decision-

support.  Collaborative teams working toward a common goal of threat mitigation, has strength-

in-numbers for network defense by sharing neighbor reports.  By incorporating collaborative 

threat mitigation across security boundaries, interested business organizations and the DoD may 

benefit from collaborative neighbor reporting in Cyberspace.   

The experimental results of the DSS show a 99.7% recommendation accuracy when 

trained exhaustively over small situation sets and a generalization accuracy of  96.35% (i.e. 9-

fold cross-validation) when recommending protective postures for previously unseen threats. The 

research shows how an individual’s independent report of locally occurring threats contributes to 

a global threat operational picture and thus an increased situational awareness for the isolated 

network security boundary defender in Cyberspace.   

Having provided an overview of the general problem, the research problem is presented 

in the next section. The aim of the problem statement is to focus on the Cyberspace security pro-

fessional’s task of defending their network security boundary in a large-scale intrusion detection 

and prevention environment. 
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1.1 Problem Statement 

How can disparate expert security professionals share information across virtual network 

security boundaries while providing localized decision-support to novice defenders?  The prob-

lem should be addressed because the research effort enables novice local network defenders to 

make more appropriate and informed threat mitigation decisions.  Often times, cultural or local 

policy prevent the sharing of threat information, leaving an isolated network defender vulnerable 

despite the existence of a true global threat that crosses network security boundaries in Cyber-

space. If reports of the occurrence of threats are received in a timely manner to novice defenders, 

situation awareness may provide actionable decision-support in the defense of protected re-

sources. The desire to assist the isolated defender leads to the motivation of this research. 

1.2 Motivation  

The motivation of this work is to assist the novice local network defender who has the 

complex task of network security and defense.  Such novice defenders tend to rely solely on their 

intrusion detection and prevention systems to assist their decision-making, best practices and 

their own local policy guidance to achieve their organizational goals and objectives and less on 

higher levels of situational awareness.  

How will our defenders act in isolation when unaware of globally trending threats which 

their networks are vulnerable? Physical isolation is a conventional method of minimizing vulner-

abilities in a world where security boundaries are more defined (Ware, 1970).  In Cyberspace, 

these previously defined physical network security boundaries become only virtual or semantic 

for a global adversary.  The thought that isolation of a network provides the best defense strategy 

in the face of a globally occurring threat is just as conventional and outdated.  
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 An isolated or unaware network defender is placed at a disadvantage against globally occurring 

threats.  Employing group participation (i.e. strength-in-numbers) provides a method to minimize 

risk against globally occurring threats that cross network security boundaries.  Such a method 

provides a greater benefit to defend against blind spots for network security. Previous leakage 

(Ware, 1970) of security vulnerabilities becomes a blind spot in Cyberspace in some situations 

like the mega breeches mentioned in a recent report, where personally identifiable information 

was compromised from public information systems (Symantec, 2014). This research effort hopes 

to contribute to the cause of providing collaborative network defense strength-in-numbers for 

those network defenders that desire to minimize risk against global adversaries that disregard 

conventional network security boundaries. 

As other nations develop controls within Cyberspace as weapons, so too must the United 

States, which remains vulnerable by the very manipulation of information that could put the na-

tion at a significant disadvantage and cripple our protected resources such as industrial control 

systems.  By studying the nature of CAS, trust convergence, and the emergent behavior of glob-

ally occurring threats in intrusion detection and prevention networks, this research adapts the 

concepts found in conventional neighborhood watch programs.  Artificial Neural Networks 

(ANNs) concepts are employed to offer a neighborhood watch like protocol for global threat mit-

igation and avoidance.  The resulting emergent behavior of real-time threat event collaboration 

between groups of participating neighbors may provide actionable recommendations and deci-

sion-support for local decision-makers. 

 



 12 

1.3 Hypothesis 

Effective Cyber SA can be achieved by employing an artificial neural network as a global 

threat event recommender system (GTERS) in intrusion detection and prevention environments. 

ANNs can encode expert security professional’s decision-support profiles for network intrusion 

detection and prevention networks to enable report collaboration across network security bound-

aries and make best-fit protective posture level recommendations in uncertain situations.  The 

ability to collaborate across network boundaries provides a strength-in-numbers approach to de-

fense that provides decision-support to novice defenders based on expert knowledge.    

The research aims to demonstrate a DSS capable of encoding expert user’s decisions 

about what threat protection posture level is most appropriate given a particular set of threat in-

dicators.  Such a system is intended to serve as a recommender system in the absence of an ex-

pert security professional.  

To accomplish this, a single-layer feed-forward artificial neural network (ANN) custom-

ized with the back-propagation gradient descent algorithm to map the status of multiple local 

threat event detections as reported by IDPSs.  The aggregated IDPS event reports are then used 

as stimulus to the ANN while the ANN response is used to recommend a best-fit protective pos-

ture level that matches the local-decision maker’s desired response.  The simulations environ-

ment provides a mental model to facilitate the development of the decision-support concept.  The 

focus of this research is on the capability of the ANN to provide security posture level recom-

mendations based on external network threats. The IDPSs are considered as being interconnected 

across a simulated secure communications infrastructure on a separate management network. 

Participants in the collaborative network are considered fully trusted.  
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The results of adjusting the learning rate of the ANN with 0.005, 0.3, 0.7 and 1.0 values 

show that the ANN can accurately recommend the learned protective posture levels of expert de-

cision-makers 90% of the time using a noisy decision-support profile and 9-fold cross-validation. 

Without cross-validation or noise the ANN has a recommendation accuracy of 99.7% for the 

baseline profile. When tested using four independent decision-support profiles in collaboration, 

the ANN’s average generalization accuracy improves to 96.35% without noisy decision-support 

profiles and 9-fold cross-validation.  The research shows significant accuracy for group collabo-

ration using ANNs. 

Having the capability to enable the novice network defender’s decision-making using ex-

pert decision-support profiles is a significant step towards global-threat defense in collaborative 

network security environments.  The ANN’s ability to encode independent threat reports into an 

aggregate global event provides the isolated defender with customized situation awareness about 

local threats of interest.  Employing the generalization capability of the of the ANN structure to 

provide localized decision-support is different from any of the previous research efforts. The data 

implies that as more network defenders participate, a more representative global threat picture 

begins to emerge from the localized reporting actions of dissimilar defenders.   

The ANN provides a robust and meaningful way to provide situational awareness about global 

threats that are occurring locally and those that are occurring against trusted neighbors.  Such a 

capability can lead to effective strength-in-numbers, early warning capability, and reduce threat 

mitigation cost for Cyberspace security professionals. Having provided the specific research 

problem statement, hypothesis and motivation to conduct the research, the objectives are pre-

sented next.  
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1.4 Objectives 

This research has three objectives.  (1) Design, build and model a wide-area intercon-

nected network using a software simulation package that will be used as the mental model to fa-

cilitate understanding and evaluate the testing of the experimental objective. (2) Determine the 

effects of the interactions of critical element cues needed for SA and network defense in Cyber-

space. These critical element cues will be modeled in the simulation to represent the status of 

monitoring, detecting and responding to threat traffic.  And (3) to determine the effects of em-

ploying an ANN, which encodes local expert decision-support profiles and recommends the best 

protective posture level given the occurrence of a global threat event in a simulated collaborative 

event detection environment.   

The rest of this research is organized as follows; a literature review in Chapter II frames 

the situation of the intrusion detection process (IDP) that describes the behavioral interactions of 

the decision-maker and the intrusion detection and prevention system (IDPS) as the DSS.  The 

system under test (SUT), research methodology, experimental hypothesis and the approach to 

achieve the experimental goals are found in Chapter III.   

The experimental design was performed using a pilot study, single noisy decision-support 

profile scenario and a group collaboration scenario. The scenario results are then presented in 

chapter IV. The conclusions, contributions and future research recommendations are provided in 

Chapter V. The Appendix contains a survey to develop advanced decision-support profiles of 

Cyberspace security professionals.  
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II. Literature Review 

 

 “Behavior is a difficult subject matter, not because it is inaccessible, but because it is ex-

tremely complex. … It is changing, fluid, and evanescent, and … makes great technical demands 

upon the ingenuity and energy of the scientist” (Skinner, 2005). 

 

To understand how Cyber SA can be enhanced by a decision-support system (DSS), a 

brief introduction of situation awareness and decision-making provides the necessary back-

ground on the development of intrusion detection and security automation.  A brief historical 

overview of literature that explains the intrusion detection process (IDP), which describes a cus-

tom relationship that exists between a human and the DSS, is made.  After intrusion detection 

and prevention fundamentals and their employment strategies have been explored, a review of 

the phenomenon called emergent behavior and complex adaptive systems are discussed.  

2.1 Situation Awareness  

Situation awareness (SA) is defined as “the perception of the elements in the environment 

within a volume of time and space, the comprehension of their meaning, and the projection of 

their status in the near future” (Endsley & Garland, 2000).   Effective SA has three components.  

Perception of the elements (the basic cues to make a decision in a given situation or context) in 

the environment is the first component and provides Level-1 SA. Challenges for modeling and 

simulation arise when representing relevant elements that occur in an operational environment, 

as decision-support cues must be customized to support a specific, not generic, individual’s men-

tal model.  
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For the IDP, the element is the threat signature, label or perception of some unwanted or 

undesirable behavior that occurs or originates from external traffic mix sources.  The traffic mix 

is the data that the IDPS filters for a network security boundary.  The elements can change de-

pending on the time of day, the interpretations of an element’s status and meaning or several fac-

tors that may contribute to why an element is a cue.    

The second component of SA is the comprehension of the current situation and represents 

Level-2 SA.  Understanding and synthesizing the interactions of element cues are critical in 

providing decision-support that enables the successful attainment of organizational goals and ob-

jectives. Level-3 SA is the projection of future states and is the last component of SA.  After per-

ceiving the status of the elements (Level-1), synthesizing now they interact in a particular con-

text (Level-2) the user is now able to predict the status of the elements in the near future 

(Endsley & Bolte, 2003).  Projection can thus be formalized as understanding what the current 

situation means to you in the future.  At the lowest level (i.e. survival) projection is the recogni-

tion of danger in a given situation.  Such projections then shape decision-making.   

As Cyberspace security professionals perform the IDP to protect their network bounda-

ries, they employ DSSs to assist and shape their decision-making.  In isolated network defense 

environments, the network defender’s local DSS can only provide shaping support for locally 

occurring threats.  The decision-maker must find alternative decision-support avenues to gain a 

global situational awareness (i.e. contact higher authorities to determine if some unknown traffic 

is malicious or not).  By enabling collaboration of threat reports, perhaps the time to provide 

meaningful decision support could have been achieved near real time.  
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 A meaningful DSS enables the mental model of the decision-maker and allows for higher levels 

of SA to be achieved (Endsley & Garland, 2000).  The role of mental models is to compliment 

DSSs and is invaluable to achieving good SA (Endsley & Garland, 2000). 

As previously mentioned a mental model is a method that people use to better understand 

something and are key enablers of comprehension and projection. Endsley and Garland (2000) 

assert that mental models are systematic in nature and contain both a semantic knowledge and 

system knowledge of how something works.  Semantic knowledge is the logical meaning or in-

terpretation of something, where system knowledge knows about the more tangible components 

of how and what something is. In physical environments, systems knowledge is more concrete, 

while semantic knowledge can vary significantly (e.g. language).  

 In addition, experience plays a significant role in SA when using mature and experienced 

mental models.  Experience with mental models can create a level of positive automaticity, 

which can appear as automatic behavior responses (Endsley & Garland, 2000).  Positive automa-

ticity is learned or reinforcement from previous instances (i.e. experiences) of making appropri-

ate decisions in similar situations for the decision-maker.  As the decision is made more often 

without negative consequences, the decision-maker is relieved of dedicating significant amounts 

of thought before making the decision.  As a result, experienced decision-makers may appear to 

be in an automatic state when making decisions because of the positively reinforced decisions, 

which Endsley and Garland (2000) call automatic behavior.  

When mental models provide positive results, SA can benefit because it frees up mental 

effort and allows higher levels of achievement for more challenging tasks. (Endsley & Bolte, 

2003).   
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Caution should be used when developing modeling and simulation tools that provide a stale or 

old status of elements in dynamic operational environments, where behaviors evolve over time 

and the status of a particular element’s meaning has changed with relation to the perceived or 

actual impact on achieving organizational goals and objectives.  Making automatic decision us-

ing inappropriate element status perception can be detrimental. Mental models can incorporate 

validity, similar to playing poker, or risk assessments before automatically deciding to act on 

sensitive or priority tasks.  In time-sensitive environments, the automated approach might be the 

best choice in uncertain situations when using an errant mental model.   

The ANN’s ability to provide an approximated best-fit protective posture level based on 

the mental model of an expert security professional will be assessed to determine how well the 

ANN’s recommendation accuracy is when faced with unseen data.  This measure of performance 

provides the generalization accuracy of the ANN recommender system.  High generalization ac-

curacy further enables the decision-maker to make appropriate decisions and accomplish their 

organizational goals and objectives, thus providing enhanced SA. 

Endsley and Garland (2000) introduce a concept called goal-directed task analysis 

(GDTA), which is a design approach that focuses on the basic goals of the operator, major deci-

sions needed to accomplish the goals and the SA requirements for each decision.  Another ap-

proach is to use the Delphi study method (Turof, 1975), or the Army’s Critical Task and Site 

Analysis Board process (Army, 2004).  Both processes conduct an analysis of a job or skill set 

population and each have several phases that include interviewing human subjects, assessing the 

current skills, abilities, and required knowledge to be successful decision-makers.  
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These design methods can enhance mental model and simulation capability by obtain validation 

of the basic goals, decision of monitoring, detection and responding to intrusions and the percep-

tion and comprehension elements. This work presents a survey based on the SA model intro-

duced by Endsley and Garland (2000) that is designed to develop an expert mental model that 

can be used to train an automated system for security professionals.  In particular, the system 

presented here specifically address intrusion detection and prevention related jobs.  Such surveys 

can take up to a year or more to obtain validated data.  The proposed survey for this research has 

been included in Appendix A. 

As expert DSPs are developed, in theory, the ANN can learn and recommend more com-

plex protective posture recommendations to novice Cyberspace security professionals. In this 

way, team collaboration supported by ANN structures is warranted for future research.  

2.2 Team Situation Awareness Considerations  

Endsley and Garland (2000) define team SA as “the degree to which every team member 

possesses the SA required for his or her responsibilities”. Interestingly, team SA is different from 

SA in that it is the degree to which all members have the same SA on the same requirements.   

Shared SA requirements should include shared SA devices, mechanisms, requirements 

and processes for those teams.  These requirements can be determined using survey techniques 

like the Delphi Method, the CTSSB, or the GDTA job analysis surveys.  These methods focus on 

the overlap of shared requirements.  The realization here is that such concepts for SA are directly 

applicable to the defense of network security boundaries. 

 



 20 

2.3 Historical Overview of Automation for the Intrusion Detection Process 

Intrusion detection is the process of monitoring the events occurring in a computer sys-

tem or network and analyzing them for signs of possible incidents, which are violations or immi-

nent threats of violation of computer security policies, acceptable use policies, or standard secu-

rity practices (Scarfone & Mell, 2007). An intrusion detection system (IDS) is software that au-

tomates the intrusion detection process.  

An intrusion prevention system (IPS) is software that has all the capabilities of an intru-

sion detection system and can attempt to stop possible incidents. Both devices are used inter-

changeably and will be referred to as Intrusion detection and prevention systems (IDPS). 

Hart (2005) provided a history of intrusion detection systems, in which he identified three 

factors that contributed to the need for intrusion detection.  The first is increased acquisition and 

usage of resource-sharing systems in the DoD.  A growing need to employ resource-sharing sys-

tems within an open computing environment while maintaining security was the second factor. 

Resource-sharing systems are those that distribute the resources of a computer system, allowing 

geographically separated people the capability to work on the system concurrently (Ware, 1970). 

Ware (1970) further asserts that security boundaries vulnerabilities are leakage points that come 

in five groups: physical surroundings, hardware, software, communications links, and organiza-

tional (i.e. personnel and procedures).  Employing a combination of protection features can safe-

guard the leakage points.   

Interestingly, Ware (1970) called for an immediate modification to policy to allow mili-

tary centers and contractors to acquire and operate such systems.  This call led to the develop-

ment of security audits on these geographically separated resource-sharing systems and the third 

factor in the development of intrusion detection.   
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The third factor that led to the creation of intrusion detection, Unmanageable volume of audit 

data being produced, contributes to the motivations of conducting this research effort (Hart, 

2005).  Intrusion detection emerged as a discipline from computer security where the focus is on 

resource –sharing systems. 

A standard vocabulary for discussing intrusion detection was provided by (Anderson, 

1980), which and outlined the fundamental problem of conducting a security audit trail.  Ander-

son argued the following: that independent audit trails from multiple systems are more difficult 

for security analysts in networked environments to analyze in real time.   

Instead, Anderson proposed a security monitoring surveillance system that would auto-

mate the process of conducting security audits.  Furthermore, he suggests that a correlation of 

events between groups would provide additional granularity for identifying abnormal behavior. 

Providing information in real-time was an enduring challenge.  Analysis of the first intrusion de-

tection models revealed that IDPS initially fell into two distinct categories: anomaly detection 

and signature detection (Denning, 1986). 

The next milestone for IDPS occurred with the introduction of the Network System Mon-

itor (NSM), which provided the ability to monitor network traffic (Bace, 2000).  The Distributed 

Intrusion Detection System (DIDS) was the first integration of host and network-based intrusion 

detection capabilities and garnered large-scale support from the U.S. Air Force, the National Se-

curity Agency, and the U.S. Department of Energy (Hart, 2005).  The DIDS established itself as 

the first integrated tool for collecting and correlating evidentiary data related to computer misuse, 

which is a key feature of today’s forensics tools to support computer crime investigations.    
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This section provided the historical creation of the intrusion detection system that formed 

the anomaly detection and the signature based detection initial categories. The next section de-

scribes two additional IDSP categories, the fundamental functionality of IDPS, their types and 

typical operational employment. 

2.3.1 Intrusion Detection and Prevention Fundamentals 

A network security boundary experiences the arrival and departure of networking traffic 

in ways that match the organizational culture, design, communications needs and network ser-

vices.  Collectively, the characteristic of the network traffic that enters and departs a network se-

curity boundary is considered its traffic mix (e.g. a voice network may have a high traffic volume 

of voice data using UDP, but only has low TCP traffic for file transfers.  

The ability to monitor a given traffic mixture within a specific computing area, detect 

suspicious, malicious or unwanted traffic signal activity, and report to those detected signals are 

inherent to all software or hardware based intrusion detection devices.  Devices with additional 

proactive response abilities are called IPS, because they actively provide prevention and protec-

tion for selected critical-resources.  This research combines such capabilities in a simulated envi-

ronment to show how collaboration among distinct networks enhances the protection of critical-

resources.  The process of intrusion detection requires an evolving role-sharing partnership be-

tween a Cyber security professional’s decision-making ability coupled with an IDPS ability to 

filter and classify traffic mix, detect undesirable traffic, and report intrusive (i.e. malicious) ac-

tivity.  Given the volume and rate of data entering such a network, the Cyber security profession-

al’s ability to make informed decisions on how to best protect network resources depends heavily 

on their ability to configure and interpret reports from the IDPS.   
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Such responses then can be translated into configurations for the IDPS. The goal is to allow the 

IDPS to handle threats based on the configurations rules so that the security professional can 

then make informed, appropriate and timely decisions.  

Knowledge of network behavior and situational awareness are critical skills of a Cyber 

security professional.  The Cyber security professional, in fact, it is the IDPS’s ability to provide 

information summarization that creates enhanced situational awareness. This interdependency 

works well for Cyber security professional's that have a mature understanding of their managed 

networking environment and a deep understanding of the IDPS configuration rule-sets.   

This relationship between the security professional and the IDPS is critical in that a weak 

point will increase the workload of the security professional.  In this way, the security profes-

sional increases the workload of the Cyber security professional. In this regard, the Cyber securi-

ty professional is performing the monitoring, detecting, and reporting of the network conditions 

rather than allowing the IDPS to be automated extension of their capabilities.  

This conventional relationship creates two bottlenecks. One exists with the automation of 

the device itself.  Although the device is capable of precisely processing and detecting signals 

near network speeds with an average delay of 1 microsecond, its accuracy becomes inappropriate 

in dynamic network environments (Carter, 2006). However, if no signature matches, then the 

nefarious traffic will go undetected by the IDPS.  

Such an inability to adapt to the varying traffic signatures degrades the effectiveness of 

the IDPS, and places a larger load on the decision-making of the Cyber security professional. 

The other bottleneck is the security professional’s lack of appropriate situational awareness, ei-

ther within their local network or with dispersed networks within the same organization.  
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 Such a lack of situational awareness leads to an incomplete understanding the operational envi-

ronment and an inability to apply appropriate configurations that support their local network.  

Together, the Cyber security professional’s decision process and the IDPS’s detection ability, 

determine the accuracy and precision of the IDP.   

The Cyber security professional is continuously monitoring their network conditions, en-

acting policy and operational changes.  Cyber security professionals are interested in defending 

their assigned critical resources within their area of responsibility and monitor the response(s) of 

their IDPS for signs of intrusions, an alerting signal indicating a need to modify or repair their 

device(s), or a need to make decisions that will mitigate, shape or prevent future intrusions with-

in their direct or supported networking environment.   

2.3.2 Current Intrusion Detection and Prevention Systems Usage 

Modern IDPS systems are primarily focused on identifying possible incidents.  In par-

ticular, their primary role is to identify reconnaissance activity that could indicate imminent at-

tack on protected internal networks (Scarfone & Mell, 2007).  Due to an increasing dependence 

on IT and potential impact of an intrusion against those systems, IDPSs have become a necessary 

addition to the security infrastructure (Scarfone & Mell, 2007).  Some critical aspects of intru-

sion detection devices include their type, functions, major capabilities, implementation strategies, 

and interconnectedness.  

Key functions of all intrusion detection and prevention devices are monitoring, detecting 

and reporting events.  Reporting and alert methods are conventionally done in the form of email, 

IDPS GUI, syslog messages, SNMP traps, custom defined scripts(Scarfone & Mell, 2007).   
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A report provides detailed information about the conditions of the network during the occurrence 

of the alerting event.  More advanced devices are capable of preventing intrusions in addition to 

simple detection capability.   

Prevention functions include automatic modification of user security profiles when a new 

threat is detected and are designed to prevent three categories of attacks (Scarfone & Mell, 

2007).  Category 1 includes stopping the attack by terminating connections or settings, blocking 

access to target devices from the offending source, and blocking all access to the target from the 

offending source.  Category 2 includes changing the security environment by modifying the con-

figurations and settings of other security controls to disrupt an attack.  Reconfiguring router ac-

cess control lists, altering host-based firewall settings, and applying patches to a host if the IPS 

detects host vulnerabilities are examples.  Category 3 changes the content of the attack payload, 

removes or replaces malicious portions of an attack’s payload to diffuse potentially destructive 

capability.  This is accomplished by file removal of suspicious emails or by packet-normalization 

where a packet is inspected, and repackaged after suspicious content has been discarded. 

Despite such abilities to prevent these three categories of attacks, malicious or uninten-

tional security violations can still occur through user evasion, dynamic malware payload, or sim-

ple modifications to existing exploitation techniques. To defend against this, a tuning process 

must be continuously conducted between the device and the Cyber security professional to 

achieve maximum performance levels.  The tuning process can be formalized for intrusion detec-

tion and prevention methods to protect against these categories of attacks. 

There are four primary detection methods used by today’s IDPS.  The first method is 

called Signature-based.  The signature-based or misuse detection method detects patterns that 

correspond to a known threat.   
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This is the simplest form of detection, but a Cyber security professional’s lack of understanding 

of misuse is confounded with multiple user application usage.  Anomaly based detection (ABD) 

is the second detection method.  This process monitors and compares observed events to normal 

baseline traffic behavior.  This is an effective technique but is resource intensive to construct a 

common operation picture that describes normal behavior of the network and individual user 

profile patterns. The third method is called State Protocol Analysis.   

The process of state protocol analysis is an advanced version of the signature-based pro-

cess where collective trusts of signature definitions based on protocol usage are shared.  Compar-

isons of these predetermined signature profiles are made against observed events to identify any 

deviations.  Trust dominates this concept because a vendor specific profile specifies how a pro-

tocol should or should not be used (Carter, 2006).  Finally, the last primary method of detection 

is the Combination.  The combination method provides a mixture of the above methods.  Using 

multiple methods of detection enables the security professional the opportunities reduces the 

overall security risk and reduce leakage that may arise from just a single method alone.  This 

method is usually more costly and complex to maintain however provides more accurate and 

broad coverage of the protected network resources.  Raulerson’s research employed multiple 

sensor types in his research, which was found to be beneficial (Raulerson, 2013). 

2.3.2.1 Intrusion Detection and Prevention System Types 

There are four types of intrusion detection devices (Scarfone & Mell, 2007).  Each type 

has a recommended monitoring scope and likely places that the device can be employed in the 

network boundary to detect transport or layer three and four protocol of the open systems inter-

connections (OSI) model.  
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The network behavior analysis (NBA) type of IDSP is typically used to detect traffic mix viola-

tions that would cause denial of service to the organization’s network services or resources. NBA 

systems are found inside network boundaries to detect insider threats, outside network bounda-

ries to detect outside threats, and between the two dispersed, yet commonly managed network 

boundaries when an organization is geographically dispersed. 

The network based (NB) IDPS is typically employed to monitor network segments and 

analyzes segments of the network for suspicious traffic at the application layer of the OSI model. 

NB IDPSs can be found placed between separately managed network security boundaries and 

close to mission critical resources.  

Wireless network behavior (WNB) IDPS are customized to detect malicious traffic like 

the NBA and NB types, however the NB has specialized ability to detect the wireless medium 

transport protocols (i.e. Wi-Fi, hotspots).  WNB can be found near an organization’s primary 

point of presence that provides wireless networking services to customers. The actual device is 

employed in a location to provide the best detection of malicious traffic to protect authorized 

wireless customers within the wireless security boundary.   

The host based (HB) IDPS is the oldest type and is typically employed to provide IDP for 

a specific network device or individual host.  These types can be found near mission critical re-

sources within network security boundaries, i.e. secure data storage areas, financial web servers, 

industrial control devices, databases that contain personally identifiable information, (Scarfone & 

Mell, 2007). 
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These IDPS types are summarized in Table 1 and can be employed to meet the needs of 

the security professional, and usually are managed using from the same network that the device 

filters traffic on. A multi-level architecture involves the management of IDPS devices that pro-

vided filtering services on more than one network interface card and in multiple IP address spac-

es.  Multi-level architectures are discussed next. 

 

Table 1.  Intrusion Detection Types, Deployment and Scope (Scarfone & Mell, 2007). 

 

2.3.2.2 Multi-Level Architecture for Intrusion Detection and Prevention 

To avoid attacks on the security system itself, the management network is hidden from 

other network traffic using a separate physical network interface (Scarfone & Mell, 2007).  In 

this way, one network interface is used in the filtering of a network’s traffic mix (inbound or 

outbound), while the other is reserved for the secure management of the IDPS system.   There 

are three benefits to having a hidden management network: 1) bandwidth assurance, 2) conceal-

ment of IDPS identity from malicious users, 3) and protection from attacks.   
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 Some disadvantages to maintaining a separate management network include additional cost to 

maintain the network, which is easily mitigated with the implementation of virtual local area 

network (VLAN).  The major components of the IDPS architecture will be discussed next. 

There are five primary components in the IDPS security architecture.  The primary IDPS 

is often called sensor components because it provides the monitoring, detection and reporting of 

configured signatures.  Sensors are used for all four types of IDSPs.  The second components are 

agents, which are typically deployed in host-based IDS employment configurations.  The man-

agement server component provides a way to centralize and correlate information from multiple 

IDSP that are dispersed through a commonly managed network security boundary.  The database 

server component of the security architecture provides a repository for event information storage 

of IDPS reports that agent components and sensors provide to the management server.  The last 

component, console, is the component that provides a visualization of the intrusion detection 

process for the security professional.  IDPS.  Table 2 provides a summary of the IDPS security 

architecture components found in the special publication of the National Institute of Standards 

and Technology 800-94. (Scarfone & Mell, 2007).  

 

Table 2. IDPS Security Architecture Components (Scarfone & Mell, 2007) 
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Having discussed IDP and IDPS fundamentals, the concept of what an agent is can now 

be introduced for this research.  The IDPS represents the decision-support agent that uses the 

three IDP rules of monitoring, detecting and reporting of malicious traffic.  The agents provide 

network boundary protection for the entire local area of interest in the modeled IDP environ-

ment.  In this way, the IDPS agent is a HB that has sensor capability for the entire LAN.  Due to 

the nature of the IDPS as an agent, we discuss the role of the agent in complex adaptive systems 

during the next section.  

2.3.2.3 Intrusion Detection Process as a Complex Adaptive System 

Holland and Miller (1991) introduced the concept of complex adaptive systems (CAS). 

This work describes a system that consists of a network of interacting agents that exhibit a dy-

namic, aggregate behavior.  The behavior emerges from the individual activities of the agents 

and as a result, its aggregate behavior can be described without a detailed knowledge of the be-

havior of the individual agents.  This ability to define an observable behavior or response without 

understanding the underlying conditions that brought about the condition is the discovery of 

emergent behavior phenomenon.  Holland and Miller (1991) also define a complex adaptive 

agent (CAA) as an agent that satisfies an additional property of possessing the capability within a 

CAS to be assigned a value and the agent behaves to increase this value over time, thus forming 

the basis of a learning system.  The definition for a CAS in this research is: A complex system 

containing adaptive agents, networked so that the environment of each adaptive agent includes 

other agents in the system (Holland & Miller, 1991).  Phister (2010) refers to Cyberspace as the 

Ultimate CAS and outlines the challenges faced by the DoD to model and simulate a Cyberspace 

battlefield for military support operations (Phister, 2010). 
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This research models a large-scale IDP simulation environment as an interconnected set 

of IDPS, acting as complex adaptive agents.  The independent actions of each IDPS agent pro-

vide threat reports that are occurring at their local network security boundary.  The ANN’s CAS 

structure is employed as the primary enabler of the aggregation of the independent agent reports. 

The result of these aggregated reports realized by the ANN structure provides protective posture 

level recommendations in real-time as decision-support for the Cyberspace network security pro-

fessional.  

Section 2.3 discussed current usage of IDPS as DSS, their functions, types, and architec-

ture and how this research simulates a networked environment using sensory IDPS as agents to 

form a CAS.  The phenomenon of emergent behavior discovery is a goal of this research and is 

introduced next. 

2.4 Introduction to Emergence 

Agents performing three simple rules create a situation where the development of a men-

tal model, which explains a larger behavior, seemingly disjointed and very complicated.  How 

can the aggregate reporting of independent agent components of network security boundaries 

somehow yield an emergent behavior that provides enhanced SA to network security profession-

al?  In his seminal work, Lewes (1875) asserts, “Every resultant is either a sum or a difference of 

the co-operant forces; … The emergent is unlike its components insofar as these are incommen-

surable, and it cannot be reduced to their sum or their difference" (Lewes, 1875). 

Since, multiple disciplines have interpreted emergent to fit their particular needs Emer-

gent behavior is most easily observed in naturally occurring systems like: riots, standing ova-

tions, birds flocking in V-formations, bees swarming to maintain an average hive temperature, 

and ant colonization (Miller & Page, 2007).   
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Such naturally occurring behaviors are biologically based and variations occur in human 

society (Easley & Kleinberg, 2010). In the field of complexity, local emergence is where collec-

tive behavior appears in a small part of a system and global emergence occurs where collective 

behavior pertains to the system as a whole (Bar-Yam, 1997).  Miller and Page 2007 argued that 

the Law of large numbers including the Central Limit Theorem can provide a theorem which ex-

plains the relatively general conditions under which certain types of emergent behavior from sto-

chastic micro level levels actions of individual agents can arise.  The Law of large numbers is 

one of several theorems expressing the idea that as the number of trials of a random process in-

creases; the difference between the expected and actual values goes to zero (Renze & Weisstein, 

2014). Thus the aim of this research is to study how the phenomenon of emergence occurs within 

a system of collaborating IDPSs that is interconnected using a single layer feed forward ANN.   

Adapting the universal nature of emergence, manmade controls to control emergence in commu-

nication networks are found in the next section. 

2.4.1 Emergence in Communications Networks 

Since all biological systems are results of evolutionary processes that show, robustness 

and adaptive powers (Floreano & Mattiusi, 2008), other disciplines develop algorithms that mim-

ic the natural evolutionary process.  Evolution in biology discipline is defined as: the change in 

genetic composition of a population over successive generations, which may be caused by natu-

ral selection, inbreeding, hybridization, or mutation, a concept introduced by Charles Darwin in 

1809 (Quammen, 2008).  Within the field of CAS, emergent behavior can occur as: open-loop 

emergent behavior or feed-back loop emergent behavior. 
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Open-loop emergent behavior is observed as a restructuring of a network from repeated 

applications of internal stimulus. A network’s behavior that is restructured by external stimulus 

defines the process of feedback-loop emergent behavior (Lewis, 2009).  In this research, local 

policies, organizational goals and objectives are the primary stimulus that contributes to open-

loop emergence if it occurs. The traffic mix and any malicious activity detected represent the 

feedback-loop emergent behavior if it exists in this research.  It is interesting to think about local 

policy as a contributing stimulus for open-loop emergent behavior and is discussed further in the 

next section. 

2.4.2 Emergence as a Result of Local Policy and Objectives 

Constraints are based on organizational goals, and are tested in this research only to ob-

serve the system for open-loop or feedback-loop emergent behavior characteristics, if it exists.   

Such constraints in learning systems may provide a good representation for local policy network 

defense.  Local policy actions typically, only have local change of a larger governing system and 

occur at the tactical or micro level.  It is interesting to see multiple individual local policies be-

having together in sufficient numbers, that their collective behavior is seen as an emergent be-

havior, specifically open-loop emergent behavior, i.e. one that did not exist before and could not 

be expressed by an individual.  

The process of developing the modeling a simulations environment enabled an intuitive 

understanding of how the application of the ANN as a CAS is able to aggregate the individual 

IDPS reports, and reveal the underlying mechanisms that generate the emergent behavior. The 

IDPS independently provide IDP services for their LAN.  These individual actions can be char-

acterized as independent variables for each LAN.  Now we can assume that the LANs are mutu-

ally independent.   
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If the two LANs share a common distribution of network threats, have similar traffic mixtures, 

and similar local policy strategies for network defense, then one can assign an arbitrary value to 

their particular approach to network defense.  The probability that the average or mean µ de-

sired-response and situation events pairs differ (i.e. independent expert DSPs) by less than some 

arbitrary value tends to approach 1 as we increase the number (i.e. IDPS agents) in the collabora-

tive system.  In such a system, a stable aggregate property (i.e. Global Policy of learned DSPs), 

emerges from combining the reporting activities of the IDPS agents.  

 As discussed in Miller and Page (2007) the restriction is that the common distribution 

has mean µ, here the IDPSs average defense strategy is similar.   This is profound for network 

defense and implies that the more similar in nature that LANs are, the more likely that their re-

sponses will be similar when faced with network threats. This research employs artificial neural 

network concepts to facilitate such network policies and to determine if this possible emergent 

behavioral response is significant. 

2.5 Artificial Neural Networks  

Artificial neural networks (ANN) are biologically inspired computational networks.  The 

hope is that such a system may enhance the IDPS and security professional’s decision-making 

cycle by acting as a DSS.    This section discusses the fundamentals of neural network engineer-

ing that began as threshold logic, fundamentals of ANNs, feed forward single layer ANN struc-

ture, the back propagation gradient descent algorithm the sigmoid activation function and k-fold 

cross-validation.  
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2.5.1 Fundamentals of Neural Network Engineering  

McCulloch (1943) established the term threshold logic that would branch into computa-

tional logic and artificial intelligence.  Rosenblatt (1953) introduced the perceptron as a pattern 

recognition system based on a two-layer learning model.  The perceptron’s inability to solve the 

exclusive or (XOR) problem limited the pattern recognition systems to only linearly separable 

types of patterns (Floreano & Mattiusi, 2008).  The implication is that the pattern could be divid-

ed into two groups, if a pattern was introduced to the system that did not distinctly fall into one 

of the groups, it could not be classified.  Solving the XOR problem with additional computation-

al units (i.e. hidden nodes) was accomplished using back propagation (Williams, Rumelhart, & 

McClelland, 1986) leading the way for additional gains in machine learning and artificial intelli-

gence.  Artificial networks are computational models of biological neural network systems in the 

form of software and hardware (Floreano & Mattiusi, 2008).  In machine learning, artificial neu-

ral networks (ANNs) have the independent goal of obtaining highly efficient learning algorithms, 

despite the emulation of biological processes.   

ANNs can provide practical methods of machine learning using algorithms such as back 

propagation and are the best among interpreting complex sensory data (Mitchell, 1997).  The 

SUT code snippet employing the back propagation algorithm adapted from Mitchell (1997) and 

Wilensky (2006) is presented next. 
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Table 3. System Under Test Employing Back propagation (Mitchell, 1997) 

Off-Line SUT Training with Back propagation Input to SUT 

1.  Initialize the network 
     a. Create the Single-Layer ANN structure of inputs and output units. 
     b. Select Threat-Severity Training Dataseti 
     c.  Select Validation method: Training Dataset or K-Fold Cross-Validation  
     d.  Set Learning Rate: 0.005, 0.3, 0.7 or 1.0 
     e.  Set number of times each example is seen per at each training period : 1    
          (Epoch) 
     f. Randomize link weights. (Usually close to the default threshold value of  
          .05 and -.05) 
     g.  Establish running time termination conditions: 10  
  2. Until the termination condition is met 
      a. For each occurrence of a value input and target concept, output pair (xi,  
            ti) in the set of all training examples. 
      b.  Forward Propagate the input value xi input values, link weight  
           compute the observed output ok 
      c. Backwards propagate the errors: 
            For each output-node k,  
                calculate 𝛿𝑘 using eq. (6). 
  3.  Update the link weights wki using eq. (3) 

    

 

2.5.2 Single Layer Feed Forward Artificial Neural Network Structure  

The basic structure of a single layer ANN has a number of input nodes. The input nodes 

provide the stimulus values that are passed forward through the network across the links which 

provide the ANN structure.  Each link may contain a weighted value to provide the overall con-

tribution of its associated input value.  The summation of the input value multiplied by the link 

weight for each input is fed forward to the output node.  The output node performs a learned tar-

get function on the stimuli and outputs a response value.  (Figure 2) shows the basic schematic 

for a feed forward neural network model. 
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Figure 2. Single Layer Artificial Neural Network adapted from (Heaton, 2012) 

 

In machine learning, these basic components are arranged as instances (input nodes), 

weight contributions (links) and learning function (output nodes).  The target function is the clas-

sified output of the packet as either green to indicate a desirable packet or red that indicates an 

undesirable packet.  On the left, a communications packet arrives as a stimulus instance or sam-

ple (Figure 3).  

The input node (sensory unit) performs a classification function on the packet. The result 

of the classification function is forwarded to the output node along with the product of its corre-

sponding link contribution.  The output node applies a policy of any constraints within the hy-

pothesis space on the contributed input.  Finally, the output node responds with a response of the 

target hypothesis.  
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For packets classified as normal, the output node may provide a positive value and a neg-

ative value for malicious or unwanted classified packets.  The nature of the output values can be 

determined by transfer functions and activation functions.  A transfer function is an intermediary 

function that is applied to the initial weighted inputs. The transfer function conditions the data 

before sending to the activation function.  The activation function choice varies based on the de-

sign objectives.  Back propagation, a key training algorithm for ANNs, is discussed next. 

2.5.3 Back propagation Gradient Descent Algorithm  

Back propagation is a training algorithm that searches through a hypothesis space using 

an error function to adjust the weights of the neural network. During training, input values are 

provided to the ANN along with the desired target function’s response. 

 

 

Figure 3. Target Learning and Stimuli Classification (Mitchell, 1997) 
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As each sample is presented to the ANN for learning, the actual response 𝑜𝑘 is compared 

to the target concept 𝑡𝑘response.  If the values do not match, then this is considering an error, E 

in the models’ ability to learn the sample.  To correct E, an error function takes the error and 

squares its value.  This is called the means squared error (MSE).  Back propagation then applies 

the error to adjust the link weight up or down in the direction that is needed to tune the link so 

that the same sample input and link value product provides a matching target and actual re-

sponse.   

As the weights are adjusted, back propagation updates the link values for the neural net-

work structure (Heaton, 2012). The SUT employs a single layer feed forward ANN using back 

propagation, gradient descent function and the sigmoid activation function for the final perfor-

mance test.  The back propagation code for this research is adapted from the NetLogo modeling 

and simulations package (Wilensky U. , 2006).  Gradient descent provides the basis for the back 

propagation function and converges to a minimum error weight vector set even if the samples are 

not linearly separable.  Linearly separable data can be divided into distinct categories (Floreano 

& Mattiusi, 2008). ANNs that use threshold units can represent a rich variety of functions that 

the single perceptron unit alone cannot.  The sigmoid activation function provides further repre-

sentation of complex functions and pattern recognition producing a continuous function of its 

input (Mitchell, 1997).  When training examples are presented to an ANN, using back propaga-

tion, gradient descent provides a way to tune the network parameters and approximate the closest 

matching set of input-output pairs.  
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The single layer feed forward ANN emergent behavior as a CAS employs back propaga-

tion and gradient descent to produce a vector of link weights that minimizes the error in the hy-

pothesis space.  The final link weights provide the ANN structure.  When combined with the del-

ta rule, gradient descent can be employed to enable stochastic approximation of nonlinear input-

output pairs (Mitchell, 1997). If the learning rate is too large, the weight vector returned may on-

ly represent a local minimum error. When an error surface contains a single global minimum, but 

multiple local minimums, stopping in local minimum error zones can be reduced by using a low-

er learning rate (Mitchell, 1997).  This learning rate parameter provides a partial method of con-

trolling the ANN final link weight structure.  After the link weights have been established to 

minimize the global error surface for the model, input values can be applied as a product of the 

link weight and transferred to an activation function, typically a sigmoid function (i.e. sigmoid).   

Each separate link and input value is forwarded through the network to represent the total stimuli 

that is presented to the activation function.  The purpose of the activation function is to map the 

contribution of all incoming stimuli to the associated target concept.  

Using gradient descent with the delta rule, weights are modified to reduce the error along 

the surface of the hypothesis space.  The delta rule assists in overcoming the difficulty to reach a 

converged set of weights that minimize the hypothesis space.  Using the delta rule along with 

gradient descent helps back propagation to minimize the hypothesis error surface and converge 

toward a best-fit approximation gradient specifies the direction that produces the steepest in-

crease in E (Mitchell, 1997). Rumelhart’s back propagation method is also known as the general-

ized delta rule, which can provide a solution for any ANN with an arbitrary number of neurons 

and connection layers (Floreano & Mattiusi, 2008).  Lightning’s back propagation code snippet 

is provided next before moving to k-fold cross validation. 
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2.5.6 K-Fold Cross-Validation  

It is desirable for a trained ANN to be able to classify data that it has never seen.  If the 

ANN is trained to achieve 100% accuracy on the training data, the model tends to suffer when 

placed in an operation or online mode.  This occurs because the weight vectors have been adjust-

ed using gradient descent to minimize the error and move toward the global minimum.  Although 

some cases may call for this type of behavior, complex adaptive system employments of sensory 

units call for the capability to generalize the training data.  A model that performs poorly when 

faced with unseen data suffers from over fitting.  Over fitting occurs when the model performs 

poorly against data that it has never seen although it performs well with the training data.   

Generalization means that the weight vector set is sufficient to adequately represent the 

training data, but it can also approximate data that it has never seen before.  Generalized behav-

ior and accuracy is highly desirable in IDPS networks.  Data Generalization and over fitting 

problems can often plague the reliability of the ANN when unseen data accuracy is sub-optimal.  

Generalization accuracy determines how well a model can accurately detect unseen samples.  

The generalization accuracy can be found by plotting the cross validation error against the train-

ing error.  Cross validation is the process of training an ANN with the unhidden training data and 

then testing how well the model performed facing a hidden dataset.   

At each interval of weight updates, the training error is validated against the hidden data.  

Since the validation contains data that the model has not seen, this is the best indicator of net-

work performance over hidden samples (Mitchell, 1997).  Running the process with multiple sets 

of link weights and selecting the best one can yield the lowest error over the validation set 

(Mitchell, 1997).  This approach provides an additional set of data or hidden data as well as the 

original training data.  When the training dataset is small, k-fold validation can be used.   
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Given a set of training situation events, randomly sort the training events.  Next, separate the 

randomly sorted training events into k disjoint sets.  each k size should be m/k, where m is the 

size of the total number of situation events in dataset D.  After the training events are separated 

in k sets, take the last set and place aside.  This set will be called the hidden fold dataset.  Now, 

combine all remaining k-1 folds and separate (k-1) – 1 fold for testing during each validation 

round.  While the folds remain untrained, partition the remaining modified folds and sort from 

lowest to highest and again, remove the last fold from the dataset.  There are only seven folds 

that are presented to the ANN, and the eighth fold (last position) is used to validate those seven 

trained folds during that epoch. At the end of the training epoch and validation, add the 8th fold 

back and shift all folds to the right so that fold eight is in position 0, fold one is in position one 

and fold seven is now the removed fold that is in position seven.  Train, rotate and validate until 

all folds have been trained and validated.  Once completed, validate the trained ANN model us-

ing the 9th hidden fold.   A summary of this process is provided in Table 4. 

This section discussed emergence and its multiple meanings for several disciplines.  It 

provided a working definition to describe emergent behavior in this research to be open loop or 

feedback-loop emergent behavior.  The chapter summary is next. 
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Table 4. K-Fold Cross-Validation with Back propagation 

K-fold Cross Validation with Back propagation: 
Begin 
1.  Take Dataset D 
2.  Randomly sort D. 
3. Partition D’ into k disjoint sets each of size m/k 
 // Hide k-1 folds as the final testing set and is never trained. 
set hidden fold (k-1) 
4. Combine all remaining k-1 folds and separate (k-1) -1 fold to leave out for test-
ing. 
While folds remain to be tested 
     Partition remaining D' into k' disjoint sets one size m/k and size (k-2)/k  
     set m/k as testing_fold 
     set (k-2)/k as training_fold 
          Back propagate       training_fold 
         Validate training_fold with testing_fold 
          //Update Errors 
          Return Folds and Rotate  
           Repeat all folds and rotation 
10. Conduct Final Validation Test with Fold k-1 hidden. 
Return Generalization Accuracy 
End 
 

2.7 Chapter Summary 

This chapter presented a historical review of the need for intrusion detection and framed 

the automation optimization problem that exists between the security professional and the intru-

sion detection device.  Having explored related works, concepts, theories and the simulation en-

vironment, Chapter III describes the methods and approach used to accomplish the research goal 

of identifying, characterizing, and describing how the emergent behavior of global threat collabo-

ration and information sharing enhances local SA for decision-makers.  
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III. Methodology 

 
"Nothing succeeds in war except in consequence of a well-prepared plan."  

-Napoleon Bonaparte 

 

This chapter provides the modeling and simulations approach used to define Lightning, 

the system under test (SUT) and conduct the performance evaluations.  The general problem is 

summarized to transition to the research problem.  Lightning is an ANN-based recommender 

system that differs from a conventional IDSP recommender system such that the ANN-based 

recommender system takes the conventional output of participating IDPS local threat event re-

ports and combines the input into a global threat event.  Based on the global event, the ANN-

based recommender system provides customized local decision-support protective posture rec-

ommendations.  Such a system is called a global threat event recommender system (GTERS) in 

this research. The left side of the conventional IDPS (Figure 4) indicates a level of pre-

processing of the KDD99 dataset that a security professional must determine before making 

IDPS configurations and employing the DSS into the operational environment. After prepro-

cessing, the IDPS can be employed in an operational environment to perform intrusion detection 

services according to the locally defined policy (i.e. configurations).  An event is the occurrence 

of a known or unknown threat signature label that enters the network security boundary. 

As local events occur the IDPS reports the status of the configured threat labels as events 

and may recommend a response to the local decision-maker or in some cases automate response 

actions.  The detected label provides the stimulus for response action for the decision-maker in 

the conventional model of IDPS employment.   
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The GTERS model (Figure 5) extends the conventional performance of the IDPS fundamentals 

in a way that incorporates multiple DSS sensor reports combined into one event situation. 

 

 

Figure 4. Conventional Threat Event Recommender System Scheme 

 

The highlighted areas (Figure 5) show the two primary differences that Lightning has 

over the conventional method.  The first highlighted difference shows r participating IDPS, 

which provide the local truth of the locally detected threat label event.  The participants’ threat 

reports and the local IDPS threat report are combined into the set of total threat indicators as the 

stimuli input.   If participants share the same threat distribution (i.e. KDD99), the locally deter-

mined threat label can be represented by the same encoding scheme.  
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If participants do not share the same threat distribution of possible threat labels, then the local 

LAN must be able to distinctly map each label report received from a participant.  As a result, 

the local decision-maker maps exactly one threat label to one of the five threat-severity levels 

(e.g. I, II, III, IV or V) during the pre-processing stage. In this way, the local decision-maker has 

a standardized rating scheme for all reported threats regardless of the originating source.  In the 

pre-process stage for the GTERS model, instead of having a single threat label status to evaluate, 

the decision-maker evaluates all of the reported threat labels events from participants and its lo-

cal IDPS as a single threat situation event.  

Depending on the event and the locally defined DSP strategy to mitigate the threat, the 

local response policy is defined as a desired protective posture level (PPL).  Each combined 

event occurrence is evaluated and a decision is made to respond with the best PPL.  The PPL is 

submitted to the ANN for off-line learning, which produces the ANN structure and global re-

sponse policy.  After training is completed, the conventional IDPS is employed within the net-

work security boundary (i.e. network edge), while the GTERS is employed within the manage-

ment network to receive the participant’s local IDPS outputs as the global event input. For each 

local participant the global input event is assessed against the ANN’s learned global response 

policy, and based on the link weight structure, the ANN makes the PPL.  
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Figure 5. ANN-Based Global Threat Event Recommender System 

 

After the DSPs are learned, which includes the process of assigning any neighbor reports 

into an associated Threat-Severity Level, the ANN can now be employed in an operational envi-

ronment.  Now, as threat events occurs from the local IDPS and neighboring IDPSs in the form 

of an aggregated global event stimulus, the learned set of local DSP policy’s desired responses 

are provided by the ANN as PPL recommendations.  Lightning (SUT) is a decision-support rec-

ommender system that provides a best-fit protective posture level (PPL) to local decision-makers 

performing duties in the network security and defense operational environment.  The workload 

for the SUT (Figure 6) is the set of local IDPS reported events that occur after off-line training of 

the DSPs have been determined during preprocessing.   The Local Decision-Support Profile 

(DSP) (Figure 7) is the first component under test (CUT) that provides input to Lightning during 

the Off-line phase.   
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The Off-line CUT is the second input for Lightning, which produces the global policy 

(Figure 8) that determines the protective posture level (PPL) recommendation. The recommend-

ed PPL, based on the detected global event threat pattern, is the final output of the GTERS. The 

system parameters and critical factors of the system appear along the top of the block diagram. 

Each Local area utilizes a primary IDPS to report and receive local events to and from the ANN.  

 

 

Figure 6. Lightning’s Operational Block-Diagram 

 

A PPL is the protective posture level that a local network boundary assumes in order to 

mitigate an actual or perceived threat event. For example, a PPL of “RED” as shown in Table 5 

has the highest cost for an imminent threat.  A PPL of “ORANGE” has a local interpretation of a 

significant threat has occurred or is highly likely to occur in the near future.  The artificial neural 

network results provide independent posterior probabilities of threats that have occurred, and do 

not predict future threats in this model instance. It is assumed in this research that participants 

will participate and share threat characteristics called metadata.  
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 This research defines metadata as the minimal amount of communicated data from a reporting 

IDSP to participating neighbors that describes the nature of the threat report. The meta-data is 

sufficient for participants to be able to interpret the threat label, not the contents of the reported 

event. 

 For example, if a hacker attempted a known signature pattern that resembles a rootkit, 

then a reporting IDPS can send a report that summarizes the time, type and location of the threat 

label, but does not transmit the offending contents of the detected pattern.  The PPL is deter-

mined by the process of conducting a local risk assessment of each threat label or indicator based 

on the impact to maintain, recover from or continue normal business operations, goals and objec-

tives despite the event.  

In this research, threats are locally defined, but represent malicious or unwanted network 

traffic. This research adopts the general definitions used in the KDD99 dataset to establish a 

normalized distribution of global threats.  For example, a smurf threat label is defined by the 

KDD99 dataset as a Denial of Service Attack, and it fall into the Threat Severity Level Category 

of Type-III attack.   The baseline profile assigns this Type-II category defined by KDD99 to be 

interpreted as a Type-III Threat-Severity Level rating for the smurf threat label.  A rootkit would 

be assigned as a local Threat-Severity Level of Type-I.  A Type-I has the priority for mitigation 

and response actions.    In this way, each participant assigns a Threat-Severity Level rating for 

each KDD99 threat label prior to submitting a DSP to the ANN for learning.   
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Table 5. Protective Posture Level Operating Cost Adapted from (Defense, 2001).  

 

 

  The KDD99 dataset is locally assessed by taking each possible threat label identified 

(Table 6) and configuring the IDPS to monitor detects and responds to the occurrence of the 

threat label when detected during normal operations. This is a critical step and should be con-

ducted by a subject matter expert capable of assessing the threat event’s perceived or actual im-

pact to the organization’s goals and objectives and protected resources. 
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Table 6. KDD99 Threat label Category Definitions (Hettich & Bay, 1999) 

 

A local area must conduct a threat assessment that best meets the objectives of their local 

goals and objectives (Pipken, 2000); The KDD99 dataset is used as a standardized threat distri-

bution of threats, which establishes a common threat pool for this research.  A Type-I event im-

poses the highest associated cost to mitigate a threat and presents the greatest adverse impact to a 

local organization.   As participants report the status of globally occurring events, Lightning first 

aggregates the reports of event and then provides a localized best-fit PPL recommendation that 

most closely matches the learned decision maker’s desired response.   

A PPL determination is made based on the local decision-making strategy of minimizing 

the cost of threat mitigation. The organizational strategy to achieve a winning end state in Cyber-

space depends largely on the interests, goals and objectives of the specified organization.   
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The organizational strategy provides the stimulus for open-loop emergent behavior, designed to 

achieve the end result of the strategy by employing methods.   

The methods (i.e. tactics, techniques and procedures) employed to achieve the organiza-

tional goals will be collectively called the local policy.  The local policy provides operational 

guidance to network security professionals as they employ tactical network security boundary 

defense operations.  Collectively, the organizational goal, objectives, and local policy are called 

the local decision-support profile (DSP).  Each DSP is locally determined during pre-processing 

for the GTERS by an expert network security professional. The SUT learns what the expert 

would do in threat situations and recommends threat mitigation and avoidance responses to nov-

ice defenders in uncertain situations. 

The remainder of this chapter has four parts.  A discussion of the general problem is re-

visited from Chapter I followed by the experimental problem.  After the problem statement has 

been provided, two research goals are presented.  The hypothesis is provided before the method-

ology.  The methodology section discusses the system boundaries, scope, limitations, services, 

workload, performance metrics, parameters, factors, evaluations techniques, experimental de-

sign, and scenario development. 

3.1 General Problem Review  

Modeling Cyberspace as a CAS is a hard problem.  Understanding the definition and con-

text of Cyberspace, for a local interpretation can often be just as difficult.  It is the local entity or 

individual’s interpretation of the conceptual meaning that matter most.  The capability to inter-

pret larger concepts into local meaning drives the ability to obtain good situational awareness.   
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When decision-makers have good SA, they tend to make better decisions.  A question of 

how two entities interpret the same global event that results in opposite decisive actions provides 

insight into how the aggregation of large data can be reduced to information of interest to a local 

entity.  Humans are typically well adapted to filtering out things of interest and providing a local-

ized interpretation of the interesting element’s meaning. 

A computer on the other hand, is well suited to find, detect and report the status of items 

of interest as defined by humans, but does not perform well with initial filtering of aggregated 

data because it contains no context cues.   This makes the task of providing DSSs more difficult 

in dynamic and evolving environments where the meaning of interesting elements changes over 

time.  DSS are well suited for problems where the environment or the element of interest 

amongst a world of noise remains relatively unchanged.  Since Cyberspace is a CAS, the evolu-

tion of the meaning of an element of interest inherently evolves with the application of the mean-

ing of Cyberspace.    

The aggregate nature of Cyberspace has various applied contextual meanings to people, 

organizations and the military.  The variations in the meaning of Cyberspace events and activi-

ties may lead to different decision-making responses when applied to obtaining goals and objec-

tives.  For example, a network that has been patched against a known smurf attack considers the 

presence of such a threat as a low threat event.  Interestingly, this same event when applied to the 

context of a network that has not been patched against the threat will view the event at a higher 

level. Additionally, a windows-based network of devices may consider Unix-based threat events 

as low, while the Unix-based systems consider the same threat event as high.  Although the de-

tected event was identical, the meaning is determined locally.   
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As time goes on, the elements meaning evolves and new emergent behaviors arise for the 

DSS and the decision-maker.  In the IDP, both the GTERS and the decision-maker must be in 

balance to monitor, detect and make appropriate responses for effective decision-making in the 

IDP.  The decision-making process is an iterative planning methodology to understand the situa-

tion and mission develop a course of action, and produces an operation plan or order (Army U. 

D., 2005).  Determining who, when, where, how, why and what to decide about a concept, or 

status of an element cue that may present opportunity to win or danger is a challenge in the deci-

sion-making process.  Decision-support systems (DSS) in complex dynamic environments are 

also hard to develop because the knowing of what the DSS is conveying about a concept or sta-

tus of an element cue to the decision-maker cognitive abilities is tough.   

When the conveyance of meaning from the DSS is accurate, the process of appropriate 

decision-making may proceed, otherwise inappropriate decision-making may occur, or in the 

worst case, the DSS is no longer considered as a credible source of information in the decision-

making process.  The longer that it takes to assess the DSS, the longer it may take to make ap-

propriate decisions.     

A call for customizable DSSs that enhance the intrusion detection and prevention process 

for the local decision-makers has existed for a long time (BUI, 1986).  A DSS differs from op-

erations research methods in their stress on the interactive usability by computer-naïve decision-

makers and in the intention of the DSS to provide support rather than fully automate the decision 

processes (BUI, 1986).  Recalling the automation and optimization concerns addressed in Chap-

ter II, there is a need to automate some data-mining and aggregation efforts, when the situation 

demands it. DSSs are often developed to facilitate well-defined sets of problems.  
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 Modeling and simulating Cyberspace, as a CAS is not a well-defined problem due to the various 

interpretations of what Cyberspace means for a local network defender with respect to their or-

ganization’s strategy to win.  

The research aggregates local threat reports occurring across IDPS network security 

boundaries and applies the local interpretations of the aggregated event’s meaning for appropri-

ate response action consideration.  The response actions, in this case are goal oriented, specifical-

ly to protect network resources from occurring attacks.  This research focuses on the nature of 

the conventional IDPS reports that a network defender would assess, and takes each potential 

occurrence of a threat event and assigns a risk factor to it.  The risk factor is calculated using a 

vulnerability rating adapted from the national vulnerability database (NIST, 2014), the Common 

Vulnerability Scoring System (CVSS) and Pipken (2000) Information Security principles.     

The goal of minimizing cost to an organization by providing early warning allows mitiga-

tion and avoidance at lower levels of resource allocation.  For example, Network A, may be im-

mune to the root-kit attack, if it, had previously applied the patch against the threat signature.  

Because Network-A did not know about their vulnerability nor were they aware of the status of 

the threat (in isolation), they did not make an appropriate decision to apply a patch that other 

networks had. If Network-A could have obtained an element of interest from neighboring net-

work sensor reports (i.e. an IDPS metadata report), then Network-A may have avoided the situa-

tion of allocating the highest levels of resources to thwart the attack.   

Any level lower that RED benefits Network-A if mitigation efforts at this level are suc-

cessful. The issue arises when the global threat does not occur locally and the local area has 

made a decision to allocate resources based on the global threat.   



 57 

In this case, over time, the ANN can mature and additional training iterations can be made to 

overcome this situation where events have changed in local meaning.  The overall goal is to 

model a simulated wide-area network employing ANN concepts to provide customized local de-

cision-support to novice network defenders in an intrusion detection and prevention collabora-

tions environment.  To see how the attainment of this overall goal may emerge; the experimental 

problem statement, two supporting goals and the experimental hypotheses are presented next.   

3.2 Problem Statement 

How can ANNs, as CAS be employed to control emergent behaviors of integrated IDPS 

networks while providing SA and recommendations for local decision-support in Cyberspace?  

To address the problem statement, two primary research goals are made for this research objec-

tive.  (1) Model and simulate a wide-area Artificial Neural Network-based Intrusion Detection 

and Prevention environment.  (2) Validate the performance of a collaborative Artificial Neural 

Network recommender system for an interconnected IDPS environment. Having defined two 

primary goals of this research, the hypothesis is presented next. 

The research hypothesis is that local decision-support can be enhanced by employing an 

artificial neural network-based event recommender system in intrusion detection and prevention 

environments. This research introduces this recommender system as a global threat event rec-

ommender system (GTERS), which aggregates the reports from disparate IDPSs and recom-

mends a threat mitigation protective posture level based on local expert interpretation of the 

global event.  
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3.3 Experimental Methodology  

A simulations approach is employed to meet the goals of this research. Lightning has two 

primary inputs as the components under test (CUT) called: Decision-Support Profiles and Off-

Line training.  Lightning’s output provides localized protective posture level (PPL) recommenda-

tions to participants.  Lightning’s generalization accuracy to classify unseen patterns is assessed 

using the k-fold cross-validation method, where fold-9 is used as the final validation test.   

The PASS/FAIL accuracy of Lightning’s recommendations are assessed using the mean 

squared error (MSE) and overall PASS rate of the system given a training dataset and a set of 

distinct DSPs. Back propagation along with gradient descent and K-fold validation are employed 

to establish the ANN structure’s link weights to assess Lightning’s performance levels.  The 

simulation environment is developed to support a wide-area networking construct that incorpo-

rates a contextual mental model, SA critical element representation, and ANN recommendation. 

The mental model provides a conceptual perspective of SA interactions between local security 

boundaries.  

A valid mental model is of high importance in modeling and simulations efforts of a 

CAS.  SA Critical factors are identified to conduct the monitoring, detection and response func-

tions of the IDP. After conducting pilot studies to ensure the simulations match expected analyti-

cal results, arbitrary decision-support profiles are developed for evaluation.  A more realistic 

DSP is then developed as the baseline expert opinion dataset. The baseline DSP is treated with 

noise, 9-fold cross-validation and multiple distinct DSPs are trained simultaneously.  The next 

section discusses the boundaries of the system. 
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3.3.1 System Boundaries  

Lightning aggregates globally occurring threat reports and provides localized decision-

support to network defenders with a recommended PPL that was determined by their expert DSP 

development. Artificial neural network (ANN) concepts are employed to enable threat collabora-

tion and assess decision-support capability across disparate network security boundaries.  

The simulation enables group collaboration and information sharing across wide-area 

network security boundaries and recommends appropriate protective posture levels for local 

threat mitigation. Lightening enables group collaboration across network security boundaries by 

encoding local threat reports and distributing events to participants in real time.  The scope, limi-

tations, and system services including the workload, metrics, parameters, factors selected, the 

performance evaluation methods, and the experimental design are presented next. 

3.3.2 Scope and Limitations 

Lightning is a proof of concept modeling and simulation effort.  The scope employs ANN 

technology across simulated wide-area networking environments.  The modeling and simulation 

approach does not evaluate the security mechanisms, nor does it attempt to define trust estab-

lishment schemes.  The modeled threat is externally originated and the management backbone is 

considered secure between networks. This research limits the scope of intrusion detection of in-

coming network traffic and that is directed to protected critical-resources.   

Finally, the risk factor and risk assessment of potential threat events have been conducted during 

the preprocessing stage for each participant during DSP development. 
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3.4 System Services  

Lightning classifies globally occurring threat event patterns and provides local decision-

support recommendations to mitigate current or perceived near-term threats. Lightning provides 

a PPL recommendation based on the perceived threat severity inputs. The DSP CUT and the Off-

Line CUT services are highlighted next.    

3.4.1 Decision Support Services  

The purpose of the DSP is to provide the ANN a target concept to learn the local DSP.  

The goal of the ANN is to classify occurring events and recommend a PPL to the local-decision 

maker that best matches their DSP strategy (Figure 7). The pseudo code for determining the DSP 

strategy is provided in Table 7. A DSP survey was prepared to collect a representative set of 

training data for this research.  The DSP survey (Appendix A) is a four part anonymous study to 

determine the effects of event collaboration on human decision-support profiles. When faced 

with two network threat scenarios, respondents are expected to recommend a protective posture 

that best protects their local-area network security boundary. During Part I (Respondent Back-

ground), the respondents are asked to provide their closest matching IA work role and are intro-

duced to the concepts and materials used during the study. 

In Part II (Isolated Threat Mitigation Model Scenario-I) the respondents are asked to re-

spond to the available threat reports while isolated from threat collaboration with other outside 

sources. The event sequence is repeated in Part III (Collaboration Threat Mitigation Model, Sce-

nario-II), however the respondents are now authorized collaboration of threat reports with credi-

ble/participating neighbors from a wider-area about the threat event’s occurrence. 
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 Finally, in Part IV (Participant Reflection) questions are asked to determine if there was a deci-

sion-support profile change.  Following the closing of the survey, respondents are asked to par-

ticipate in an after action review.  The survey is found in Appendix A. 

Each local area can have independent desired responses for each DSP strategy profile in-

put to the ANN.  Because the output nodes are independent and each participant has its own lo-

calized set of output-nodes, each DSP strategy learned by the ANN will have an independent re-

sponse output.  This is important, since the ANN structure builds a separate set of link weights 

for each participant in this research.  As the network grows, scaling concerns may arise, in this 

case, advanced group membership may provide cost saving benefits.  

 

 

Figure 7. Local Decision-Support Profile Component under Test (CUT) 
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Table 7. Determining Local Decision Support Profiles (DSP) Strategies 

 

3.4.2 Off-Line Services  

The Off-Line training CUT (Figure 8) is also a critical input to Lightning and provides 

the link weight structure of the ANN’s global policy.  By learning the set of set of link weights 

that best minimizes the error in the system off-line, Lightning is positioned to provide a best-fit 

PPL recommendation for each desired response indicated in the DSP dataset.   

 

 
Decision Support Profile Group Policy Inputs to the SUT 
Initialize Group Formation(s) 
Given: 
- ANN interconnected IDPS across a wide-area networking boundary 
- Subset of all Threats of Interest to participant pool 
- n_Credible Participants 
- Local Area network Security Boundary 
- IDPS sensors interconnected with participants 
 
// A Global event is the set of threat reports received by all participants during the  
   reporting period 
 
Develop Global Report Monitoring Policy: 
     For Each Local Participant: 
          Observe Local Policy Goals and Objective 
               For each reported (Local, Global) threat event combination  
                    Conduct Risk Assessment 
               Return Risk Factor for each Threat-Event_x  
        
               For each (Risk Factor, Threat-Event_x) pair  
                   Assign Threat Mitigation priority Severity Rating 
                   Choose one-of L Severity-ratings      
               Return Severity-Rating one-of (e.g. I, II, III, IV, V) 
 
              For Each (Severity-Rating, Threat-Event_x) pair  
                  Assign Most Likely Protective Posture Level (PPL)  
                    Mitigation Color Code Category (e.g. Red, Orange, Yellow,) 
              Return Desired Local Mitigation Response  
       Return Local Decision Support Profile (DSP) 
 
 Return Global Policy set of desired local (DSPs) 
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The output of the Off-Line CUT provides the global policy and set of link weights for the 

ANN structure.  The global policy is the aggregation of threat patterns as a detected event.   The 

ANN’s link structure detects the occurrence of a global event pattern and makes the best-fit PPL 

recommendations as events occur. 

  

 

Figure 8. Lightning’s Off-Line Training Parameters 

 

In the learning phase, the local goals, objectives and policy guidelines are observed.  In 

the Orient phase, the threat indicators where known or perceived is assessed and mitigation strat-

egies are applied.  When mitigation strategies such as patches have been applied to mitigate 

some threats, a residual risk factor is calculated.  Table 8 shows the 10% KDD99 threat probabil-

ity distribution summary.  For each threat label, the KDD99 category, count and occurrence rate 

can be found.   The 10% KDD99 dataset consisted of 494020 total events.  80.3% of the total 

events containing attack labels and only 19.69% of normal traffic.   
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The occurrence rate of each KDD99 threat label is used as the likelihood of occurrence to calcu-

late the risk factor for each threat.  The probabilities are taken for each threat and a risk assess-

ment is conducted based on the perceived impact to protected resources for each label.  The re-

sult of initial risk assessment provides a risk factor value.  

For example, if organization X was in the business of providing real-time broadcasting 

services, then a potentially high-risk threat from the KDD99 dataset might be a smurf attack.  A 

smurf attack is a denial of service attack according to the KDD99 category definitions.  If organ-

ization X conducts an inventory assessment for their IDPS devices, they may rate them on a 

scale from 0-1, with a 1 being the most valued resource to the organization’s ability to maintain 

normal operations and a 0 being the least valued resource to the organization for maintaining 

normal operations.  For this example, organization X has rated a protected resource R with a val-

ue of 0.9.  Organization X obtains information that a smurf attack has a 56.86% chance to be at-

tempted against resource R.  Using Risk Factor Calculation (Pipken, 2000), the local network 

defender for Organization X calculates the risk factor as: 

  𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟𝑡ℎ𝑟𝑒𝑎𝑡_𝑛 =  𝑣𝑎𝑙𝑢𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖 ∗ 𝑃𝑡ℎ𝑟𝑒𝑎𝑡_𝑛          (1) 

In this case, we have a calculated risk factor value of (0.9 * .5686) = 0.51174.  The over-

all risk factor for this example can now be used to recommend a proactive threat mitigation re-

sponse in light of the calculated risk factor.  The risk factor is associated with a Type-III Threat-

Severity category (Hettich & Bay, 1999).  Table 9 provides the complete risk factor mapping to 

protective posture levels.   
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Table 8. 10%KDD99 Threat Labels and Category Statistics (Hettich & Bay, 1999) 

 

 

In this research, the desired PPL would map to the local DSP. For example, if a Type-III 

threat label was not of interest to a local area, then they may recommend a PPL of ‘GREEN” or 

“NORMAL.”  If a desired PPL response of GREEN or Normal was actually indicated by a local 

decision maker for this same threat indicator of smurf, it may convey that the threat element is a 

locally determined Type-IV or Type-V priority threat-severity level.  
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The same smurf event has occurred despite the locally determined Threat-Severity Level and 

PPL mapping.  The ANN leans the desired response given the event as interpreted by the local 

decision-maker. 

 

 Table 9. Threat Risk Factor Mapping to Threat-Severity Level (Pipken, 2000) 

 

 

Ideally, the threat categories would be evaluated via a survey.  However, in this study, the 

risk assessment was conducted by the author and the risk factors were categorized by priority 

into five severity-levels adapted from the KDD99 category ratings of Type-I though Type-V. An 

additional consideration is made for designated mission critical resources.  

3.4.3 System Workload 

The DSP workload is the 10%KDD99 dataset (Hettich & Bay, 1999). The workload pro-

vides a common Threat Distribution dataset for local interpretation of participant’s local IDPS 

threat reports.  The output of the DSP CUT is a set of locally defined set of desired PPL respons-

es that would best minimize threat mitigation.  The Off-Line CUT is the set of DSPs that are pre-

sented to the ANN for learning.  The result of processing the DSPs is the global policy set of link 

weights for the network structure. 

.8 - 1 I
.6 - .8 II
.4 - .6 III
.2 - .4 IV
< .2 V

Risk Factor --> Threat Seveity 
Level Mapping
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3.5 System Performance Metrics 

System success is measured by PASS/FAIL, where a PASS occurs when the recom-

mended PPL from Lightning matched the associated desired response from the DSP.  A score of 

FAIL occurs when the responses do not match.  The Global policy output from the Off-Line 

CUT will be assessed using the cross-validation method.  The average success rate is taken for 

all participants. Success is achieving at least 80% PASS from all participants. 

3.5.1 System Parameters 

The system parameters for each block diagram can be seen at the top of the diagram.  The 

18 parameters considered for the SUT are local policy, trusted neighbor status, threat status, pro-

tected resource status, threat risk assessment, available resources, the operational environment 

and the local-decision maker’s confidence in the IDPS performance levels.  Each parameter is 

described below.  

1. Local Decision-Support Profiles: Decision-Support profiles are preprocessed during 

the training phase (Section 3.6).  Once selected, the links weights of each desired response are 

maintained throughout the experiments.  The more neighbors that report a locally defined threat 

severity match, the higher the contribution for the reported PPL recommendation. 

2. IDPS Threat reporting rates:  The rates of locally detected threats are workload inputs.  

Each Local Area has independent arrival rate distributions of normal, Poisson or exponential 

traffic patterns. 
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3.  Trusted Neighbors: If neighbors are trusted, then the threat reports that match locally 

defined threat severity are considered for the recommended PPL output.  If neighbors are not 

trusted, then the Local Area’s desired responses do not consider any neighbor participation of 

reported threats.  In that case, the PPL recommended is only the result of the individual decision-

support profile. 

4.  Seed Value: The seed is the value used by NetLogo to maintain reproducible results 

during runtime. The input-nodes represent the Level-1 and level-2 SA element cues.  There are 

20 input-nodes used throughout the performance tests.   

5.  Output-Nodes: The number output nodes represent the encoded representation of the 

recommended PPL.  In the pilot study, the choice is 1 out-put node per area and Scenario II and 

III use five out-put nodes for each area to interpret the encoded global event vector.   

6.  Activation Function: The Uni-polar Sigmoid Activation function (i.e. Logistic Func-

tion). The sigmoid activation function can be used with or without a threshold and provides a 

continuous output value between 0 and 1.  

7.  Threshold: The threshold is set at 0.5. 

8.  Local Policy: Local Policy, Tactics Techniques and Procedures:  These parameters 

were chosen because they are critical elements in decision-making to support the organizational 

goals, guidance and specified directives that local decision-makers follow.  Restrictive local pol-

icy constraints may lead to undesirable Global Policy generalizations and may provide undesira-

ble recommendations to the local decision-maker.   
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9.  Threat Status:  This factor was chosen because it reflects Level-1 SA about what the 

threat element is doing in the operational environment, which is a critical factor for IDP. The 

IDPS and ANN detect the occurrence pattern of threats to make recommendations on the status 

of reported events. 

10. Protected Inventory/Resource Status: Status of Protected Resource(s): This factor 

provides Level-I SA about where the threat event is occurring to local decision-makers.  

11. Risk Assessment: Depending on the local area’s residual risk factor, the desired re-

sponse is affected to receive a higher recommendation or increased protective posture, if a global 

threat matches the local threat severity level. 

12. Mitigation Resources Status:  Local decision-makers may consider the time it takes to 

employ quick reaction forces to implement their highest level of threat mitigation and avoidance 

resources.  Early warning Reponses can be recommended by desiring more responses for this 

particular threat despite the number of neighbors reporting.   

13. The Operational Environment:  The operational environment provides context and 

overall SA.  Local decision-makers cannot make decisions based on things that they do not 

know; perhaps interconnecting network boundaries will reduce uncertainty.   

14. IDPS performance/Confidence: Performance statistics of the reporting IDPS:  Poor 

accuracy of the reporting IDPS will lead to a lack of trust in the system, and a loss of credibility 

for all participants in the global collaboration pool.  These values are modeled, but not modified 

during this research.  

15. Run Time:  The runtime is the total amount of training periods that are used to train 

the ANN.   
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16. Examples per epoch: Each training sample is presented from the set of DSP to the 

ANN to learn how best to classify the desired response.  The ANN has a greater chance of learn-

ing the correct classification of a sample, when the sample is presented multiple times.  This de-

sirable effect has an unintended consequence of reducing the generalized accuracy, so a balance 

must be found to reduce over fitting.  A lower level can increase the generalization capability of 

the ANN and approximate the classification of unseen samples when placed in the online per-

formance mode.   Cross validation is commonly used to find this balance.  

17.  Learning Rate: The learning rate for the ANN is used to adjust the step size when 

distributing the error across the system and tune the link weights so that the desired response 

matches the actual response with an acceptable level of accuracy.  A high learning rate tends to 

allow faster runtimes due to larger increments (step size) in ink weight adjustments. A lower 

learning rate takes more time because link weights are adjusted in smaller increments.  

18. Momentum:  Momentum was not used as a parameter in this research.  It is used to 

assist gradient descent to avoid providing link weight values found for the ANN that would rep-

resent a local minimum error.   

3.5.2 System Factors 

The learning rate and samples per epoch are critical factors for the training portion.  Each 

factor has two levels, high and low. The samples per epoch factors are chosen because it repre-

sents how many times each sample is shown to the ANN during training.  The goal is to mini-

mize over fitting of the DSP training data and generalize the global policy for improved perfor-

mance when Lightning is faced with unseen data. 

 



 71 

1.  Number of Output-Nodes: 1 used in the Pilot Study 5 output-nodes used in Scenarios 

II and III.   This metric’s purpose is to represent local PPL Levels.  In the pilot study only one 

output node was employed to indicate that a Type-I threat had been detected.  Minimums of 

three output nodes are required to distinctly represent the five protective levels used in scenarios 

II and III. 

2. Synthetic Data Levels (Noise):  On or Off.  This metric was chosen to assess the per-

formance of the ANN’s accuracy when given noisy DSP and to perturb the DSP data.  

3. Cross-Validation: On or Off.  The purpose of the validation method is chosen to assess 

over fitting the training dataset and provide generalization accuracy for unseen threat events.   

4. Number of distinct expert DSPs: 1 or 4 in all scenarios. This metric provides localized 

interpretations of the globally detected threat event.  The research goal is validate the claim of 

independent DSP PPL recommendations when training the ANN with a single global policy.  

6. Learning rate: .005, .3, .7 and 1.0.  This metric is chosen to assess the effects on the 

ANN’s performance using gradient descent and various step sizes. 

5.  Runtime: 10 epoch ticks.  The low training periods are chosen to evaluate the perfor-

mance given small training periods, which is desirable for dynamic operational environments. 

6.  Examples per epoch: 1. This factor was chosen to prevent bias of the ANN’s learning 

from seeing samples multiple times in a single epoch. This metric’s purpose is to prevent bias of 

ANN’s learning from seeing samples multiple times in a single round. 

7. Number of input-nodes: 20.  This metric was chosen to support the threat Label encod-

ings to Threat-Severity Levels.  If each KDD99 threat label is to be distinctly encoded from par-

ticipants, then an encoding value of 4 would not distinctly represent 23 labels from the KDD99 

dataset.  
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 Five input-nodes per area were employed to distinctly encode the KDD99 threat dataset.  The 

label encodings are then mapped to a threat-severity level rating, followed by a PPL mapping 

according to the locally DSP. 

The DSPs are treated with noise to assess the performance of the ANN’s recommenda-

tion with noise environment in Scenario-II.  The original Lewis-DSP dataset if modified to pro-

duce synthetic noise.  The original dataset is divided into the five categories of threat severity 

ratings.  Each category is then sorted randomly.  25% of the samples from each category are se-

lected and treated.  The treatment applies a 1-bit difference in the desired response column.  For 

example, if the original desired response for sample ID 26 was encoded as [1 0 0 0 0], then this 

represented a Type-I category.  It is recoded as a Type-II threat with the encoding [0 1 0 0 0].  

After all of the sorted categories were treated, then all of the samples were then recombined into 

the modified noisy dataset. The recombined noisy dataset replaces the original baseline dataset 

DSP.  The noisy DSP is presented as input to Lightning for global policy determination.  After 

the off-line training has been performed for each desired response and combined threat situation 

event pair, Lightning is now ready for performance analysis. 

3.5.3 System Evaluation Technique 

The MSE, generalization accuracy and Pass rate are used to assess the SUT’s perfor-

mance.  The MSE error is commonly used in training single layer feed forward ANNs (Heaton, 

2012) and chosen here because we are using multiple output nodes and would like to obtain a 

total system average as well as a local average.  The Pass/Fail metric (Higher is better):  rate 

provides accuracy to recommend the correct PPL provided by the expert decision-maker.  Where 

D is the training dataset:  

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑠𝑠
𝑡𝑜𝑡𝑎𝑙𝐷

            (2)  
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Generalization accuracy (higher is better) provides a measure of the model’s accuracy of 

correcting detecting and recommending the correct PPL when faced with unseen events/data ac-

curacy.   

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙ℎ𝑖𝑑𝑑𝑒𝑛𝑓𝑜𝑙𝑑
                             (3) 

The Mean squared error metric (Lower is better) is the third measure of performance and 

provides the average error of the system.  It is calculated using (Heaton, 2012).   

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝐸𝑟𝑟𝑜𝑟 =
∑ ∑ (𝑡𝑘𝑑−𝑜𝑘𝑑)2𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑑∈𝐷

𝑘
            (4) 

The simulation provides a 3D display of four independent networks using the NetLogo 

version 5.0.4 simulation tool. Packets are arriving to each LANs IDPS for processing and threat 

label determination.  The ANN is used to interconnect the LANS using a separate interface on 

the IDPS for the Management network.  Employing the ANN as the network communications 

backbone, all IDPS reports are sent to the SUT as input for processing according to the Global 

policy.   

As each local area detects a threat, the threat type is indicated in Red.  Each IDPS sends 

an “alert” encoded metadata threat report to the ANN by flashing a light. The flashing light indi-

cates an active detected threat status during that period. At each tick step, the local IDPS inde-

pendently reports the status of a threat to the ANN, and the ANN detects the globally occurring 

event.  Based on global event, the ANN recommends the best PPL for each local area for threat 

mitigation decision-support.  At the end of the testing, the simulation model computes the overall 

pass/fail rates and the success rate of matching the desired PPL response are reported.   
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3.5.4 Decision-Support Evaluation Technique  

Each sample has a desired and actual response contained within the DSP dataset.  The 

MSE is calculated during the training phase of the ANN. Generalization accuracy is a frequently 

used method in ANNs to assess the overall capability to classify items unseen by the ANN. The 

Cross-Validation results will measure the final generalization accuracy of the model.    

3.6 Experimental Design 

The experimental partial factorial design consists of three sections, the pilot study, DSP 

in noisy environments and multiple DSP effects on the ANN performance.  All three studies use 

the developed simulations model using NetLogo for performance evaluation. 

3.6.1 Pilot Study Design (Scenario I) 

The pilot was study was used to familiarize with ANN concepts and develop the simula-

tions environment.  The study looks at a local instance of an ANN structure operating in parallel 

with a global ANN recommender policy.   

For example, in sample_5 and sample_24 (Table 10), area A desires a PPL recommenda-

tion (indicated by a value of 1 in the column AO to mitigate a Type-I threat because at least 2 of 

its local devices have reported the detection of malicious traffic.  All other areas do not desire a 

response for these possible global patterns.  The pilot study only considered one type of threat, 

Type-I. A manual validation method was used during the pilot study.  The working model can be 

found in Appendix D. The parameters used for the pilot study performance test are the same as 

described above except there is only output node for each local area.  From left to right, the ex-

ternal stimuli are shown that can arrive to the ANN structure to one or more of the input nodes.    

The local area’s target concept or desired response was leaned from arbitrary decision-support 

profiles using the m-of-n strategy.   
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Where n is the number of neighbor reports participating in the threat collaboration group, Area-A 

employed a strategy to recommended a PPL of  “On” whenever there were at least 2-of-n neigh-

bor reports of a Type-I threat.  Area-B employed a 3-of-n strategy, while Area-C had a 4-of-n 

strategy and Area-D had a 5-of-n DSP strategy. 

 

Table 10. Pilot Study-1 Initial Global Policy Dataset w/Errors 

 

 

The first column indicates the training sample_ID that was used to verify the ANN rec-

ommendations after training.  Under the column heading ‘B1’ indicates the bias input node that 

is always set to the value of 1.  After that a set of five values represents the five devices used for 

each local area’s IDP defense structure.  A value of ‘1’ indicates that the device reported a posi-

tive detected element status of a Type-I threat in the reporting period, ‘0’ otherwise.   
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The sixth value highlighted in green represents the local decision-maker’s most likely choice that 

they would respond to this situation if it occurred.  As a result of this, a value of ‘1’ indicates that 

they desire a positive PPL recommendation from the ANN, ‘0’ or no response is desired other-

wise. 

From left to right a logical representation of the simulations environment (Figure 9) de-

picts external stimuli arriving to the ANN structure to one or more of the input nodes.  As a 

stimulus arrives to each independent area the set of input nodes are aggregated to provide the ac-

tivation of the output node for each area.  Each area’s output node has a distinct and separate in-

terpretation of the input stimulus value.  In this way, each local area can interpret the stimulus as 

desired to meet their local policy goals and objectives.  As a result, a local open-loop emergent 

behavior may occur from the global stimulus feedback. Global or feedback-loop emergent be-

havior results from the aggregation of the reporting input nodes as a learned global policy. The 

ANN recommends the PPL that best fits the local area’s desired PPL response as the output.  

Each output node is a single and independent node for each area.  Only Type-I threat labels are 

considered in the pilot study (either present or not).   

Each Local area has five input nodes, with 1-primary IDPS (largest black node) at the 

network edge boundary.  The primary IDPS provides the most significant level of decision-

support to local network defender response actions. Each IDPS’s reports are inputs to the SUT. 

Each LAN interprets the threat status using an m-of-n strategy.  Area-A employs a 2-of-n Type-I 

detection DSP strategy.  A 3-of-n, 4-of-n and 5-of-n strategy is employed for Area-B, Area-C 

and Area-D respectively.  There are 32 situation events in the pilot study training dataset.   
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Given the five independent output nodes, 160 evaluations are performed on the 32 samples (5 

local output nodes * 32 situation events). We establish performance on an error dataset vs. error-

free dataset. 

 

 

 Figure 9. Pilot Study Logical View of 4-Area IDPS Integrated ANN Structure 

 

3.6.2 Scenario II Single Decision-Support Profile Design 

In scenario II, the modeling and simulations environment builds on the pilot study design.  

The arbitrary 32-sample threat distribution dataset is replaced with the 10% KDD99 dataset 

threat label distribution (Hettich & Bay, 1999).  Area-A’s DSP strategy is improved to reflect a 

realistic DSP network security strategy to include constraints.  The DSP strategy for Area-A is 

the baseline DSP.   
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The baseline is treated with a 25% noise function and a cross-validation with noise treatment.  

Local Area networks:  Areas-B, C, and D are active participants, but their DSP strategies are not 

considered in this scenario.   

The Baseline DSP employs a total of five output-nodes to interpret the PPL recommenda-

tion from the ANN at each time step (Figure 10).   The ANN receives 21 input nodes as stimulus 

for the network structure including the bias node.   Each local IDPS has five input nodes that de-

tect the KDD99 threat label, and sends the threat label to be mapped by the DSP into a locally 

defined Thereat-Severity-level. KDD99 dataset:  Each randomly receives a normal distribution 

of the 23 threat labels. All 23 labels are prioritized into five locally defined threat severity level 

categories in the following order of priority; I, II, III, IV, V.  Type-I categories have the highest 

priority for threat mitigation and avoidance actions.   This allows each sample to have exactly 

four encoded reports and each report has 5 possible encodings yielding 625 total distinct sam-

ples. Each sample has a desired response associated for each Area. The Baseline DSP has five 

output nodes.  The output nodes are designed to represent a five-digit encoded value. The desired 

response indicates the level of perceived threat severity that the reported samples pose to The 

Baseline DSP. Since each, sample is only shown to the ANN once for performance testing; only 

the perturbed data samples were added to the final data set. The DSP strategy is provided next. 

The baseline dataset consisted of 625 samples.  The validation method used the training 

data to test the performance of the SUT. The settings were consistent as described above using 

four learning rates. 
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Baseline Constraints: The Baseline DSP provides local policy induced constraints and 

does not desire a PPL recommendation of RED from the ANN unless the local IDPS has indicat-

ed a Type-I priority threat.  The strategy is as follows:  If the local IDPS reports a Type-I locally 

defined threat severity level, then the expert’s desired response = PPL RED.   Otherwise, choose 

m-of-n strategy for neighbors that report threat reports that are locally interpreted as Type-I as 

follows:  If <1/3n report Type-1, then request PPL = Green/Normal.  If Type-I reports > 1/3n < 

2/3 request PPL = Yellow.  If Type-I report >= 2/3n, request PPL = Orange. 

 

 

Figure 10. Logical ANN Scenario-II Performance ANN Structure 
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3.6.2.1 Scenario II Single Decision-Support Profile Baseline + Noise 

The Noise dataset consisted of 780 samples.  The validation method used the training da-

ta to test the performance of the SUT. The settings were consistent as described above using four 

learning rates.   

Synthetic DSP dataset:  In order to evaluate the SUT with more valid decision-support 

profile datasets, the Baseline DSP dataset was perturbed using the following method.  25% of all 

original RED responses were randomly sorted, selected and modified to an Orange PPL desired 

response.  25% of all original ORANGE responses were randomly sorted, and equally recoded as 

either RED or YELLOW categories. 25% of original Yellow desired PPL responses were ran-

domly sorted, and recoded as either Orange or Normal categories. All perturbed data samples are 

indicated with a Label_ID as well as the original sample_ID number for manual error resolution.  

3.6.2.2 Scenario II Single Decision-Support Profile Baseline+Noise+CV 

The final setting for Scenario II used cross-validation on the noisy dataset using 9-fold 

Cross validation.  A total of 105 hidden samples were presented to the ANN for performance as-

sessment.  The settings were consistent as described above using four learning rates. 

3.6.3 Scenario III Group Decision-Support Profile Design 

Building on scenario II’s performance, scenario III introduced three new DSP profiles in-

to the final ANN structure. A logical representation of the simulation environment for scenario 

III (Figure 11) adds an additional 15 output-nodes totaling 20 output nodes for the scenario.   

Three DSP strategies have been added to the ANN structure, creating four sets of inde-

pendent output node reporters for each area.  Each area used a particular DSP strategy including 

the baseline strategy above.   
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The baseline threat distribution of 625 samples is used and now includes four sets of DSP desired 

response sets that are locally determined based on the globally detected event policy.  Only one 

treatment is applied, 9-fold cross validation.  Scenario-III is described next.  

 

 

Figure 11. Logical Group Scenario-III ANN Structure 

 

Baseline: (See section 3.6.2) 

High-Roller:  The high roller DSP desires a PPL recommendation that matches the high-

est locally interpreted IDPS threat label report as follows; Set desired PPL as the HIGHEST lo-

cally interpreted Threat Severity Level.  (i.e. a report of a smurf, satan, perl and warezclient 

threats labels are detected  for the global event, then using KDD99’s category as local priorities, 

the highest is Type-I category for the perl threat, then PPL = Orange).  
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Local Only (LOCO): The LOCO DSP strategy desires a PPL response that matches the 

local IDPS for Area-C only.  In this way, Area-C is acting as a reporter of threat events, but does 

not actively participate in the Global event PPL recommendations.  The strategy goes as follows; 

Set Desired response PPL to equal local IDPS report only. 

Majority Vote:  The majority DSP uses a voting strategy approach to mitigate globally 

occurring threats.  In the event of a tie, a random tie break is used to randomly sort the tied re-

ports and then select one.  The strategy is: Set PPL = majority vote of threat labels within the 

global event policy as interpreted for the local area.  If a number of threats are equal in the 

matching number of votes, then conduct a random sort and select of one of the tying threats to 

mitigate. For example, if the following reports were provided [phf, spy, rootkit, nmap].  Follow-

ing this DSP strategy, the desired response would have a Threat-Severity Level set of [II, II, I, 

IV].  The result is a Type-II Threat Severity-Level which corresponds to PPL = Orange.  9-Fold 

cross validation was conducted using the group baseline DSP dataset.   

3.7 Methodology Summary 

In summary, Lightning simulates an integrated ANN-based large-scale network security 

boundary operational environment that encodes local decision-support profiles of multiple partic-

ipants, learns the desired response policy for each profile, aggregates the contribution of partici-

pant reports and recommends protective level responses using the learned global policy.  The 

results are provided next.   
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IV. Analysis and Results 

 

The results of the pilot study, Scenario-II and Scenario-III are presented in this chapter.  

The pilot study was used to conduct performance tests on arbitrary decision support profiles, 

while scenarios II and III built on lessons learned from each scenario.  

4.1 Pilot Study Results  

This research employed NetLogo to model and simulates a wide-area Intrusion Detection 

and Prevention networking environment using a single layer ANN as the backbone for commu-

nications.  Using the manual validation method, several initial errors in the DSP dataset design 

were found and corrected. Despite errors, the performance accuracy of desired-observed pairs 

was 96.80% (Figure 12).  Errors decreased from a high MSE of 3.34 using a 0.005 learning rate 

to a MSE of 0.52 using a learning rate of 1.0.  This common trend of the performance accuracy 

leveling off with an approximate learning rate of 0.7 while the average MSE decreases with an 

increase in the learning rate step size is shown in all performance results.   

Corrections were made to the dataset errors, and the error-free dataset is shown in Table 

11. For example, the correct ANN PPL recommendations for all areas from the learned sam-

ple_7, which shows Area-A’s and Area-B’s positive desired responses, in red, were met in the 

global policy, while Area-C and Area-D’s negative PPL response desires, in green, were also 

met for Type-I notification according to the global threat event recommender system.  After cor-

recting the errors manually using the performance accuracy of the model improved to 100.00% 

(Figure 13). 
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Table 11. Corrected 32-Sample Dataset errors 

 

 

 

Figure 12. Pilot Study Results with Errors 
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Figure 13. Pilot Study Error-Free Dataset Results 

 

In summary the pilot study was used to establish the initial simulations mental model and 

operational environment in order to facilitate the performance evaluation of the SUT. The origi-

nal dataset had multiple errors, which were due to incorrectly entered data.  Prior to correcting 

the dataset the ANN recommendation accuracy was over 97.5%.  An interesting discovery was 

made when all output nodes were trained to the same profile.  The m-of-n strategy results 

demonstrate how an arbitrary DSP can be independently and simultaneously represented by a 

commonly shared global threat event recommender system, such as Lightning. Using an error-

free training dataset, the ANN achieves 100% accuracy using a learning rate of 0.3. 
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4.2 Scenario II- Analysis of the effects of Noise and Cross-Validation on Decision-Support 

Profiles 

In scenario two, DSP Profile_L1a_GO_5 was used as the PPL learning dataset combined 

with the 10% KDD99 threat label dataset. Each of the 23 threat labels defined by the KDD99 

dataset falls into five categories and do not indicate a level of residual or actual risk to a localized 

area (Hettich & Bay, 1999).  Each DSP rates the KDD99 distribution of threats according to the 

level of residual risk that remains after conducting a risk assessment as if the threat had occurred 

independently.   

The threat distribution dataset consists of four encoded sets of data, which represent the 

final threat severity rating of The Baseline’s interpretation of the 10%KDD99 report labels.  The 

KDD99 dataset consisted of 625 normally distribution samples where each sample consisted of 

four sub events and each sub event consisted of one of five Threat Severity Level ratings for a 

KDD99 threat label categories.  The samples were treated with a random 25% noise after the ini-

tial desired responses were made using the baseline DSP. (Figure 14) shows a summary of the 

baseline DSP performance results.   

The baseline performance results used the 625 KDD99-based Type-Severity Level com-

binations for four participants.  The validation test was conducted using the same training data.  

The performance accuracy is highlighted in blue and the error is indicated in green (Figure 14). 

The ANN PPL recommendations are 98%.02 accurate with a MSE of 13.82. The highest learn-

ing rate of 1.0 saw a slight decrease in accuracy for the ANN achieving a 97.02% accuracy rat-

ing, however it was higher than the lowest training rate‘s 88.20% accuracy level.  
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The ANN has a high success rate against data samples that it was trained on or previously 

seen. A low learning rate sees the highest error and achieves the lowest accuracy rating, and this 

is due to the nature of gradient descent taking smaller step sizes in an attempt to find the global 

minimum for the entire dataset.  This is contrasted with the highest learning rate, which corre-

sponds to a higher gradient descent step size.  As a result, the error increases from the previous 

learning rate of 0.7.  The optimal leaning rate for this dataset using this parameter is a learning 

rate of 0.7, which yields the highest accuracy and the lowest error.  Interestingly, the 0.7 learning 

rate would also provide the worst performance for generalization of unseen or hidden data that 

the ANN was not trained on prior to establishing the final link weight structure for the network. 

In some situations where the patterns are relatively static in nature, achieving high training vali-

dation accuracy is desirable, however in dynamic environments; the ability to approximate un-

seen patterns is desirable.   

 

Figure 14.  Baseline Decision-Support Profile (Local Policy) 
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After the initial baseline performance test was conducted, DSP was treated with a 25% 

noise.  The original dataset’s 625 samples including the desired responses were divided into their 

respective PPL categories that are RED, ORANGE, YELLOW, GREEN, and NORMAL.  After 

that, each category was randomly sorted.   

Once sorting as completed, 25% of the samples were selected for modification of up to 1-

bit difference.  For example, if a desired response was [01000], then the modified sample could 

assume a value of [10000] or [00100] with an equal chance.  In this manner, all of the noisy 

samples were then added back into the original dataset. The noisy DSP was then trained and test-

ed using the noisy training data as the validation test set.  The results of the baseline treated with 

25% noise shows 88.20% accuracy with a learning rate of 0.005 (Figure 15).  As the learning 

increases towards 1.0, the accuracy levels off at 91.81% with a learning rate of 0.3.  A slight de-

crease from 91.81% to 91.60% is noticed when the learning rate is set to 1.0 (Figure 15). The 

MSE increased from 68.55 to 108.38, a 158% increase in the MSE from the baseline without 

noise. The baseline+Noise treatment decreased in accuracy and increased the MSE for the single 

baseline DSP.  The average pass rate was 90.9% while the average MSE over the four learning 

rates was 78.8 over the previous baseline DSP MSE of 29.5. 
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Figure 15. Single Decision-Support Profile Baseline +Noise Results 

 

The purpose of the 9-fold cross-validation is to increase the generalization accuracy of 

the model.  Figure 16 shows the performance results of the additional treatment of validating the 

baseline using 9-fold cross validation.  The accuracy leveled out to 92.19% using a learning rate 

of 0.3.  The error declined in a similar fashion as the baseline performance statistics. The test 

contained 105 samples that the ANN had never seen. This means that the model has an average 

generalization accuracy of 90.14% for unseen data using the same underlying threat distribution 

(i.e. Threat-severity level interpretations of KDD99 threat labels) despite the noise within the 

DSP’s desired responses.  This implies that the ANN can overcome some errors and can provide 

PPL recommendations 92.19% of the time for situation event patterns that was not included dur-

ing off-line training. The 92% generalization accuracy of Lightning provides a method to ap-

proximate a desired response when faced with uncertain threat conditions for network defense. 
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Figure 16. Single Decision-Support Profile Baseline +Noise+ CV Results 

 

After the performance results were obtained for the baseline dataset and the two treat-

ments, a side-by-side comparison of their results were made.  All performance trends increase as 

the LR increases and the error generally decreases with the increased learning rate (Figure 17).  

The baseline has the highest accuracy of 98.02%, but may suffer against unseen events due to 

over fitting.  The cross-validation treatment of the noisy baseline dataset had a lower MSE than 

the noisy dataset treatment validation method. The CV outperformed the baseline+noise, and 

provided a slightly higher generalization accuracy of 92.19%, which protects against over fitting 

when faced with unseen events.  CV treatment significantly reduces the MSE of the base-

line+noise dataset and performs closer to the baseline values (Figure 18).  
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Figure 17. Single Decision-Support Profile Accuracy Summary Results 

 

 

Figure 18. Single Decision-Support Profile Error Summary Results 
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In summary the results scenario II used the initial DSP performance values as the scenar-

io baseline model. The affects of two progressive treatments, 25% noise and 9-fold cross-

validation was evaluated. The DSP profiles for the baseline and the CV methods show an im-

pressive PASS rate for Lightning.  Using only a single DSP we can see that the threat distribu-

tion is favored for Area-A and the system MSE is representative of Area-A’s localized interpre-

tations of the global event.  The data generally shows that as the learning rate increases, the per-

formance rate increases but begins to level off after a learning rate of 0.7.  A slight decrease on 

performance is shown when a learning rate of 1.0 is used.  

 The baseline average performance of 96.48% PASS is higher than the 90.14% cross-

validation method and the average 90.9% accuracy level of the noisy treatment.  This can be ex-

plained due to the increased errors that are associated with leaving a fold out or hidden from the 

ANN during training. Despite the generally higher MSE for the cross-validation rate, the model 

has a 92.19% generalization accuracy when recommending PPLs for events that it has never 

been trained on.   

These findings are representative of a single participant’s interpretation of a globally oc-

curring event using Threat-Severity Level interpretations of the 10% KDD99 dataset. Finally in 

this section, we focused on a single DSP’s interpretation of the threat distribution using reports 

from four neighbors.  In the next section, we assess the performance of the ANN using multiple 

independent DSP s using their local policy strategy to interpret the same 10% KDD99 threat dis-

tribution. 
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4.3 Scenario-III Multiple DSP Interactions Results and Interpretations  

In Scenario III we establish a baseline performance using the 625-sample distribution of 

the KDD99 dataset that has been interpreted into all combinations of the five Threat-Severity 

levels.  Each Local area has submitted their DSP and overall strategy for interpreting the event 

distribution the 625 samples. The scenario validates the dataset with the training set and then us-

es 9-fold cross-validation.   Each participant’s accuracy increases as the error decreases using 

increased learning rates as seen in the single DSP baseline results (Figure 19).  A special note 

highlights that the Baseline metrics are the same as the Single DSP baseline.  Notice that the in-

creases are slightly different, yet similar.  The underlying common threat distribution may ac-

count for some of this.  The other factor is the local DSP that makes a strategy based on what the 

event means to them.  The local strategy is to win, and right now, the high roller has the accura-

cy.   

The group baseline dataset achieves a modest 85.00% accuracy rate using a low learning 

rate of 0.005 (Figure 19).  The low learning rates are good to provide the lowest error surface 

reduction in the hypothesis space where the desired local response matches the ANN’s observed 

recommended PPL. However, lower learning rates takes longer to train the ANN’s structure.  As 

the learning rate increases for the system, the success rate level out at approximately 96.7%. The 

error is significantly reduced using a learning rate of 0.3 with this dataset set. There is no signifi-

cant change when adjusting the LR to 0.7.   

The same general performance is observed from a LR of 0.3.  Very little difference was 

observed between a learning rate of 0.7 and 1. A learning rate of 1.0 resulted in an overall insig-

nificant decrease in PASS success performance for the ANN from 96.89% using a LR of 0.007 

to a PASS rating of 96.62%. 
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The primary cause of the highest MSE, shown in Figure 19 are related to the DSP con-

straints and inconsistent desired PPL responses when faced with tie-breakers found in Area-D’s 

DSP Majority strategy, where interestingly, order appears to be learned by the ANN to consider 

and maintain local constraints imposed by Baseline’s DSP.  The error went down slightly from a 

system average of 15.58 to an average of 14 using a LR of 1.0. Area-C’s Local-Only DSP strate-

gy has the lowest local error because of the nature of its DSP, which is to recommend the local 

report only.  Using this strategy, Area-C is an active reporter, but only listens to local reports.  

This strategy may be beneficial in some circumstances for the areas using a similar strategy.   

The reporting nature of Area-C still provides the global event from which the global poli-

cy is derived.  The fact that Area-C is reporting emphasizes the law of large numbers that effec-

tively reduces the MSE for the ANN.  The Baseline (Area-A) has the second highest rate of error 

still due to the constraints imposed by the local DSP.  Finally, Area-D’s majority DSP strategy 

remains high in local errors, while maintaining a 94% success rate. A summary of the baseline 

performance for group DSP’s performance using the four learning rates provided in the next sec-

tion.  Area-A and Area-B benefit most from a learning rate of 0.7, while Area-C and Area-D 

show minimal increase in accuracy performance.   Participants who choose to only provide threat 

reports also provide value to the other participants enabling a more accurate picture of a global 

threat occurrence.  Area-C is a reporter only and desires a local reported PPL response only.  Ar-

ea-C’s reports contribute to the Area-C had a slightly higher performance rating of 96.00% than 

the error prone Area-D which had the lowest averaging performance rating high of 94.00%. 
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Figure 19. Group Decision-Support Profile Baseline Results 

 

Figure 24 shows Area-B’s high-roller DSP strategy has the highest PASS rate of 92.10% 

and the second lowest error of 57.7 using a low ANN learning rate of 0.005.  Area-B’s strategy 

desires the PPL recommendation to best mitigate or avoid the highest occurring global reported 

threat incident within the global event. Since this desired PPL recommendation is relatively con-

sistent despite the order of who is reporting the errors are low.  This means that the ANN is ca-

pable of determining when to consider threat order.  Interestingly, when Area-B has a tie-

breaking event, the ANN decides the tie-breaker instead of the local decision-maker as found 

with Area-D’s majority DSP strategy, which results in a lower localized error.  This implies that 

a local user should allow the ANN to choose the tie-breaking situation for majority vote strate-

gies to minimize error and increase decision-support accuracy.   

 

 



 96 

Area-D’s DSP strategy that includes a random tie-breaker, it has the highest contribution 

of system error of 84.4 as shown in Figure 25.  Contrasting Area-D’s DSP strategy with The 

Baseline’s DSP has a constraint that precludes the ANN from providing a “RED” alert unless it 

is from Area-A, the ANN considers the ordering of “who” is reporting within the training sample 

events. As a result, area A has the third highest local error among all participants.  Area-C and 

Are-D’s PASS% performance ratings are both approximately 80.20%. 

 Area-D has the highest error because its DSP strategy incurs a random tie break proce-

dure when identical locally determined threat reports meet the same locally defined threat-

severity level from the KDD99 threat distribution of report labels.  Since the tie break consists 

one of the threats, and not a standardized choice, this induces localized error which makes the 

ANN‘s local MSE for the Majority DSP strategy increase from inconsistencies of decisions on 

the same set of events when order is not considered.  It is noted that the ANN is capable of learn-

ing Area-D’s strategy type, but needs more training samples to reduce the errors associated with 

the PPL recommendations. Area-C has the lowest error due to its DSP strategy to only desire 

PPL recommendation from its local IDPS.  In the next section, we assess the generalization accu-

racy of the ANN using 9-fold cross-validation on the group-baseline, and testing with fold-9 as 

the hidden sample dataset. 
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Figure 20. Group Decision-Support Profile Baseline PPL Accuracy Results 

 

 

Figure 21. Group Decision-Support Profile Baseline Error Summary Results 
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4.4 Scenario-III Group DSP Baseline+CV Results and interpretations  

We use cross-validation as before to obtain the generalization accuracy of the model.  

Similar results for the group DSP model using cross-validation are found when using a low 

learning rate for single DSPs. The system summary results are shown in Figure 23.  The DSP 

performance accuracy is shown in Figure 24 and the Group DSP error is shown in Figure 24.  

The global average distribution of performance accuracy and error reduction performs similarity 

as the previous scenarios did.  The global summary is representative of the individual DSP parts, 

but does not completely describe any single DSP.   

The System performance rating continues to go up as the error goes down (Figure 22) as 

the performance tests progress through the learning rate levels.  The Baseline DSP and Area-B 

had the highest error in the previous LR setting of 0.3.  Using a 0.7 LR, The Baseline and Area-B 

increase their accuracy from 95.30% and 96.50% to 96.8% and 96.8% respectively.  Area-C had 

no change in the accuracy rate while Area-D improved by half a percentage point. There is no 

significant difference in the performance results between a learning rate of 0.7 and 1.0. The er-

rors went down for each area except for Area-D (Figure 24), which is explained by the tie-

breaking DSP that generates inconsistencies.  Interestingly, such inconsistencies produce similar 

behavior observed during the pilot study, where errors were found in the DSP desired responses.   
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Figure 22. Group Decision-Support Profile Baseline+CV Results 

 

 

Figure 23. Group Decision-Support Profile Baseline+CV Accuracy Results 
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Figure 24. Group Decision-Support Profile Baseline+CV Error Results 

 

4.5 Chapter Summary  

In this chapter, the results of the pilot study, scenario I, and scenario II were presented.  

The modeling and simulations environment was successfully established using NetLogo to con-

duct the performance tests for the research.  In addition, the data shows that arbitrary DSP m-of-

n strategies can be learned independently using the same dataset distribution.  The pilot study 

performance accuracy was 90.14%, with a MSE of 3.03.   

In the second scenario of testing, the dataset distribution was increased to 625 samples 

using the Threat-Severity level mapping of the 10% KDD99 threat label distribution.  The DSP 

strategy included a constraint to not recommend a PPL of RED unless the local area’s IDPS de-

tected a Type-I priority threat.  This is significant, because the ANN learned this constraint de-

spite an increase in errors with a low learning rate of 0.005.   
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With higher learning rates, the ANN achieved a 98.02% accuracy level and relatively low 

error of 13.82.  The model performed well against a 25% noise treatment, but showed a high 

1580% increase in the MSE with a low learning rate.  At higher learning rates, the noise treat-

ment achieved a 91.19% accuracy level.  Using 9-fold cross validation, the ANN’s accuracy im-

proved significantly over the noise treatment, and achieved a generalization accuracy of 92.19 

despite a 25% noise treatment using cross validation.  Additionally, employing the 9-fold cross-

validation method significantly reduced the MSE, bringing the average MSE near baseline val-

ues.   

The Group cross-validation performance results show that the individual DSP desired re-

sponses are independent of the other participant’s responses for local performance and local error 

statistics where Area-A’s baseline DSP performance metrics were statistically the same when 

comparing the single DSP results in scenario –II to the group DSP results in scenario III.  Using 

a single set of output nodes for Area-A’s DSP, we saw an average performance accuracy of 

97.00% without cross-validation and a generalization accuracy up to 92.10% using cross-

validation against a 25% noisy DSP dataset.  The Majority voter DSP experienced the highest 

local error, but the other areas were not affected. 

Finally, the data shows that lower learning rates show the lowest accuracy using the pa-

rameter settings and the highest error.  This is expected and during the pilot studies, the lower 

learning rates are commonly used for longer running times (Mitchell, 1997).  The moderate 

learning rates of 0.3 and 0.7 had mixed results and appear to level off after a learning rate of 0.3 

is used.  Learning rates above 0.7 did not realize significant increases in performance for the sys-

tem and maintained an average PASS% rating of 96.8%. 
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V.  Conclusions and Recommendations 

This Chapter provides the conclusion of the research effort, significance, recommended 

actions and recommendations for future research.  If situation awareness is to be enhanced, the 

critical elements of the operational environment must provide interesting meaning beyond a lo-

calized environment for other participants to join ANN-based network structure.  Aggregating 

the reports of multiple independent participants in real-time provides a common distribution of 

globally occurring events that may lead to a normalized distribution of reported events given 

enough numbers.  With enough participants that provide accurate real-time reports about their 

locally occurring threats, a strength-in-numbers approach to global network defense can emerge.  

The emergent behavior of such reporting and aggregation of global events can then be learned by 

the ANN-based model and provide localized decision-support to otherwise isolated network se-

curity boundary defenders in Cyberspace.  

Emergence is a phenomenon where aggregate behavior arises from localized behaviors 

Miller and Page (2007).  This research modeled individual LANs as agents that are interconnect-

ed using a single layer feed forward ANN.  The LANs are modeled as independent heterogene-

ous entities with localized threat mitigation and avoidance behaviors.   The goal of aggregating 

the micro behaviors of local IDP LANs, was to develop a process to enable a common under-

standing of a more global or macro behavior.  As a result of this goal, the macro behavior can be 

developed into a global policy response that the ANN can learn.   

The seemingly random occurrence of local threats becomes an aggregate common varia-

ble or global event learned by the ANN.  The global event enables situation awareness for previ-

ously unaware local decision-makers. This implies that the micro behavior of localized LAN re-

porting results in a diverse set of macro behavioral global response actions.   
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The aggregated actions learned by the ANN using the DSP and Off-Line training components 

produces the capability to detect the occurrence of global threat event patterns from previously 

unaware threat distribution occurrences. The ANN learns to detect and recommend PPLs to lo-

calized network defenders based on expert DSPs.  As more and more LANs participate, accord-

ing to the Central limit Theorem (Miller and Page 2007) and the law of large numbers (Renze & 

Weisstein, 2014), a normal distribution of global policies may emerge. This assumes that the 

threats are the common distribution that underlies this entire collaborative process.  

This claim is debatable because the claim of emergent behavior is artificially induced 

emergent behavior and we can attribute the direct cause.  Natural emergent behaviors are not 

strictly non-deterministic in nature (Mitchell, 1997).  In addition, decision-support systems 

(DSS) should be carefully considered when employing in dynamic environments especially 

when the meaning of a critical element cue status has changed and the DSS has not.   

5.1 Significance and Contributions of Research 

By encoding expert decision-support profiles with an ANN-based structure, a 99.7% ac-

curacy recommendation can be made to novice network security professionals in Cyberspace.  

This recommendation has the potential to provide actionable threat mitigation and avoidance 

measures that could minimize threat risk.  Research should continue with more advanced ANN 

concepts that are promising in the support of localized decision-support recommender systems in 

Cyberspace. 

The research effort makes three contributions.  First, the research provides results that 

warrant continued research in ANN-based DSSs for localized decision-making in Cyberspace.  

Secondly, the decision-support profile survey is provided in the hopes that it may be useful in 

future DSP development.  
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 Finally, the modeling and simulations environment tool can be used across multiple disciplines 

to integrate concepts of network engineering and artificial neural networking.  This modeling and 

simulations tool has the additional capability of being extended across a local area network using 

the GitHUB capability.  This extended capability along with the existing tool can enhance under-

standing about complex adaptive systems, to include intrusion detection and prevention net-

works.   

5.2 Recommendations for Action 

This research makes three recommendations. (1) Pursue the development of collaboration 

of IDPS environments to share threat information as teams.  Teams working together naturally 

have established Team SA element cues, and should be identified, modeled and validated as SA 

elements.  Employ collaboration capability to enable mobile IDPS teams that need immediate 

reach back capability or simply need help in searching for an item of interest.  Having other team 

members to share potentially, actionable information enhances the IDP’s local defender. (2) Con-

tinue development of the modeling and simulations environment and focus on the following are-

as; (a) Establishing trusted collaboration membership pools, (b) Identify, model and simulate 

critical shared team SA requirements. The survey provides a way ahead for individual SA re-

quirements that should be modeled, simulated and validated continuously.  Shared or Team SA 

are those things that the team shares amongst the group that they need to know in order to make 

team-based decisions in real-time environments, (c) Employ secure cloud computing services to 

host mobile Cyber Teams in order to provide distributed threat situational awareness and parallel 

search of interesting item capabilities, (d) Incorporate well-established Hub, GitHub technology 

and develop secure communications platforms that are customizable for global teams.  NetLogo 

support GitHub. 
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 (3) Conduct a goals-directed task analysis for IA security and Cyber professionals that perform 

duties in the IDSP operational environment.  A Delphi study should also be considered.   

The survey attached in the Appendix A may provide an excellent start in determining 

newly developing individual and team SA critical elements.  The decision-support profiles are 

the critical elements that are necessary to identify the critical SA requirements.  Once identified, 

they must be incorporated into a simulations environment, validated and tested for effectiveness 

to keep pace with evolving trends. 

The larger research effort should focus on advanced ANN concepts and structures for use 

in collaborative networking environments. Conduct research to find a way to secure local area 

expert decision-support profiles and group collaboration efforts.  Conduct research efforts to es-

tablish universal ANN output nodes that can serve as worldwide listening posts for threats.  Par-

ticipants can subscribe to such an infrastructure. 

5.3 Research Summary 

Supporting the local defender has been the enduring and sustaining element for this re-

search.  Understanding the complexities of a CAS is a challenge in and of itself when going it 

alone. Isolated network defenders can enhance their local situation awareness and gain strength-

in-numbers on Cyberspace’s CAS operational battlefield.  In Cyberspace, the need for w wide-

area infrastructure of customizable and team supported DSSs is necessary.  Artificial intelli-

gence, using ANN technology to develop a universal or global threat event recommendation sys-

tem is critical for today’s isolated network defenders.  

A call for developing a ‘strength-in-numbers’ approach to intrusion detection and preven-

tion using artificial neural networks was made.  This call is made in an effort to enhance the SA 

of the local decision maker by providing global awareness of interesting threat reports.   
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The problem of how best to model Cyberspace as a CAS was addressed in Chapter I to 

develop a context.  The motivation for conducting this research effort is to always assist the local 

decision maker in a complex and adaptive world.  Decision-making is hard, and chapter reminds 

us of how hard it is to develop DSSs like the IDPS.  Chapter II provided a more detailed explana-

tion of the evolution of the Intrusion detection process, the properties of complex adaptive sys-

tems to include non-deterministic emergent behavior.   

The literature review discussed situation awareness, decision-support systems, emergent 

behavior, and the role of artificial intelligence in decision-support systems, specifically in the 

intrusion detection process. A discussion of artificial neural networks focused on machine learn-

ing led us to better understand feed forward ANNs.  The back propagation algorithm was intro-

duced to understand how the ANN reduces the error surface in the hypothesis space to form the 

global policy link structure and provide best-fit protective posture recommendations to novice 

defenders in uncertain situations using learned expert recommendations after considering the 

threat event risk factor.   

The capability to reduce the error surface is enabled by gradient descent and the delta rule 

to provide stochastic approximations of unseen patterns.  Using the sigmoid activation increased 

the understanding and capability of ANNs.  The modeling and simulations environment as the 

system under Test was introduced in Chapter II consisting of the local Decision-Support and Off-

Line critical components under test.  Lightning was introduced and the global policy reporting 

recommendation output was revealed at the end of Chapter III.  

The results of adjusting the learning rate of the ANN with 0.005, 0.3, 0.7 and 1.0 values 

show that the ANN can accurately recommend the learned protective posture levels of expert de-

cision-makers 90% of the time using a noisy decision-support profile and 9-fold cross-validation. 
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Without cross-validation or noise the ANN has a recommendation accuracy of 99.7% for the 

baseline profile. When tested using four independent decision-support profiles in collaboration, 

the ANN’s average generalization accuracy improves to 96.35% without noisy decision-support 

profiles and 9-fold cross-validation.  The research shows potential for group collaboration using 

ANN-based decision-support systems, which can support a strength-in numbers approach to 

network defense. 
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Appendix A Decision-Support Profile Survey 

Determining Decision-
Support Profiles in Collabo-
rative Event Detection Envi-

ronments 
Pre-Artificial Neural Network Encoding Survey: In-

vestigator’s Interview/Admin questions. 
 

MAJ Brian G. Woolley, PhD, Primary Investigator 

 
MAJ Tyrone A. Lewis, Master’s Student 

7/10/2014 
   

 This is a four part anonymous study to determine the effects of event collaboration on human 
decision-support profiles. When faced with two network threat scenarios, respondents are ex-
pected to recommend a protective posture that best protects their local-area network security 
boundary. During Part 1 (Respondent Background), the respondents are asked to provide their 
closest matching IA work role and are introduced to the concepts and materials used during the 
study. In Part II (Isolated Threat Mitigation Model Scenario-I) the respondents are asked to re-
spond to the available threat reports while isolated from threat collaboration with other outside 
sources.  The event sequence is repeated in Part III (Collaboration Threat Mitigation Model, 
Scenario-II); however the respondents are now authorized to collaborate and interpret credi-
ble/participating neighbor’s reports from a wider-area about their threat event’s occurrence. Fi-
nally, in Part IV (Participant Reflection) questions are asked to determine if there was a decision-
support profile change. Following the closing of the survey, respondents are asked to participate 
in an after action review.  
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(The investigator should print this packet out and read the script while conducting the survey) 

Questionnaire and Quick Reference List- (For Administrative Use) 

1.  Respondent Background Questionnaire (11 Questions) 
Figures/Tables Used:  Response Sheet 
References Available: None 

2. Understanding the Threat Questionnaire (Part-Ib) (23 questions) 
Figures/Tables Used:  Response Sheet (Table 1.) 
References Available: Instructions and rating scale 

3. Scenario-I Questionnaire (Part-II Isolated) (30 questions) 
Figures/Tables Used: 

- Response Sheet 
References Available: 

- Scenario-I Threat Brief Summary 
- Figure 1.  Intrusion detection alert and response matrix 
- Figure 2.  KDD99-apwxific categorized threat label definitions 
- Figure 3.  Resource Protection List for Area-A 
- Figure 4.  Isolated Threat Mitigation Model (Network Diagram) 

4. Scenario-II Questionnaire (Part-III Collaboration) (30 questions) 
Figures/Tables Used: 

- Response Sheet 
References Available: 

- Scenario-II Threat Brief Summary 
- Figure 1.  Intrusion detection alert and response matrix 
- Figure 2.  KDD99-apwxific categorized threat label definitions 
- Figure 5.  Neighbor Resource Protection List for Area-A 
- Figure 6.  Collaborative Threat Mitigation Model (Network Diagram) 

5. Reflection Questionnaire (9 questions) 
Figures/Tables Used:  Response Sheet 
References: None 

6. After Action Review (5 questions) 
Figures/Tables Used:  Response Sheet 
References: None 
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Survey Script 

Pre-Survey 

Reserve an appropriate room.  Locate Bathrooms, Emergency exits, Rally Points 

Place Pencil, scratch paper and respondent IDs on desk/survey stations.   

Prepare and print survey packets that should include the following materials; 

- Respondent/Survey ID 
- Individual Respondent Reference Materials 
- Background Questions  
- Self-Assessment KSA questions  
- Threat Understanding Questions 
- Scenario-I questions 
- Scenario-II questions 
- Reflection Questions   
- Scratch Paper 

Open Survey Session: 

AINV:  Good morning/afternoon, Welcome to this research survey session.  I am MAJ 
Tyrone Lewis and I will be administering this survey today.  Before we begin, I have a 
few administrative announcements: 

Administrative Announcements: 

Indicate the location of bathrooms, emergency exits, etc… Issue prepared survey materi-
als to respondents:   

READ PRIVACY: (Privacy Act Statement obtained from human Subjects POC). 
Personally, Identifiable Information will not be collected in this survey.  The sur-
vey is anonymous so please do not mark any specific duty location, or PII that 
could be used to specifically identify you as an individual. 

READ CLASSIFICATION: This survey is UNCLASSIFIED.  You should not 
discuss, disclose or indicate anything that has a classification marking higher than 
UNCLASSIFIED.  At the end of the survey, please review any responses to en-
sure that you have not disclosed any intentional or unintentional CLASSIFIED in-
formation.   

READ USE OF DATA:  Data will be used to support graduate level research.   

AINV:  Are there any questions so far? 
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 (Administratively answer respondent’s questions before proceeding to the next section) 

AINV:  If there are no further questions, we will proceed with the survey. This survey 
consists of four parts. 

AINV:  You are about to take Part-Ia, Respondent background questions. 

READ PURPOSE: The purpose of the background questions section is to evalu-
ate and assess your general background with threat mitigation, risk management, 
and network security experience. 

READ DIRECTIONS:  Please indicate the work role that best represents you the 
most at the top of the questionnaire.  On the top right corner of the questionnaire, 
please write in your respondent ID.  You will be presented with 8 multiple choice 
questions, 2 priority ranking questions and 1 short answer response to add option-
al comments. You should carefully read each question and all of the available 
choices before making your final selection.  If a choice does not specifically ad-
dress your background, you should select the choice that best reflects your general 
background and experience.  You may use scratch paper to add additional infor-
mation if you would like.  

Explanation of Terms:  IDS, IDPS, PAN, LAN, WAN, Cisco, Juniper, DoD 
8570.1M, Physical mediums, OSI Layer 1 technologies, local policy, global poli-
cy, watch-list, active threat, threat types and protocols. 

REFERENCES:  You may use the attached definitions if necessary. 

AINV:  After you have completed the questionnaire and are satisfied with your choice 
selection, please hand the questionnaire to me. 

ASK: What questions do you have so far? 

(Administratively answer respondent’s questions) 

Issue questionnaire to respondents 

AINV:  You may now begin: 

(After all questionnaires have been turned in, close the session) 

AINV: We will now proceed with Part-Ib (Threat Understanding Questions) 
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AINV:  You are about to take Part-Ib, “Understanding the Threat” questionnaire. 

READ PURPOSE: The purpose of the “Understanding the Threat Questions” is 
to see how familiar you are with specific network threats and malicious traffic 
signature labeling methods.  This survey derives the label names and threat de-
scriptions from the KDD99 dataset. The KDD99 dataset is a database containing a 
standard set of data to be audited, which includes a wide variety of intrusions 
simulated in a military network environment [KDDCUP99]. 

HAND OUT rating scales. 

AINV:  You should have two pieces of paper for this questionnaire.  The first sheet de-
scribes the response categories, while the second sheet is the table used for recording 
your responses.  

READ DIRECTIONS:    Please turn your attention to Table 1.  Please take note 
that the table is partitioned into three parts.  In the center of the table, the merged 
column heading (KDD99’s Threat Classification labels) lists each threat that ap-
pears in the KDD99 dataset.  On the Left hand-hand side of Table-1 you will see 
five smaller columns.  This is where you will rate your previous and current 
knowledge of the threat for each threat label.  On the right hand side of Table-1, is 
where you will record the perceived level of the threat as indicated in the center 
column for that particular row.    

REFERENCES:  KDDCUP99, https://archive.ics.uci.edu/ml/machine-learning-
databases/kddcup99-mld/kddcup99.html, last accessed July, 13 2014. 

AINV:  After you have completed the questionnaire and are satisfied with your choice 
selection, please hand the questionnaire to me. 

ASK:  What questions do you have? 

(Administratively answer respondent’s questions) 

AINV:  You may begin: 

(After all questionnaires have been turned in, close Part-Ib) 

AINV:  Thank you for your participation in Part-Ib.  

 

Return from Break 

AINV:  You are about to begin Part-II of the survey.  You will receive a Scenario Threat 
briefing that may be used as a reference to complete the follow-on questionnaire. After 

https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup99.html
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup99.html
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the threat brief is given, you will be presented with two example questions.  After the 
threat brief and example questions are given, you will have the opportunity to ask ques-
tions before beginning the section questions.     

READ PURPOSE: The purpose of Questions set 1a is to evaluate your decision-
support preferences when responding to threat information based on defined local 
policy, organizational goals and your interpretation of the threat that may occur in 
your local network security boundary.   

Conduct Threat Briefing (~10 minutes) 

HAND OUT Scenario-I package. 

READ DIRECTIONS:  (Read the threat brief.)     

Describe References:  Figure X.  

 Read example question one and example two question two.   

AINV:  After you have completed the questionnaire and feel satisfied with your choices, 
please hand the questionnaire to me. 

ASK:  What questions do you have? 

(Administratively answer respondent’s questions) 

Scenario-I questions 

READ INSTRUCTIONS:   Recommend the appropriate protective posture for each round in the table below 
by circling the recommendation that best mitigates the threat.  You should only select one choice per question.  You 
are free to use scratch paper while taking this survey, but they must be turned in to the investigator at the end of the 
survey.  Please clearly circle one and only one letter per response row.   

R = RED, O = ORANGE, Y = YELLOW and G = GREEN (See reference Figures 1, 2 and 3 if necessary) 

 You may now begin: 

(After all questionnaires have been turned in, close Part-II) 
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AINV:  You are about to begin Part-III of the survey.  You will receive a Scenario Threat 
briefing that may be used as a reference to complete the follow-on questionnaire. After 
the threat brief is given, you will be presented with two example questions.  After the 
threat brief and example questions are given, you will have the opportunity to ask ques-
tions before beginning the section questions.     

READ PURPOSE: The purpose of Questions set 1b is to evaluate your decision-
support preferences when responding to threat information based on defined local 
policy, organizational goals and your interpretation of the threat that may occur in 
your local network security boundary.   

Conduct Threat Briefing (~10 minutes) 

HAND OUT Scenario-I package. 

READ DIRECTIONS:  (Read the threat brief.)     

Describe References:  Figure X.  

 Read example question one and example two question two.   

AINV:  After you have completed the questionnaire and feel satisfied with your choices, 
please hand the questionnaire to me. 

ASK:  What questions do you have? 

(Administratively answer respondent’s questions) 

Scenario-II questions 

READ INSTRUCTIONS:   Recommend the appropriate protective posture for each round in the table below 
by circling the recommendation that best mitigates the threat.  You should only select one choice per question.  You 
are free to use scratch paper while taking this survey, but they must be turned in to the investigator at the end of the 
survey.  Please clearly circle one and only one letter per response row.   

R = RED, O = ORANGE, Y = YELLOW and G = GREEN (See reference Figures 1, 2 and 3 if necessary) 

 You may now begin: 

(After all questionnaires have been turned in, close Part-III) 
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AINV:  You are about to take Part-IV, Reflection Questions 

HAND OUT rating scales. 

AINV: This questionnaire has four questions.   

READ DIRECTIONS:  You are about to take Part-IV “Reflection Questions” 

The purpose of the reflection questions: 

READ PURPOSE The purpose of the reflection questions is to allow you to pro-
vide insight into how you felt when making your protective posture decisions for 
scenarios I and II questionnaires.  

You will be presented with nine multiple choice questions. You should carefully 
read each question and all of the available choices.  After you have read the question 
and choices, briefly recall the scenarios that you just completed where neighbor collabo-
ration was considered or not.  Choose the best answer that most closely matches your re-
sponse.   

 You may use scratch paper to add additional information if you would like. 

(Discussion:  The reflections questions are designed to see if the security professional’s responses changed after they 
became aware of additional threat information. Often times, the decision-making process is not completed until after 
someone has had the opportunity to reflect on the decisions that they have made.  In some instances, positive rein-
forcement encourages the decision-maker to make the same decision under similar circumstances.  A less confident de-
cision-maker may choose an alternate choice if they did not obtain positive feedback after making an uncertain choice 
(Endsley & Garland, 2000). 

REFERENCES:  None. 

AINV:  After you have completed the questionnaire and are satisfied with your choice 
selection, please hand the questionnaire to me. 

ASK:  What questions do you have? 

(Administratively answer respondent’s questions) 

AINV:  You may now begin: 

(After all questionnaires have been turned in, close Part-IV) 

Close Formal Survey. (Collect all materials and given respondents the opportunity to 
screen response sheets for classification or PII violations.  DO NOT ALLOW RESPONSES 
TO BE CHANGED.)   

Conduct AAR (optional) 
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AINV:  The formal portion of this survey has been completed and you are free to leave.  
Before you leave, please ensure that you have all of your personal belongings, that you 
have not provided any classified information to this survey and that you have turned in all 
of your scratch paper that has your respondent ID clearly indicated in the top right hand 
corner.   For those who have the time to stay, please help us improve this survey by 
providing valuable feedback.   

ASK:  Would you like to participate in this feedback? 
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AINV:  We will next conduct an after action review session.   

ASK:  What went right? 

RECORD: 

 

ASK What went wrong? 

RECORD: 

 

ASK:  What was supposed to happen? 

RECORD: 

 

ASK:  What was good or should be sustained in this survey? 

RECORD: 

 

ASK:  What was bad/unclear or should otherwise be improved to make this sur-
vey better? 

RECORD: 

 

ASK:  What else would you like to add to this survey process? 

RECORD: 

   

AINV:  On behalf of AFIT, Dr. Davis, MAJ Woolley and ENG, I would like to personal-
ly thank you for your participation in today’s survey.  My contact information is on the 
board if you would like more information about this survey or the ongoing research.  
Have a great day! 
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AFIT 

Respondent Survey Package 
Pre-Artificial Neural Network Encoding Survey: In-

vestigator’s Interview/Admin questions. 
 

MAJ Brian G. Woolley, PhD, Primary Investigator 
 

MAJ Tyrone A. Lewis, Master’s Student 
7/10/2014 
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PART Ia - Respondent Background Questions (1 of 3) 
Work Role:   __________________________________             Respondent ID: _________ 
 
1. On average, how many hours did you work per week as an Information Assurance (IA) securi-
ty professional? 
 

o Greater than 40 hours 
o Between 30-40 hours  
o Between 20-30 hours 
o Less than 20 hours 

 
2. What types of Intrusion Detection/Prevention Systems (IDPS) have you managed, operated, 
administered or have technical knowledge of? (Circle all that apply) 
 

o Cisco ASA Models 
o Snort 
o Juniper 
o Next Generation IPS 
o Other IDPS, Firewalls, ACLs  

 
3. As an IA security professional, how many hardware or software devices/packages have you 
protected within your network boundary using one or more IDPS devices.  
 

o None   NA 
o Less than 5   HW/SW 
o 5 - 9    HW/ SW 
o 10-99    HW/SW 
o 100 - 999  HW/SW 
o More than 1000  HW/SW 

 
4. Select the largest sized communications network that you have personal experience with as an 
IA security professional.  
 

o Personal Area Network 
o Local Area Network 
o Campus Area Network 
o Metropolitan Area Network 
o Wide Area Network 
o Physical (Not network-based) 
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PART Ia - Respondent Background Questions (3 of 3) 
 
11.  Briefly describe additional comments here. 

 

 

 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 
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(Intentionally Left Blank) 
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Part Ib.  Understanding the Threat Questions 
 

 
Table 1 requires two responses for each attack classification signature label.  The name of the 
attack is indicated in the center column.  On left side of Table 1, rate your knowledge and expe-
rience level using the scale below (from 1 to 5):   

 1 = Advanced. I possess specialized knowledge and could instruct others on the 
principles of mitigation tactics techniques and procedures used to monitor, detect, 
respond and mitigate this attack.  

 2  = Intermediate.  I am familiar with this attack classification and I have mitigated the 
attack classification frequently using Local Policy and best practice TTPs) 

 3  = Experienced (Can execute mitigation, avoidance or prevention TTPs IAW local 
policy.  

 4  = Beginner.  I am unfamiliar with this attack, however I feel confident that I can use 
IDPS indicators and local policy response procedures to mitigate this attack with some 
supervision. 

 5  = No Experience.  I have never mitigated, seen, and/or cannot define this attack. 
 
 

Use the right side of Table 1 to indicate your perception of the attack’s ability to threaten 
ongoing mission or organizational goals using a scale (from 1-4) [Cisco Best Practices] 

 1 = RED.  High Impact or data that if compromised, would cause an extreme disruption 
in the business, cause major legal or financial ramifications, or threaten the health and 
safety of a person. The targeted system or data requires significant effort to restore or the 
restoration process is disruptive to the business or other systems. 

 2 = ORANGE. Moderate Impact (compromised systems/data viewed by unauthorized 
personnel, data corrupted, or data lost) disruption in the business, minor legal or financial 
ramifications, or provide further access to other systems. Moderate effort to restore or 
process is disruptive to the system. 

 3  = YELLOW Low Impacting threat events to systems within the network 
boundary or data that if compromised (data viewed by unauthorized personnel, data 
corrupted, or data lost) would not disrupt the business goals and objectives or cause legal 
or financial ramifications. System restoration is easy. 

 4 = GREEN None. No impact to business goals or objectives.  
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Part Ib.  Understanding the Threat Questions 
 

Work Role:   __________________________________             Respondent ID: _________ 
 

Table 12.  Individual’s severity rating of KDD99 dataset’s threat labels  

Threat Experience Level KDD99’s threat Classification Labels 
Perceived Threat (Risk) 
Impact to Local Goal(s) 
accomplishment 

1 2 3 4 5  R(4) O(3) Y(2) G(1) 
     back     
     buffer_overflow     
     ftp_write     
     guess_passwd     
     imap     
     ipsweep     
     land     
     loadmodule     
     multihop     
     neptune     
     nmap     
     normal     
     perl     
     phf     
     pod     
     portsweep     
     rootkit     
     satan     
     smurf     
     spy     
     teardrop     
     warezclient     
     warezmaster     
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PART-II Scenario-I [1a] 
Scenario Threat Brief 

 
 
Specific Situation:  You are the IA security professional for Area-A’s network security bounda-
ry. Various network security breaches are occurring in and around your locally defined area and 
throughout the wider-area’s operational environment. Each PPL recommendation chosen is an 
independent response. 
 
Your Role:  You decide the overall protective posture level (PPL) that should be assumed 
by Area-A in order to protect and defend your mission-critical resources IAW local policy. 
You use threat reports and context clues to support your decision when recommending the 
best PPL for your local Area.  
 
Your goal:  Recommend a PPL that you believe well allocates your protection resources’ ability 
to mitigate the occurring threat and minimizes the cost of adverse effects on normal operations.  
  
Local policy: Priority threats have the highest consideration for PPL recommendations.  You 
should choose the PPL (i.e. red, orange, yellow or green) that you feel is best to mitigate the re-
ported threat for the near-term future. PPL recommendations should be executed immediately. 
 
Global Policy:  Neighbor collaboration IS NOT authorized. 
You are aware that you have neighbors (Area-B, Area-C and Area-D, Area-F, Area-X) that may 
provide threat reports. 
   
The following neighbor’s threat reports about their protected resources are trustworthy: 
 NONE 
 
Specific network vulnerabilities:  These threats have a risk factor greater than or equal to 80% 
and have priority for threat mitigation within your security boundary;  
 
Perl, rootkits, buffer_overflows, and loadmodules signatures.  
(See Figure 1 and 2)   
 
SUMMARY:   
 
Monitor the status of your active threat ‘watch-list’ 
 
Detect the status of occurring threats as reported. 
 
Respond appropriately to operational environment threats by recommending the best protective 
posture to meet local goals and objectives.  Indicate your response by circling RED, ORANGE, 
YELLOW or GREEN.    
 
References, Figures 1, 2, 4 and 4. 
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Part II - Scenario-I 
Example Questions and Discussion 

 
Example Question 1. 

 
 
  
 

 
Discussion:  Area A’s IDPS is currently reporting/logging the detection of a perl threat. 
You consider all credible sources to include authorized neighbor reports, your own KSAs 
and policy guidance to make the best protective posture recommendation to mitigate the 
threat in the future.     
  

 
 
 
 

 
 
Clearly CIRCLE one PPL recommendation as R, O, Y or G. 

 
 
Example Question 2. 
 

 
 
 
 

 
Discussion:  Area A’s IDPS is currently reporting/logging the detection of a smurf threat. 
You consider all credible sources to include authorized neighbor reports, your own KSAs 
and policy guidance to make the best protective posture recommendation to mitigate the 
threat in the future.     
 

 
 
 
 

 
 
Clearly CIRCLE one PPL recommendation as R, O, Y or G. 
 
 

 Credible IDPS 
Reports-a Recommended Pro-

tective Posture Round Area-A 
39 perl R O Y G 

 Credible IDPS 
Reports-a Recommended Pro-

tective Posture Round Area-A 
39 perl R O Y G 

 Credible IDPS 
Reports-a Recommended Pro-

tective Posture Round Area-A 
16 smurf R O Y G 

 Credible IDPS 
Reports-a  

Round Area-A Recommendation 
16 smurf R O Y G 
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Part II - Scenario-I   [A] 
Start: _________ END: __________ 

 
Work Role:   ____________________________             Respondent ID: _________ 
 
 Instructions:  Recommend the appropriate protective posture for each round in the table below by circling 
the recommendation that best mitigates the threat.  You should only select one choice per question.  You 
are free to use scratch paper while taking this survey, but they must be turned in to the investigator at the 
end of the survey.  Please clearly circle one and only one letter per response row.   
  
R = RED, O = ORANGE, Y = YELLOW and G = GREEN (See reference Figures 1, 2 and 3 if neces-
sary) 

 Credible IDPS Reports-a Recommended Pro-
tective Posture Round Area-A 

1 neptune R O Y G 
2 rootkit R O Y G 
3 imap R O Y G 
4 satan R O Y G 
5 smurf R O Y G 
6 normal R O Y G 
7 pod R O Y G 
8 neptune R O Y G 
9 perl R O Y G 
10 normal R O Y G 
11 spy R O Y G 
12 buffer_overflow R O Y G 
13 smurf R O Y G 
14 guess_passwd R O Y G 
15 smurf R O Y G 
16 smurf R O Y G 
17 guess_passwd R O Y G 
18 loadmodule R O Y G 
19 portsweep R O Y G 
20 land R O Y G 
21 teardrop R O Y G 
22 nmap R O Y G 
23 loadmodule R O Y G 
24 imap R O Y G 
25 land R O Y G 
26 spy R O Y G 
27 rootkit R O Y G 
28 loadmodule R O Y G 
29 normal R O Y G 
30 satan R O Y G 
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Part II - Scenario-I   [A] 
Scratch Paper 

 
Work Role:   ___________________________             Respondent ID: _________ 
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(Intentionally Left Blank) 
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Part III – Scenario-II   [1b] 
Scenario Threat Brief 

 
Specific Situation:  You are the IA security professional for Area-A’s network security 
boundary. Various network security breaches are occurring in and around your locally 
defined area and throughout the wider-area’s operational environment.  . Each PPL rec-
ommendation chosen is an independent response. 
 

Your Role:  You decide the overall protective posture level (PPL) that should be as-
sumed by Area-A in order to protect and defend your mission-critical resources 
IAW local policy. You use threat reports and context clues to support your decision 
when recommending the best PPL for your local Area.  
 
Your goal:  Recommend a PPL that you believe well allocates your protection resources’ 
ability to mitigate the occurring threat and minimizes the cost of adverse effects on nor-
mal operations.  
  
Local policy: Priority threats have the highest consideration for PPL recommendations.  
You should choose the PPL (i.e. red, orange, yellow or green) that you feel is best to mit-
igate the reported threat for the near-term future. PPL recommendations should be exe-
cuted immediately. 
 
Global Policy:  Neighbor collaboration IS authorized. 
You are aware that you have neighbors (Area-B, Area-C and Area-D, Area-F, Area-X) 
that may provide threat reports. 
   
The following neighbor’s threat reports about their protected resources are trustworthy: 
 (Area-B, Area-C, and Area-D).  
 
Specific network vulnerabilities:  These threats have a risk factor greater than or equal 
to 80% and have priority for threat mitigation within your security boundary;  
 
Perl, rootkits, buffer_overflows, and loadmodules 
signatures.  
(See Figure 1 and 2)   
 
SUMMARY:   
 
Monitor the status of your active threat ‘watch-list’ 
 
Detect the status of occurring threats as reported. 
 
Respond appropriately to operational environment threats by recommending the best 
protective posture to meet local goals and objectives.  Indicate your response by circling 
RED, ORANGE, YELLOW or GREEN.    
 
References, Figures 1, 2, 5 and 6.   
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Part III – Scenario-II   [1b] 
Example Questions and Discussion 

 
Example Question 1. 

 Credible IDPS Reports-i Recommended 
Protective Pos-
ture Round Area-A Area-B Area-C Area-D 

23 spy perl spy satan R O Y G 
 
Discussion:  Area A’s IDPS is currently reporting/logging the detection of a spy threat. 
You consider all credible sources to include authorized neighbor reports, your own KSAs 
and policy guidance to make the best protective posture recommendation to mitigate the 
threat in the future.     
 

 Credible IDPS Reports-i Recommended 
Protective Pos-
ture Round Area-A Area-B Area-C Area-D 

23 spy perl spy satan R O Y G 
 
 
 

Clearly CIRCLE one PPL recommendation as R, O, Y or G. 
 

 
 
 
Example Question 2. 

 Credible IDPS Reports-i Recommended 
Protective Pos-
ture Round Area-A Area-B Area-C Area-D 

7 rootkit rootkit back nmap R O Y G 
 
Discussion:  Area A’s IDPS is currently reporting/logging the detection of a rootkit 
threat. You consider all credible sources to include authorized neighbor reports, your own 
KSAs and policy guidance to make the best protective posture recommendation to miti-
gate the threat in the future.     
 

 Credible IDPS Reports-i Recommended 
Protective Pos-
ture Round Area-A Area-B Area-C Area-D 

7 rootkit rootkit back nmap R O Y G 
 
 
 

Clearly CIRCLE one PPL recommendation as R, O, Y or G. 
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Part III – Scenario-II    [B] 
 

Start: _________ END: __________ 
 

Work Role:   ___________________________             Respondent ID: _________ 
Instructions:  Recommend the appropriate protective posture level (PPL) for each round in the table below 
by circling the best mitigation strategy for that threat.  You should only select one choice per question.  
You are free to use scratch paper while taking this survey, but they must be turned in to the investigator at 
the end of the survey.  Please clearly circle one and only one letter per response row.   
 
R = RED, O = ORANGE, Y = YELLOW and G = GREEN See reference Figures 1, 2 and 3 if necessary 
 

 Credible IDPS Reports-a  Recommended 
Protective Pos-

ture Round Area-A Area-B Area-C Area-D 

1 neptune normal multihop multihop R O Y G 
2 rootkit land phf loadmodule R O Y G 
3 imap normal back phf R O Y G 
4 satan buffer_overflow perl loadmodule R O Y G 
5 smurf portsweep pod normal R O Y G 
6 normal satan ipsweep normal R O Y G 
7 pod ipsweep loadmodule buffer_overflow R O Y G 
8 neptune rootkit multihop ipsweep R O Y G 
9 perl portsweep ipsweep guess_passwd R O Y G 
10 normal phf buffer_overflow spy R O Y G 
11 spy rootkit land warezclient R O Y G 
12 buffer_overflow land land portsweep R O Y G 
13 smurf buffer_overflow ipsweep perl R O Y G 
14 guess_passwd warezclient normal spy R O Y G 
15 smurf ftp_write portsweep phf R O Y G 
16 smurf satan neptune ftp_write R O Y G 
17 guess_passwd perl loadmodule loadmodule R O Y G 
18 loadmodule satan buffer_overflow phf R O Y G 
19 portsweep ipsweep rootkit nmap R O Y G 
20 land neptune imap ftp_write R O Y G 
21 teardrop teardrop guess_passwd buffer_overflow R O Y G 
22 nmap neptune ipsweep pod R O Y G 
23 loadmodule multihop buffer_overflow warezmaster R O Y G 
24 imap rootkit warezmaster portsweep R O Y G 
25 land rootkit multihop loadmodule R O Y G 
26 spy neptune satan pod R O Y G 
27 rootkit spy normal loadmodule R O Y G 
28 loadmodule satan perl warezmaster R O Y G 
29 normal land rootkit multihop R O Y G 
30 satan smurf multihop nmap R O Y G 
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Part III – Scenario-II    [B] 
Scratch paper 

 
Work Role:   ___________________________             Respondent ID: _________ 
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Part IV - Respondent Reflection questions 
Overview 

 
Instructions: 
 

You are about to take Part-IV “Reflection Questions” 
 
The purpose of the reflection questions is to allow you to provide insight 
into how you felt when making your protective posture decisions for sce-
narios I and II questionnaires. 
 
You will be presented with nine multiple choice questions. You should 
carefully read each question and all of the available choices.  After you 
have read the question and choices, briefly recall the scenarios that you 
just completed.  Choose the best answer that most closely matches your 
response.   
 
 You may use scratch paper to add additional information if you would 
like. 
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Part IV – Respondent Reflection Questions 

1.  How Confident are you when making PPL recommendations given policy guidance?  

o 5 Extremely Confident 
o 4  Moderately Confident 
o 3 Somewhat Confident 
o 2 A little Confident 
o 1 Not at all Confident 
 

2.  How well did a lack of knowledge of credible neighbor resources help in determin-
ing your PPL recommendations? 
 

o 5  Definitely Helped  
o 4 Somewhat Helpful 
o 3 No effect 
o 2  Not very helpful 
o 1 Definitely unhelpful 

 
3.  How well did credible neighbors help the situational awareness of your local envi-
ronment? 
 

o 5  Definitely Helped  
o 4 Somewhat Helpful 
o 3 No effect 
o 2  Not very helpful 
o 1 Definitely unhelpful  
 

4. How well did credible neighbor reports help your confidence level in question 1? 
 

o 5 Extremely helpful 
o 4  Moderately helpful 
o 3 Somewhat helpful 
o 2 A little helpful 
o 1 Not at all helpful 

 
5.  How helpful was knowledge of credible neighbor resources in making PPL recom-
mendations? 
 

o 5  Definitely Helped  
o 4 Somewhat Helpful 
o 3 No effect 
o 2  Not very helpful 
o 1 Definitely unhelpful 
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6.  How well did credible neighbors help the situational awareness of your global envi-
ronment? 
 

o 5  Definitely Helped  
o 4 Somewhat Helpful 
o 3 No effect 
o 2  Not very helpful 
o 1 Definitely unhelpful  
 

7.  How helpful were neighbor threat reports when considering PPL recommendations? 
 

o 5  Definitely Helped  
o 4 Somewhat Helpful 
o 3 No effect 
o 2  Not very helpful 
o 1 Definitely unhelpful  

 
8.  How helpful is multiple neighbor reports of the same threat when making PPL rec-
ommendations? 
 

o 5  Definitely Helped  
o 4 Somewhat Helpful 
o 3 No effect 
o 2  Not very helpful 
o 1 Definitely unhelpful 

 
9.  When recommending PPLs, how would you rate the value of having credible neigh-
bors to collaborate with? 
 

o 5 Extremely Valuable 
o 4  Moderately Valuable 
o 3 Somewhat Advantageous 
o 2 A little Valuable 
o 1 Not at all Valuable 
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Protective 
Posture 

Level (PPL) 
Response 

Action  

Operating 
Cost PPL Response Action Description 

RED (Immi-
nent) 

deliberate 

Extremely 
High 

The local IDPS’s reported status of an active threat or a preconfigured sequence 
indicates an imminent threat that could cause significant loss to mission-critical 
resources. This PPL requires deliberate threat mitigation and avoidance actions. 
To, reduce potential losses, IAW policy, you should:  

o Immediately deploy QRF resources to contain and mitigate this threat. 
o Significantly restrict all in-bound traffic flow  
o Conduct deep packet inspections of in-bound mission-critical traffic 
o Update active ‘watch-list’  
o Remain vigilant for near-term/future/persistent threats  
o Monitor, detect and report status to meet organizational goals  

ORANGE 
(Significant) 

specific 
High 

IDPS(s)’s reported status of an active threat or a preconfigured sequence indi-
cates a significant threat to mission-critical resources.  The threat is not detected 
by local IDPS; however, additional credible information indicates a correlation 
that you may still be locally vulnerable to this active threat in the near-term.  
This PPL requires specific threat mitigation and avoidance actions.  To, reduce 
potential losses, IAW policy, you should: 

o Place QRF resources on standby  
o Slow in-bound traffic flow for mission-critical resources  
o Random deep-packet inspections of inbound mission-critical traffic 
o Update active ‘watch-list’  
o Remain vigilant for near-term/future/persistent threats  
o Monitor, detect and report status to meet organizational goals  

YELLOW 
(Moderate) 

random 
Medium 

IDPS(s)’s reported status of an active threat or a preconfigured sequence indi-
cates a moderate threat to locally protected resources.  This PPL requires ran-
dom threat mitigation and avoidance actions.  To, reduce potential losses, IAW 
policy, you should:    

o Random threat mitigation actions (i.e. QRF alert-recall, off-peak deep 
packet inspections, other access control audits.) 

o Modify pace of specified in-bound traffic flows  
o Update ‘watch-list’  
o Remain vigilant for near-term/future/persistent threats  
o Monitor, detect and report status to meet organizational goals 

GREEN 
(Minimal) 

normal 
Low 

IDPS(s)’s reported posterior probability of an actionable threat was not sufficient 
for the employment of additional threat mitigation resources during this period.   
This PPL requires normal threat mitigation and avoidance actions.  To, reduce 
potential losses, IAW policy, you should: 

o Update ‘watch-list’   
o Maintain normal operations for the next period. 
o Monitor, detect and report status to meet organizational goals 

No additional resources are deployed. 
 

Figure 24. Intrusion detection alert and response matrix 
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KDD99 Threat 

Label 
 Category Descrip-

tion/Definition  
buffer_overflow 

Unauthorized access to a local 
superuser or (root) privileges. 

loadmodule 
perl 

rootkit 
ftp_write 

Unauthorized access from a 
remote machine.  

guess_passwd 
imap 

multihop 
phf 
spy 

warezclient 
warezmaster 

back 

Denial of Service 

land 
neptune 

pod 
smurf 

teardrop 
ipsweep 

Probing: Surveillance and 
other probing.  

 
nmap 

portsweep 
satan 

normal Normal Traffic 
 

Figure 25. KDD99-specific categorized threat label definition. 
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Protected Resource Assets 

 Area-A 
Core router MC 

IDS MC 
Web Server X 

Secure Data Storage MC 
SCADA power system MC 

Software Storage MC 
Desktop X 

Call Manager Cluster (non-
secure) 

X 

Call Manager Cluster (Secure) MC 
Video Server X 

 

Figure 26. Resource List for Area-A 

 
In Figure 3, an, ‘X’ indicates that the network actively monitors, detects and re-

ports the threat status for this resource.    A ‘MC’ indicates that the organization has de-
termined this protected resource as a high priority mission-critical resource.  A marking 
of ‘na’ indicates that the network does not provide protection for that resource type. For 
example, Area-A is providing intrusion detection services for all of the resource types 
except for ‘Mobile Device’.  In addition, the Core router, IDS, Secure Data Storage, and 
Secure Call-manager Cluster have been determined to be mission-critical high-priority 
assets for threat mitigation and avoidance response actions.   
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Protected Resource Assets Network Security Boundary 

 Area-A Area-B Area-C Area-D 
Core router MC MC MC MC 

IDS MC MC MC MC 
Web Server X MC X X 

Secure Data Storage MC MC MC X 
SCADA power system MC X X MC 

Software Storage MC X X MC 
Desktop X MC X MC 

Call Manager Cluster (non-
secure) 

X MC MC X 

Call Manager Cluster (Secure) MC X MC MC 
Video Server X MC MC X 

 

Figure 27. Credible Neighbor Resource List for Area-A 

 
In Figure 3, an, ‘X’ indicates that the network actively monitors, detects and re-

ports the threat status for this resource.    A ‘MC’ indicates that the organization has de-
termined this protected resource as a high priority mission-critical resource.  A marking 
of ‘na’ indicates that the network does not provide protection for that resource type. For 
example, Area-A is providing intrusion detection services for all of the resource types 
except for ‘Mobile Device’.  In addition, the Core router, IDS, Secure Data Storage, and 
Secure Call-manager Cluster have been determined to be mission-critical high-priority 
assets for threat mitigation and avoidance response actions.   
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Figure 28. Isolated Threat Awareness Mitigation Model. 
 

The outer-edge of the circle symbolizes the global operational environment for 
network security boundary protection and it is divided into four local areas, (Areas A, B, 
C and D).  The un-trusted area for local decisions is shaded in gray (Areas B, C and D).  
Area-A represents the current trusted local perspective and awareness of the global threat.  
In this model, Area-A may be aware of other security analysts in the operational envi-
ronment however; their trustworthiness has not been determined, they are not authorized 
to collaborate with off-site or non-credible entities; or sources are authorized, but real-
time communications is not secure or unavailable for timely decision-support.  

  As the packets enter the network security boundary the IDPS reports the status 
and threat label to the operator.  The operator evaluates the report and makes a recom-
mendation to best mitigate the threat for the current and near-term future.   

The IA security professional should not consider information from shaded areas 
while recommending the best threat mitigation protective postures for their local network 
security boundary. 
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Figure 29. Collaborative Threat Awareness Mitigation Model: 
 

The outer-edge of the circle symbolizes the global operational environment for 
network security boundary and it is divided into four local areas, (Areas A, B, C and D).  
This model is focused more on the credibility of the reported threat event itself, not the 
credibility of the reporter/operator or how the local area responded to the event.  The 
threat events that are being reported have been determined to be credible and trustworthy 
by participating neighbors.    Area-A represents the current local perspective of interest 
for threat mitigation and prevention.  You can assume that a real-time network provides 
timely collaboration and threat information sharing across a secure communications net-
work.   

  As packets enter the network security boundary the IDPS reports the status and 
threat label are presented to Area-A’s local operator and the artificial neural network 
(ANN) which symbolizes the global threat reporter.  The operators evaluate their local 
threat report and consider the global threat reports from their neighboring sources to best 
mitigate the threat for the current and near-term future.   

The IA security professional should consider information from shaded areas while 
recommending the best threat mitigation protective postures for their local network secu-
rity boundary. 
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Date: 20 JULY 2014 
 
 
MEMORANDUM FOR  
 
FROM: AFIT/ENG 
  2950 Hobson Way 

 Wright Patterson AFB OH 45433‐7765 
 
SUBJECT:  Request for Staff, Student and Faculty participation in decision-support sur-
vey study and graduate research support  

 
Dear [student name]: 

     I am writing to request your help with an important human subjects study.  MAJ Ty-
rone Lewis is conducting a study to support his thesis entitled; Modeling Integrated Net-
work Security Boundaries as Complex Adaptive Systems. MAJ Lewis is a Cyber Opera-
tions Student that is expected to graduate in August.   

Survey Purpose:  Gather elements that you, as the respondent, consider most critical 
when making decisions in an intrusion detection and prevention networking scenario.  
The survey is UNCLASSIFIED, anonymous and no personal identifiable information 
will be recorded or kept on file.   

Target Audience:  Personnel with Information Assurance experience and related net-
work defense roles are preferred, however not required.  
 
Estimated time: Approximately 30 minutes 
Survey Format:  This is a four part anonymous study to determine the effects of event 
collaboration on human decision-support profiles. In Part-I, respondents are asked to 
complete baseline information and introduced to the materials that will be used during the 
survey. Participants are faced with a network threat scenario during Part-II, and are ex-
pected to recommend a protective posture that best protects their local-area network secu-
rity boundary. The conditions are slightly modified and respondents are surveyed again 
during Scenario-III.  Finally, in Part IV (Participant Reflection) questions are asked to 
determine if there was a change in their recommendation considerations.  Following the 
closing of the survey, respondents are asked to participate in an after action review and 
provide feedback.  

Location:  TBD 

  
SUBJECT:  Request for Staff, Student and Faculty participation in decision-support sur-
vey study and graduate research support  
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    The survey will be conducted in a classroom environment using pencil and paper as the 
instruments for recording responses.  The exact room number will be provided after you 
have registered for a time-slot. 

When:  The survey will be conducted from: July 24, 2014 until August 8, 2014. 

Preliminary Results will be presented on 20AUG14 during the student Thesis Defense.  

     If you are interested we welcome you to participate in this survey by reserving your 30 
minute time-slot today. 
   
Informed consent: All subjects are self-selected to volunteer to participate in this survey 
interview. No adverse action is taken against those who choose not to participate. Sub-
jects are made aware of the nature and purpose of the research, sponsors of the research, 
and disposition of the survey results. A copy of the Privacy Act Statement of 1974 is pre-
sented for their review.  
 
4. If you have any questions about this request, please contact Maj Brian G. Woolley, 
PhD (primary investigator) – Phone 255-3636, ext. 4618; E-mail: bri-
an.woolley@afit.edu.  
 
 
 
 

Maj Brian G. Woolley, PhD  
Principal Investigator  
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Date: 9 JULY 2014 

 
MEMORANDUM FOR AFIT IRB Reviewer 
 
FROM: AFIT/ENG 
  2950 Hobson Way 

 Wright Patterson AFB OH 45433‐7765 
 
SUBJECT:  Request for exemption from human experimentation requirements (32 CFR 
219, DoD 3216.2 and AFI 40-402) for Protective Posture Recommendation Profiles  

 
  
1. The purpose of this survey is to gather situation awareness requirements data that IA 
security professionals need when making threat mitigation decisions.  The requirements 
data may include the operator’s preferences for threat identification methods, the status of 
the threat relative to time and space, the meaning of the threat’s status in the context of 
the operational environment and the operator’s best recommendation for threat mitigation 
responses IAW local policy tactics techniques and procedures.     
     

a) Intent:  The results will support the student’s graduate level research.     
 

b) Objectives:  Determine if the recommendation profiles from the respondents can 
be encoded into the Artificial Neural Network (ANN) in a manner that enhances 
situation awareness.  The results of the requirements encoding will be used to de-
termine the ANN’s performance and how well it can accurately represent the gen-
eralized profiles.  The performance results of the ANN will be included in further 
research recommendations that include recommendations for threat mitigation and 
collaboration suggestions for enhanced situation awareness.  

  
2. This request is based on the Code of Federal Regulations, title 32, part 219, section 
101, paragraph (b) (2) Research activities that involve the use of educational tests (cogni-
tive, diagnostic, aptitude, achievement), survey procedures, interview procedures, or ob-
servation of public behavior unless: (i) Information obtained is recorded in such a manner 
that human subjects can be identified, directly or through identifiers linked to the sub-
jects; and (ii) Any disclosure of the human subjects’ responses outside the research could 
reasonably place the subjects at risk of criminal or civil liability or be damaging to the 
subjects’ financial standing, employability, or reputation.  
 
3. The following information is provided to show cause for such an exemption:  
 

a)  Equipment and facilities: A standard classroom, chairs, tables, pen and paper are 
needed to support this survey. 
 

b) Source of subjects: AFIT Faculty, Staff, and Students 
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Total Number: 20 
Inclusion/exclusion:  IA Security Professionals of various backgrounds.  Do not 
include personnel that have never heard of Information Assurance. 
Age range:  No restrictions. 
 

c) Timeframe: Two weeks 
 
d) Data collected:   This study will not collect personal identifiers or specific demo-

graphic information. The data will be collected by a combination of interview and 
survey that will be administered by the assistant investigator. See enclosures 1 
and 2. 
   

e) Risks to Subjects: Subjects may disclose tactics techniques and procedures that 
are of a classified nature. Subjects will be notified that the entire survey is 
UNCLASSIFIED.  If a subject’s future response reasonably places them at risk of 
criminal or civil liability or is damaging to their financial standing, employability, 
or reputation, I understand that I am required to immediately file an adverse event 
report with the IRB office.  I understand that the names and associated data I col-
lect must be protected at all times, only be known to the researchers, and managed 
according to the AFIT interview protocol. All interview data will only be handled 
by the following researchers (MAJ Tyrone Lewis and MAJ Woolley). At the con-
clusion of the study, all data will be turned over to the advisor and all other copies 
will be destroyed.  

 
f) Informed consent: All subjects are self-selected to volunteer to participate in the 

interview. No adverse action is taken against those who choose not to participate. 
Subjects are made aware of the nature and purpose of the research, sponsors of 
the research, and disposition of the survey results. A copy of the Privacy Act 
Statement of 1974 is presented for their review.  

 
4. If you have any questions about this request, please contact Maj Brian G. Woolley, 
PhD (primary investigator) – Phone 255-3636, ext. 4618; E-mail: bri-
an.woolley@afit.edu.  
 
 
 

Maj Brian G. Woolley, PhD  
Principal Investigator  

 
 
 
Attachments:  
1. Survey questions  
2. Interviewer questions  
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