9,858 research outputs found

    Port-based modeling and optimal control for a new very versatile energy efficient actuator

    Get PDF
    In this paper, we analyze in depth the innovative very versatile and energy efficient (V2E2) actuator proposed in Stramigioli et al. (2008). The V2E2 actuator is intended to be used in all kind of robotics and powered prosthetic applications in which energy consumption is a critical issue. In particular, this work focuses on the development of a port-based Hamiltonian model of the V2E2 and presents an optimal control architecture which exploits the intrinsic hybrid characteristics of the actuator design. The optimal control guarantees the minimization of dissipative power losses during torque tracking transients

    Monolithic shape-programmable dielectric liquid crystal elastomer actuators

    Full text link
    Macroscale robotic systems have demonstrated great capabilities of high speed, precise, and agile functions. However, the ability of soft robots to perform complex tasks, especially in centimeter and millimeter scale, remains limited due to the unavailability of fast, energy-efficient soft actuators that can programmably change shape. Here, we combine desirable characteristics from two distinct active materials: fast and efficient actuation from dielectric elastomers and facile shape programmability from liquid crystal elastomers into a single shape changing electrical actuator. Uniaxially aligned monoliths achieve strain rates over 120%/s with energy conversion efficiency of 20% while moving loads over 700 times the actuator weight. The combined actuator technology offers unprecedented opportunities towards miniaturization with precision, efficiency, and more degrees of freedom for applications in soft robotics and beyond

    Feasibility of a 30-meter space based laser transmitter

    Get PDF
    A study was made of the application of large expandable mirror structures in future space missions to establish the feasibility and define the potential of high power laser systems for such applications as propulsion and power transmission. Application of these concepts requires a 30-meter diameter, diffraction limited mirror for transmission of the laser energy. Three concepts for the transmitter are presented. These concepts include consideration of continuous as well as segmented mirror surfaces and the major stow-deployment categories of inflatable, variable geometry and assembled-in-space structures. The mirror surface for each concept would be actively monitored and controlled to maintain diffraction limited performance at 10.6 microns during operation. The proposed mirror configurations are based on existing aerospace state-of-the-art technology. The assembled-in-space concept appears to be the most feasible, at this time

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    Force Measuring System for High-Precision Surface Characterization under Extreme Conditions

    Get PDF
    Force measuring is used in various surface characterization techniques such as indentation, scratch tests, tribological analysis, determination of gas content, etc. The main problems related with force measurement under extreme conditions have been analysed. A strategy that should be followed to solve these problems has been discussed and several examples of successive solutions that recently were developed by the authors are presented. The need to carry out the characterization under extreme conditions poses serious problems for the designers of the measuring systems that may include the incompatibility of the sensors with the test conditions, undesirable interactions with other components, stability, precision and uncertainty issues, the measurement range, etc. Resolving these problems must be based on a global approach in which the characterization system is considered as a whole, while the designer must analyse and solve the possible conflicts between the subsystems. The way how an appropriate force measuring system can be selected is described. The proposed method is illustrated by an example in which an indirect force measurement using optical fibre displacement sensor was used. Another example describes measuring system developed for vacuum high-temperature nanoindentation. At high temperature, proper heat management based on non-contact heating and laminar flow cooling system is mandatory to avoid experimental data being affected by external noise and thermal drift

    A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8

    Get PDF
    An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft

    Nanocarbon/elastomer composites : characterization and applications in photo-mechanical actuation.

    Get PDF
    Materials that change shape or dimensions in response to external stimuli are widely used in actuation devices. While plenty of systems respond to heat, light, electricity, and magnetism, there is an emerging class of light-driven actuators based on carbon nanostructure/elastomer composites. The addition of nanomaterials to elastomeric polymers results not only in significant material property improvements such as mechanical strength, but also assists in creating entirely new composite functionalities as with photo-mechanical actuation. Efficient photon absorption by nanocarbons and subsequent energy transduction to the polymeric chains can be used to controllably produce significant amounts of pre-strain dependent motion. Photo-mechanical actuation offers a variety of advantages over traditional devices, including wireless actuation, electro-mechanical decoupling (and therefore low noise), electrical circuit elimination at point of use, massive parallel actuation of device arrays from single light source, and complementary metal–oxide–semiconductor / micro-electro-mechanical (CMOS/MEMS) compatible processing. Applications of photo-responsive materials encompass robotics, plastic motors, photonic switches, micro-grippers, and adaptive micro-mirrors. The magnitude and direction of photo-mechanical actuation responses generated in carbon nanostructure/elastomer composites depend on applied pre-strains. At low levels of pre-strains (3–9%), actuators show reversible photo-induced expansion while at high levels (15–40%), actuators exhibit reversible contraction. Large, light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites were demonstrated for the first time, with an extraordinary optical-to-mechanical energy conversion factor (?M) of 7–9 MPa/W. Following this demonstration, similar elastomeric composite were fabricated with a variety of carbon nanostructures. Investigation into photo-actuation properties of these composites revealed both layer-dependent, as well as dimensionally-dependent responses. For a given carbon concentration, both steady-state photo-mechanical stress response and energy conversion efficiency were found to be directly related to dimensional state of carbon nanostructure additive, with one-dimensional (1D) carbon nanotubes demonstrating the highest responses (~60 kPa stress and ~5 × 10-3% efficiency at just 1 wt% loading) and three-dimensional (3D) highly ordered pyrolytic graphite demonstrating the lowest responses. Furthermore, development of an advanced dispersion technique (evaporative mixing) resulted in the ability to fabricate conductive composites. Actuation and relaxation kinetics responses were investigated and found to be related not to dimensionality, but rather the percolation threshold of carbon nanostructure additive in the polymer. Establishing a connective network of carbon nanostructure additive allowed for energy transduction responsible for photo-mechanical effect to activate carbon beyond the infrared (IR) illumination point, resulting in enhanced actuation. Additionally, in the conductive samples photoconductivity as a function of applied pre-strain was also measured. Photo-conductive response was found to be inversely proportional to applied pre-strain, demonstrating mechanical coupling. Following investigation into photo-mechanical actuation responses between the various carbon forms, use of these composite actuators to achieve both macroscopic as well as microscopic movement in practical applications was evaluated. Using dual GNP/elastomer actuators, a two-axis sub-micron translation stage was developed, and allowed for two-axis photo-thermal positioning (~100 µm per axis) with 120 nm resolution (limitation of the feedback sensor) and ~5 µm/s actuation speeds. A proportional-integral-derivative control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations (up to the bandwidth of the feedback and position sensor). Nanopositioner performance characteristics were found to be on par with other commercial systems, with resolution limited only by the feedback system used. A mathematical model was developed to describe the elastomeric composite actuators as a series of n springs, with each spring element having its own independent IR-tunable spring constant. Effects of illumination intensity, position, and amount of the composite actuator illuminated are discussed. This model provided several additional insights, such as demonstrating the ability to place not just one, but multiple stages on a single polymer composite strip and position them independently from one another, a benefit not seen in any other type of positioning system. Further investigation yielded interesting and novel photo-mechanical properties with actuation visible on macroscopic scales. Addition of a third component (thermally expanding microspheres), produced a new class of stimuli-responsive expanding polymer composites with ability to unidirectionally transform physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core-shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or IR stimuli, liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. Microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Transformations include macroscopic volume expansion (\u3e500%), density reduction (\u3e80%), and elastic modulus increase (\u3e675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. Compared to well-established actuation technologies, research into photo-mechanical properties of carbon-based polymer composites is still in its infancy. Results in this dissertation demonstrate some of the enormous potential of light-driven carbon-based composites for actuation and energy scavenging applications. Furthermore, mechanical response dependence to carbon nanostructure dimensional state could have significance in developing new types of carbon-based mixed-dimensional composites for sensor and actuator systems. As the fabrication processes used here are compatible with CMOS and MEMS processing, carbon-based polymer composites allow for not only scaling actuation systems, but also ability to pattern regions of tailorable expansion, strength, and electrical resistance into a single polymer skin, making these composites ideal for structural and electrical building blocks in smart systems. Continued development of carbon-based polymer composites will extend the promising potential of light-driven actuation technologies and will serve as a catalyst to inspire continued research into energy conversion devices and systems

    Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope

    Get PDF
    Silicon-MEMS gyroscope is an important part of MEMS (Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coefficient for the MEMS comb linear vibration gyroscope and different gas damping coefficient influences the quality factor of the gyroscope directive. The quality factor influences the dynamic working bandwidth of the MEMS comb linear vibration gyroscope, so it is influences the output characteristic of the MEMS comb linear vibration gyroscope. The paper shows the relationship between the air pressure and the output amplified and phase of the detecting axis through analyzing the air pressure influence on the MEMS comb linear vibration gyroscope. It discusses the influence on the frequency distribute and quality factor of the MEMS comb linear vibration gyroscope for different air pressure.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Steady-state and transient analysis of electro-thermal microactuators using finite element methods

    Get PDF
    Recent techniques in radar and communication systems favor the development of phased arrays. The major problems to such systems are size and cost due to the large number of individual transmit/receive modules required. Photonic systems implemented in MEMS technology have reduced bulk optical systems to microscale proportions. This reduction in scale is particularly important to phased arrays since it allows flexibility in deployment. This thesis aims to understand the steady state and transient characteristics of an electrically heated, thermally driven, surface micromachined MEMS polysilicon beam flexure actuator to be employed for the rotation of an r-f phase shifter utilized in phased array systems. The characteristics of the thermal actuator are examined through finite element analysis by investigating the relative importance of the temperature dependencies of the material properties of MUMPs polysilicon. The comprehensive finite element model of the thermal actuator developed using ANSYS 5.6, a commercial finite element package, has the ability to include full temperature dependencies of all parameters and also has the capacity to impose all heat transfer modes, which are beyond the capabilities of current analytical models. Steady-state thermal profiles of the thermal actuator are presented for the thermal actuator in an environment of air and vacuum. The model is validated indirectly by comparing the steady-state deflections with measured data of six thermal actuators of different geometries. The finite element simulations are also validated with a previous analytical model to compare model accuracy. The dynamic behavior of the thermal actuator is examined in both air and vacuum, which gives an insight into power and energy consumption of the thermal actuator. Initial results show a limited power and energy savings for the thermal actuator operated in vacuum over that operated in air. Design optimization of the thermal actuator is investigated using the ANSYS Parametric Design Language (APDL) with the Subproblem Approximation Method for maintaining low power consumption. An indirect method is employed by maximizing the steady-state deflection for unloaded actuators and minimizing the steady-state deflection for loaded actuators for the same applied voltage. A significant reduction in power consumption with an increase in the maximum steady-state deflection has been observed for unloaded actuators. For loaded actuators the available force output is increased slightly, the steady-state deflection decreased slightly and the power consumption increased slightly
    • …
    corecore