388 research outputs found

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out

    A Brief Survey on Cluster based Energy Efficient Routing Protocols in IoT based Wireless Sensor Networks

    Get PDF
    The wireless sensor network (WSN) consists of a large number of randomly distributed nodes capable of detecting environmental data, converting it into a suitable format, and transmitting it to the base station. The most essential issue in WSNs is energy consumption, which is mostly dependent on the energy-efficient clustering and data transfer phases. We compared a variety of algorithms for clustering that balance the number of clusters. The cluster head selection protocol is arbitrary and incorporates energy-conscious considerations. In this survey, we compared different types of energy-efficient clustering-based protocols to determine which one is effective for lowering energy consumption, latency and extending the lifetime of wireless sensor networks (WSN) under various scenarios

    Data sharing in secure multimedia wireless sensor networks

    Full text link
    © 2016 IEEE. The use of Multimedia Wireless Sensor Networks (MWSNs) is becoming common nowadays with a rapid growth in communication facilities. Similar to any other WSNs, these networks face various challenges while providing security, trust and privacy for user data. Provisioning of the aforementioned services become an uphill task especially while dealing with real-time streaming data. These networks operates with resource-constrained sensor nodes for days, months and even years depending on the nature of an application. The resource-constrained nature of these networks makes it difficult for the nodes to tackle real-time data in mission-critical applications such as military surveillance, forest fire monitoring, health-care and industrial automation. For a secured MWSN, the transmission and processing of streaming data needs to be explored deeply. The conventional data authentication schemes are not suitable for MWSNs due to the limitations imposed on sensor nodes in terms of battery power, computation, available bandwidth and storage. In this paper, we propose a novel quality-driven clustering-based technique for authenticating streaming data in MWSNs. Nodes with maximum energy are selected as Cluster Heads (CHs). The CHs collect data from member nodes and forward it to the Base Station (BS), thus preventing member nodes with low energy from dying soon and increasing life span of the underlying network. The proposed approach not only authenticates the streaming data but also maintains the quality of transmitted data. The proposed data authentication scheme coupled with an Error Concealment technique provides an energy-efficient and distortion-free real-time data streaming. The proposed scheme is compared with an unsupervised resources scenario. The simulation results demonstrate better network lifetime along with 21.34 dB gain in Peak Signal-to-Noise Ratio (PSNR) of received video data streams

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    Get PDF
    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols

    Wireless sensor network as a distribute database

    Get PDF
    Wireless sensor networks (WSN) have played a role in various fields. In-network data processing is one of the most important and challenging techniques as it affects the key features of WSNs, which are energy consumption, nodes life circles and network performance. In the form of in-network processing, an intermediate node or aggregator will fuse or aggregate sensor data, which are collected from a group of sensors before transferring to the base station. The advantage of this approach is to minimize the amount of information transferred due to lack of computational resources. This thesis introduces the development of a hybrid in-network data processing for WSNs to fulfil the WSNs constraints. An architecture for in-network data processing were proposed in clustering level, data compression level and data mining level. The Neighbour-aware Multipath Cluster Aggregation (NMCA) is designed in the clustering level, which combines cluster-based and multipath approaches to process different packet loss rates. The data compression schemes and Optimal Dynamic Huffman (ODH) algorithm compressed data in the cluster head for the compressed level. A semantic data mining for fire detection was designed for extracting information from the raw data by the semantic data-mining model is developed to improve data accuracy and extract the fire event in the simulation. A demo in-door location system with in-network data processing approach is built to test the performance of the energy reduction of our designed strategy. In conclusion, the added benefits that the technical work can provide for in-network data processing is discussed and specific contributions and future work are highlighted

    6LoWPAN in Wireless Sensor Network with IoT in 5G Technology for Network Secure Routing and Energy Efficiency

    Get PDF
    Today, interconnection and routing protocols must discover the best solution for secure data transformation with a variety of smart devices due to the growing influence of information technology, such as Internet of Things (IoT), in human life. In order to handle routing concerns with regard to new interconnection approaches like the 6LoWPAN protocol, it is required to offer an improved solution. This research propose novel technique in 6LoWPAN network secure routing and energy efficiency (EE) for WSN in IoT application based on 5G technology. Here the energy optimization has been carried out using clustered channel aware least square support vector machine (Cl_CHLSSVM). Then the secure routing has been carried out using fuzzy based Routing Protocol for low-power and Lossy Networks with kernel-particle swarm optimization (Fuz_RPL_KPSO). To serve needs of IoT applications, proposed method is cognizant of both node priorities as well as application priorities. Applications' sending rate allocation is modeled as a constrained optimization issue.Pxperimental analysis is carried out in terms of throughput of 96%, weighted fairness index of 77%, end-to-end delay of 59%, energy consumption of 86%, and buffer dropped packets of 51%

    An energy-efficient routing protocol for Hybrid-RFID Sensor Network

    Get PDF
    Radio Frequency Identification (RFID) systems facilitate detection and identification of objects that are not easily detectable or distinguishable. However, they do not provide information about the condition of the objects they detect. Wireless sensor networks (WSNs), on the other hand provide information about the condition of the objects as well as the environment. The integration of these two technologies results in a new type of smart network where RFID-based components are combined with sensors. This research proposes an integration technique that combines conventional wireless sensor nodes, sensor-tags, hybrid RFID-sensor nodes and a base station into a smart network named Hybrid RFID-Sensor Network (HRSN)

    Exploitation of Data Correlation and Performance Enhancement in Wireless Sensor Networks

    Get PDF
    With the combination of wireless communications and embedded system, lots of progress has been made in the area of wireless sensor networks (WSNs). The networks have already been widely deployed, due to their self-organization capacity and low-cost advantage. However, there are still some technical challenges needed to be addressed. In the thesis, three algorithms are proposed in improving network energy efficiency, detecting data fault and reducing data redundancy. The basic principle behind the proposed algorithms is correlation in the data collected by WSNs. The first sensor scheduling algorithm is based on the spatial correlation between neighbor sensor readings. Given the spatial correlation, sensor nodes are clustered into groups. At each time instance, only one node within each group works as group representative, namely, sensing and transmitting sensor data. Sensor nodes take turns to be group representative. Therefore, the energy consumed by other sensor nodes within the same group can be saved. Due to the continuous nature of the data to be collected, temporal and spatial correlation of sensor data has been exploited to detect the faulty data. By exploitation of temporal correlation, the normal range of upcoming sensor data can be predicted by the historical observations. Based on spatial correlation, weighted neighbor voting can be used to diagnose whether the value of sensor data is reliable. The status of the sensor data, normal or faulty, is decided by the combination of these two proposed detection procedures. Similar to the sensor scheduling algorithm, the recursive principal component analysis (RPCA) based algorithm has been studied to detect faulty data and aggregate redundant data by exploitation of spatial correlation as well. The R-PCA model is used to process the sensor data, with the help of squared prediction error (SPE) score and cumulative percentage formula. When SPE score of a collected datum is distinctly larger than that of normal data, faults can be detected. The data dimension is reduced according to the calculation result of cumulative percentage formula. All the algorithms are simulated in OPNET or MATLAB based on practical and synthetic datasets. Performances of the proposed algorithms are evaluated in each chapter
    corecore