220 research outputs found

    Design, manufacture and test of a magnetic encoder

    Get PDF
    An new eddy current based magnetic position encoder structure is proposed and studied in this thesis. The encoder is composed of one read head and one scale with metal plates placed periodically on a substrate. The read head contains one emitter and two receiver pairs which are all rectangular planar coils. The electromagnetic coupling between the emitter and receivers were affected by the relative position of the scale. A system level analytical model of the proposed encoder structure has been derived, from which three different encoder signals forms were generated. An amplification and synchronous demodulation circuit has been designed and fabricated. The circuit board was used successfully to process the encoder output signals in the measurement. Four PCB encoder prototypes were fabricated. These encoder structures were studied using the ANSYS MaxwellTM software package. The simulated and measured results were compared. The best accuracy performance of the PCB encoder is -15 μm to 15 μm from the simulation results and -35 μm to 25 μm from the corresponding measurement. An alternative manufacturing process of the magnetic encoder based on multilayer Low Temperature Co-fired Ceramic (LTCC) technology has also been presented. The fabrication process of the LTCC encoder and equipment used were described. Two different methods were used to characterise the LTCC encoder with good agreement between all approaches attempted. The best accuracy performance of the LTCC encoder was -30 μm to 25 μm and after lookup table correction the improved accuracy ranged from -10 μm to 10 μm

    Spectroscopic detection of glucose with a silicon photonic integrated circuit

    Get PDF

    NASA Tech Briefs, December 1991

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Compressed Sensing for Open-ended Waveguide Non-Destructive Testing and Evaluation

    Get PDF
    Ph. D. ThesisNon-destructive testing and evaluation (NDT&E) systems using open-ended waveguide (OEW) suffer from critical challenges. In the sensing stage, data acquisition is time-consuming by raster scan, which is difficult for on-line detection. Sensing stage also disregards demand for the latter feature extraction process, leading to an excessive amount of data and processing overhead for feature extraction. In the feature extraction stage, efficient and robust defect region segmentation in the obtained image is challenging for a complex image background. Compressed sensing (CS) demonstrates impressive data compression ability in various applications using sparse models. How to develop CS models in OEW NDT&E that jointly consider sensing & processing for fast data acquisition, data compression, efficient and robust feature extraction is remaining challenges. This thesis develops integrated sensing-processing CS models to address the drawbacks in OEW NDT systems and carries out their case studies in low-energy impact damage detection for carbon fibre reinforced plastics (CFRP) materials. The major contributions are: (1) For the challenge of fast data acquisition, an online CS model is developed to offer faster data acquisition and reduce data amount without any hardware modification. The images obtained with OEW are usually smooth which can be sparsely represented with discrete cosine transform (DCT) basis. Based on this information, a customised 0/1 Bernoulli matrix for CS measurement is designed for downsampling. The full data is reconstructed with orthogonal matching pursuit algorithm using the downsampling data, DCT basis, and the customised 0/1 Bernoulli matrix. It is hard to determine the sampling pixel numbers for sparse reconstruction when lacking training data, to address this issue, an accumulated sampling and recovery process is developed in this CS model. The defect region can be extracted with the proposed histogram threshold edge detection (HTED) algorithm after each recovery, which forms an online process. A case study in impact damage detection on CFRP materials is carried out for validation. The results show that the data acquisition time is reduced by one order of magnitude while maintaining equivalent image quality and defect region as raster scan. (2) For the challenge of efficient data compression that considers the later feature extraction, a feature-supervised CS data acquisition method is proposed and evaluated. It reserves interested features while reducing the data amount. The frequencies which reveal the feature only occupy a small part of the frequency band, this method finds these sparse frequency range firstly to supervise the later sampling process. Subsequently, based on joint sparsity of neighbour frame and the extracted frequency band, an aligned spatial-spectrum sampling scheme is proposed. The scheme only samples interested frequency range for required features by using a customised 0/1 Bernoulli measurement matrix. The interested spectral-spatial data are reconstructed jointly, which has much faster speed than frame-by-frame methods. The proposed feature-supervised CS data acquisition is implemented and compared with raster scan and the traditional CS reconstruction in impact damage detection on CFRP materials. The results show that the data amount is reduced greatly without compromising feature quality, and the gain in reconstruction speed is improved linearly with the number of measurements. (3) Based on the above CS-based data acquisition methods, CS models are developed to directly detect defect from CS data rather than using the reconstructed full spatial data. This method is robust to texture background and more time-efficient that HTED algorithm. Firstly, based on the histogram is invariant to down-sampling using the customised 0/1 Bernoulli measurement matrix, a qualitative method which only gives binary judgement of defect is developed. High probability of detection and accuracy is achieved compared to other methods. Secondly, a new greedy algorithm of sparse orthogonal matching pursuit (spOMP)-based defect region segmentation method is developed to quantitatively extract the defect region, because the conventional sparse reconstruction algorithms cannot properly use the sparse character of correlation between the measurement matrix and CS data. The proposed algorithms are faster and more robust to interference than other algorithms.China Scholarship Counci

    Neural information processing in the Drosophila motion vision pathway

    Get PDF
    Detecting the direction of image motion is an essential component of visual computation. An individual photoreceptor, however, does not explicitly represent the direction in which the image is shifting. Comparing neighboring photoreceptor signals over time is used to extract directional motion information from the photoreceptor array in the circuit downstream. To implement direction selectivity, two opposing models have been proposed. In both models, one input line is asymmetrically delayed compared to the other, followed by a non-linear interaction between the two input lines. The Hassenstein-Reichardt (HR) model proposes an enhancement in the preferred direction (PD): the preferred side signal is delayed and then amplified by multiplying it with the other input signal. In contrast, the Barlow-Levick (BL) detector proposes a null direction (ND) suppression, whereby the null side signal is delayed and the other input is divided by it. The motion information is computed in parallel ON and OFF pathways. T4 and T5 are the first direction-selective neurons found in the ON and in the OFF pathway, respectively. Four subtypes of T4 and T5 cells exist each responding selectively to one of the four cardinal directions: front-to-back, back-to-front, upwards, and downwards, respectively. In the first manuscript, we found that both preferred direction enhancement and null direction suppression are implemented in the dendrites of all four subtypes of both T4 and T5 cells to compute the direction of motion. We, therefore, propose a hybrid model combining both PD enhancement on the preferred side and ND suppression on the null side. This combined strategy ensures a high degree of direction selectivity already at the first stage of calculating motion direction. Further processing, in addition to synaptic mechanisms on the dendrites of T4 cells, can improve the direction selectivity of the T4 cells' output signals. Such processing might involve: 1.) transformation from voltage to calcium, and 2.) from calcium to neurotransmitter release. In the second manuscript, we used in vivo two-photon imaging of genetically encoded voltage and calcium indicators, Arclight and GCaMP6f respectively, to measure responses in Drosophila direction-selective T4 neurons. Comparison between Arclight and GCaMP6f signals revealed calcium signals to have a significantly higher direction selectivity compared to voltage signals. Using these recordings we built a model which transforms T4 voltage responses into calcium responses. The model reproduced experimentally measured calcium responses across different visual stimuli using various temporal filtering steps and a stationary non-linearity. These findings provided a mechanistic underpinning of the voltage-to-calcium transformation and showed how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. The two manuscripts included in this thesis are presented chronologically and were published in peer-reviewed journals

    NASA Tech Briefs, April 2002

    Get PDF
    The contents include: 1) Application Briefs; 2) Sneak Preview of Sensors Expo; 3) The Complexity of the Diagnosis Problem; 4) Design Concepts for the ISS TransHab Module; 5) Characteristics of Supercritical Transitional Mixing Layers; 6) Electrometer for Triboelectric Evaluation of Materials; 7) Infrared CO2 Sensor With Built-In Calibration Chambers; 8) Solid-State Potentiometric CO Sensor; 9) Planetary Rover Absolute Heading Detection Using a Sun Sensor; 10) Concept for Utilizing Full Areas of STJ Photodetector Arrays; 11) Development of Cognitive Sensors; 12) Enabling Higher-Voltage Operation of SOl CMOS Transistors; 13) Estimating Antenna-Pointing Errors From Beam Squints; 14) Advanced-Fatigue-Crack-Growth and Fracture- Mechanics Program; 15) Software for Sequencing Spacecraft Actions; 16) Program Distributes and Tracks Organizational Memoranda; 16) Flat Membrane Device for Dehumidification of Air; 17) Inverted Hindle Mount Reduces Sag of a Large, Precise Mirror; 18) Heart-Pump-Outlet/Cannula Coupling; 19) Externally Triggered Microcapsules Release Drugs In Situ; 20) Combinatorial Drug Design Augmented by Information Theory; 21) Multiple-Path-Length Optical Absorbance Cell; 22) Model of a Fluidized Bed Containing a Mixture of Particles; 23) Refractive Secondary Concentrators for Solar Thermal Systems; 24) Cold Flow Calorimeter; 25) Methodology for Tracking Hazards and Predicting Failures; 26) Estimating Heterodyne-Interferometer Polarization Leakage; 27) An Efficient Algorithm for Propagation of Temporal- Constraint Networks; 28) Software for Continuous Replanning During Execution; 29) Surface-Launched Explorers for Reconnaissance/Scouting; 30) Firmware for a Small Motion-Control Processor; 31) Gear Bearings and Gear-Bearing Transmissions; and 32) Linear Dynamometer With Variable Stroke and Frequency

    Space Programs Summary No. 37-36

    Get PDF
    Research in systems, guidance and control, space sciences, engineering, telecommunications and propulsion for space exploration program
    corecore